高等数学实验报告matlab
- 格式:doc
- 大小:29.50 KB
- 文档页数:4
4)MATLAB实验报告MATLAB实验报告一、引言MATLAB是一种强大的数学软件,广泛应用于科学研究、工程设计和数据分析等领域。
本实验报告旨在介绍使用MATLAB进行数据处理和可视化的基本方法,并通过实例展示其应用。
二、数据处理1. 数据导入与读取在MATLAB中,可以使用load函数或importdata函数导入外部数据文件。
load函数适用于导入MATLAB格式的数据文件,而importdata函数可以导入多种格式的数据文件,如文本文件、Excel文件等。
2. 数据清洗与转换数据清洗是指对原始数据进行去除异常值、缺失值填充等处理,以保证数据的准确性和完整性。
MATLAB提供了丰富的函数和工具箱,如统计工具箱、优化工具箱等,可以方便地进行数据清洗和转换操作。
3. 数据分析与建模MATLAB具有强大的数学和统计分析功能,可以进行数据的描述性统计、回归分析、时间序列分析等。
通过使用相关函数和工具箱,可以对数据进行深入分析,并建立相应的数学模型。
三、数据可视化1. 统计图表MATLAB提供了丰富的绘图函数和工具箱,可以绘制各种统计图表,如直方图、散点图、箱线图等。
这些图表可以直观地展示数据的分布、关系和趋势,有助于更好地理解和解释数据。
2. 三维可视化除了二维图表外,MATLAB还支持三维数据的可视化。
通过使用plot3函数、mesh函数等,可以将三维数据以曲线、曲面等形式展示出来,进一步提供对数据的深入理解。
3. 动态可视化MATLAB还支持动态可视化,即通过动画或交互式图形来展示数据的变化过程。
通过使用animate函数、interactiveplot函数等,可以将数据的变化以动态的方式展示出来,增加数据分析和呈现的趣味性。
四、实例应用以某电商平台销售数据为例,展示如何使用MATLAB进行数据处理和可视化。
首先,导入销售数据文件,清洗数据,去除异常值和缺失值。
然后,通过统计分析,计算销售额、销量、平均价格等指标,并绘制相应的统计图表。
《高等数学》实验报告(二)实验项目名称:多元函数积分学分组第八组组员姓名学号专业班级实验软件Matlab2010b完成日期实验成绩一、实验目的:加强对Matlab 软件的基本操作,会利用符号计算中int 积分嵌套命令求二重积分、三重积分。
会合理运用int 嵌套命令求解第一类、第二类曲线积分及第一类、第二类曲面积分以及Green 公式及Gauss 公式解题。
结合已经学习的内容,学会分析上述有关内容的综合问题并利用软件给出正确的解答。
二、 实验内容、步骤与结果:8. 计算二重积分 arctan D y d xσ⎰⎰ 其中D 是由圆224x y += 、 及直线y=0, y=x 所围成的在第一象限内的闭区域。
>> syms x y rho theta>> i=int(int(atan(tan(theta))*rho,rho,1,2),theta,0,(0.25)*pi)i =(3*pi^2)/6418. 计算三重积分 e x y z dxdydz ++Ω⎰⎰⎰,其中, 是平面x+y+z=1与三个坐标面围成的立体。
>> syms x y z;>> i=int(int(int(exp(x+y+z),z,0,1),y,0,1-x),x,0,1)i =exp(1) - 128. 计算曲线积分 2()()L x y dx x y dy ++-⎰,其中,L 沿直线从(1,0) 到(0,1), 再沿直线从(0,1)到(-1,0)。
过程syms x y;p=x^2+y;q=x-y;fun=(x^2+y)*diff(p,x)+(x-y)*diff(q,y);I=int(fun,x,1,0);I=int(fun,y,0,1)I =1/2+2*x^3I=int(fun,x,0,-1);I=int(fun,y,1,0)I =-1/2-2*x^3结果由(1,0)到(0,1)I =1/2+2*x^3由(0,1)到(-1,0)I =-1/2-2*x^338求半径为a的球面面积。
成都大学高等数学实验报告(MATLAB版)班级姓名学号成都大学高等数学教研室2011年3月高等数学实验报告1 基本计算与作图班级 姓名 学号 完成时间 成绩一、实验内容基本计算,函数的表示,函数图形的显示.二、预期目标1.熟悉Matlab 软件的基本操作.2.掌握基本计算,函数的表示与函数的作图命令.3.学会利用Matlab 软件对函数进行分析研究.三、练习内容习题一1.计算下列各式的值:(写出格式及执行结果,(1)为例式) (1)1675; >> 75^16ans = 1.0023e+030 (2)i 31-; (3) 23sin ;>> sqrt(1-3*i) >>sin(23*pi/180) ans = 1.4426 - 1.0398i ans = 0.3907 (4)π2arcsin; (5)!88.>> asin(2/pi) >> factorial(88) ans = 0.6901 ans = 1.8548e+134 2.3tan,2π==b e a e,计算:(1)5332532b a ab a -+; (2))sec(arctana . >> a=sqrt(exp(exp(1))); b=tan(pi^2/3); >> a=sqrt(exp(exp(1))); b=tan(pi^2/3);>> 2*a^2+3*a*b^3-5*a^3*b^5 >> sec(atan(a))ans =30.3255 ans =4.0192 3.在计算机上练习以下语句的输入:((1)为求解格式)(1)143212-+x bx ax ; (2)13ln 42sin 2+-⎪⎭⎫ ⎝⎛+x xx π;>> syms a b x >> syms x>> (3*a*x^2+4*b*x^(1/2))/(x-1) >> (sin(2*x+pi/4)-log(3*x))/sqrt(x^2+1)ans =(3*a*x^2+4*b*x^(1/2))/(x-1) ans = (sin(2*x+1/4*pi)-log(3*x))/(x^2+1)^(1/2) (3)x e x x 22)2sin (cos -. >> syms x>> (cos(x)^2-sin(2*x))*exp(2*x) ans =(cos(x)^2-sin(2*x))*exp(2*x) 习题二(只写出输入格式) 1.作出13y x =的图象>> x=linspace(0,3,100); >> y=x.^(1/3); >> plot(x,y) 参见图12.作出14xy ⎛⎫=⎪⎝⎭的图象 3.作出14log y x =的图象 >> x=linspace(-2,2,50); >> fplot('log(x)/log(1/4)',[0.1,3])>> y= (1/4).^x; >> plot(x,y)参见图2 参见图34.作出sin(2)4y x π=+在一个周期内的图象 5.作分段函数2,0()1,0x x f x x x ⎧≤=⎨+>⎩的图象。
matlab实验报告总结1.求一份matlab的试验报告计算方法试验报告3【实验目的】检查各种数值计算方法的长期行为【内容】给定方程组x'(t)=ay(t),y'(t)=bx(t), x(0)=0, y(0)=b的解是x-y 平面上的一个椭圆,利用你已经知道的算法,取足够小的步长,计算上述方程的轨道,看看那种算法能够保持椭圆轨道不变。
(计算的时间步长要足够多)【实验设计】用一下四种方法来计算:1. Euler法2. 梯形法3. 4阶RK法4. 多步法Adams公式【实验过程】1. Euler法具体的代码如下:clear;a=2;b=1;A=[0 a; -b0];U=[];u(:,1)=[0;b];n=1000000;h=6*pi/n;fori=1:n delta(i)=((u(1,i)/a)^2+(u(2,i)/b)^2)^0.5; u(:,i+1)=u(:,i)+h*A*u(:,i);endt=1:n+1;subplot(1, 2,1);plot(1:n,delta);gridon;subplot(1,2,2);plot(u(1,:),u(2,:));gridon;max(abs(delta-ones(1,length(delta))));结果如下:2. 梯形法具体的代码如下:clear;a=2;b=1;A=[0 a; -b 0];U=[];u(:,1)=[0;b];n=300;h=6*pi/n;for i=1:n delta(i)=((u(1,i)/a)^2+(u(2,i)/b)^2)^0.5;v1=u(:,i)+h*A*u(:,i);v2=u(:,i)+h*A*(u(:,i)+v1)/2;1u(:,i+1)=u(:,i)+h*A*(u(:,i)+v2)/2;endt=1:n+1;sub plot(1,2,1);plot(1:n,delta);gridon;subplot(1,2,2);结果如下 3. 4阶RK法clear;a=2;b=1;A=[0 a; -b 0];U=[];u(:,1)=[0;b];n=70;h=6*pi/n;for i=1:n delta(i)=((u(1,i)/a)^2+(u(2,i)/b)^2)^0.5;k1=A*u(:,i); k2=A*(u(:,i)+h/2*k2); k3=A*(u(:,i)+h*k3); k4=A*(u(:,i)+h*k3); u(:,i+1)=u(:,i)+h/6*(k1+2*k2+2*k3+k4);endt=1:n+1 ;subplot(1,2,1);plot(1:n,delta);gridon;subplot(1,2,2);结果如下:4. 多步法Adams公式clear;a=2;b=1;A=[0 a; -b 0];U=[];u(:,1)=[0;b];n=200;h=6*pi/n;u(:;2)=u(u,1)+h*A*u(:,1);u(:;3)=u(u,2)+h/2*A*(3*u(:,2)-u(:,1));u(:;4)=u(u,3)+h/12*A*(23*u(:,3)-16*u(:,2)+5*u(:, 1)); delta(1)=((u(1,1)/a)^2+(u(2,1)/b^2)^0.5 delta(2)=((u(1,2)/a)^2+(u(2,2)/b^2)^0.5delta(3)=((u(1,3)/a)^2+(u(2,3)/b^2)^0.5for i=4:n delta(i)=((u(1,i)/a)^2+(u(2,i)/b)^2)^0.5;u(:,i+1)=u(:,i)+h/24*A*(55*u(:,i)-59*u(:,i-1)+37 *u(:,i-1)+37*u(:,i-2)-9*u(:,i-3));endt=1:n+1;sub plot(1,2,1);plot(1:n,delta);gridon;subplot(1,2,2);结果如下:【实验分析】通过这几种方法对比,发现最为稳定的是多步法Adams公式和4阶RK法,其次是梯形法,而欧拉法最为不稳定。
Matlab 数学实验报告一、实验目的通过以下四组实验,熟悉MATLAB的编程技巧,学会运用MATLAB的一些主要功能、命令,通过建立数学模型解决理论或实际问题。
了解诸如分岔、混沌等概念、学会建立Malthu模型和Logistic 模型、懂得最小二乘法、线性规划等基本思想。
二、实验内容2.1实验题目一2.1.1实验问题Feigenbaum曾对超越函数y=λsin(πx)(λ为非负实数)进行了分岔与混沌的研究,试进行迭代格式x k+1=λsin(πx k),做出相应的Feigenbaum图2.1.2程序设计clear;clf;axis([0,4,0,4]);hold onfor r=0:0.3:3.9x=[0.1];for i=2:150x(i)=r*sin(3.14*x(i-1));endpause(0.5)for i=101:150plot(r,x(i),'k.');endtext(r-0.1,max(x(101:150))+0.05,['\it{r}=',num2str(r)]) end加密迭代后clear;clf;axis([0,4,0,4]);hold onfor r=0:0.005:3.9x=[0.1];for i=2:150x(i)=r*sin(3.14*x(i-1));endpause(0.1)for i=101:150plot(r,x(i),'k.');endend运行后得到Feigenbaum图2.2实验题目二2.2.1实验问题某农夫有一个半径10米的圆形牛栏,长满了草。
他要将一头牛拴在牛栏边界的桩栏上,但只让牛吃到一半草,问拴牛鼻子的绳子应为多长?2.2.2问题分析如图所示,E为圆ABD的圆心,AB为拴牛的绳子,圆ABD为草场,区域ABCD为牛能到达的区域。
问题要求区域ABCD等于圆ABC的一半,可以设BC等于x,只要求出∠a和∠b就能求出所求面积。
Plot.ezplot.fplot之间的对比一.问题背景与实验目的函数plot是绘制二维图形的最基本函数,它是针对向量或矩阵的列来绘制曲线的。
也就是说,使用plot 函数之前,必须首先定义好曲线上每一点的x 及y 坐标,常用格式为:(1)plot(x) 当x 为一向量时,以x 元素的值为纵坐标,x 的序号为横坐标值绘制曲线。
当x 为一实矩阵时,则以其序号为横坐标,按列绘制每列元素值相对于其序号的曲线,当x 为m×n 矩阵时,就有n 条曲线。
(2)plot(x,y) 以x 元素为横坐标值,y 元素为纵坐标值绘制曲线。
(3)plot(x,y1,x,y2,…) 以公共的x 元素为横坐标值,以y1,y2,…元素为纵坐标值绘制多条曲线。
函数fplot 用来绘制数学函数,其调用格式为:fplot(fun,lims)其中fun 就是所要绘制的函数,可以是定义函数的M 文件名,也可以是以x 为变量的可计算字符串,lims=[XMIN XMAX YMIN YMAX]限定了x,y 轴上的绘图空间。
函数ezplot的功能最为强大,它可以像fplot函数那样给出函数和定义域,它也可以无需数据准备,直接画出函数图形,基本调用格式为ezplot(f),其中f 是字符串或代表数学函数的符号表达式,只有一个符号变量。
二.相关函数及简介1、在图形上加格栅、图例和标注(1)grid on: 加格栅在当前图上grid off: 删除格栅(2)xlabel(string): 在当前图形的x轴上加标记string ylabel(string): 在当前图形的y轴上加标记stringzlabel(string): 在当前图形的z轴上加标记stringtitle(string): 在当前图形的顶端上加标记string2、定制坐标Axis([xmin xmax ymin ymax zmin zmax])定制图形坐标Axis auto 将坐标轴返回到自动缺省值3、图形保持(1)hold on------保持当前图形, 以便继续画图到当前图上hold of-----释放当前图形窗口(2)figure(h)新建h窗口,激活图形使其可见,并把它置于其它图形之4、分割窗口subplot(mrows, ncols, thisplot)------划分整个作图区域为mrows*ncols块(逐行对块访问)并激活第thisplot块,其后的作图语句将图形画在该块上。
WORD格式整理数学实验报告姓名:班级:学号:第一次实验任务过程: a=1+3i; b=2-i; 结果: a+b =3.0000 + 2.0000ia-b =-1.0000 + 4.0000i a*b = 5.0000 + 5.0000i a/b = -0.2000 + 1.4000i过程: x=-4.5*pi/180; y=7.6*pi/180;结果: sin(abs(x)+y)/sqrt(cos(abs(x+y))) =0.2098 心得:对于matlab 中的角度计算应转为弧度。
(1)过程: x=0:0.01:2*pi; y1=sin(x); y2=cos(x); y3=exp(x); y4=log(x);plot(x,y1,x,y2,x,y3,x,y4) plot(x,y1,x,y2,x,y3,x,y4)./,,,,2,311b a b a b a b a i b i a ⨯-+-=+=计算、设有两个复数6,7,5.4)cos()sin(2=-=++y x y x y x ,其中、计算的图形。
下分别绘制)同一页面四个坐标系)同一坐标系下(、在(x y e y x y x y x ln ,,cos ,sin 213====结果:(2)过程:>> subplot(2,2,1) >> plot(x,y1)>> subplot(2,2,2)>> plot(x,y2)>> subplot(2,2,3)>> plot(x,y3)>> subplot(2.2.4)>> subplot(2,2,4)>> plot(x,y4)结果:心得:在matlab中,用subplot能够实现在同一页面输出多个坐标系的图像,应注意将它与hold on进行区别,后者为在同一坐标系中划出多条曲线。
5、随机生成一个3x3矩阵A及3x2矩阵B,计算(1)AB,(2)对B中每个元素平方后得到的矩阵C,(3)sinB,(4)A的行列式,(5)判断A是否可逆,若可逆,计算A的逆矩阵,(6)解矩阵方程AX=B,(7)矩阵A中第二行元素加1,其余元素不变,得到矩阵D,计算D。
MATLAB 数学实验报告求下列解方程组:1.(1)⎪⎪⎩⎪⎪⎨⎧=+--=-+-=++-0202432143214321xxxx x xx x xx x x(2)⎪⎪⎩⎪⎪⎨⎧=+=+-=-+0302403231321321x x x x x x x x2. ⎪⎪⎩⎪⎪⎨⎧=++=+-=-+883111023224321321321x x x x x x x x x例1. 绘制函数表达式x²-y³的二维图形。
例2. 在极坐标下绘制函数表达式1+cost的二维图形。
例3. 根据表达式x=sint、y=cost、z=t,绘制三维曲线。
实验过程记录(含基本步骤,主要程序清单及异常情况记录等):1.解:(1) >> A=[1 -1 1 1;1 -1 1 -2;1 -1 -2 1];>> format rat>> n=4;>> RA=rank(A)RA =3>> if(RA==n)else B=null(A,'r')endB =11>> syms k>> x=k*Bx =kk(2) >> A=[2 3 -1;4 -2 1;1 0 3];>> format rat>> n=3;>> RA=rank(A)RA =3>> if(RA==n) x=[0 0 0]else B=null(A,'r')endx =0 0 0 2.解:>> A=[4 2 -1;3 -1 2;11 3 8];b=[2 10 8]';B=[A b];n=3;RA=rank(A)RA =3>> RB=rank(B)RB =3>> if(RA==RB&RA==n)X=A\belse if(RA==RB&RA<n)C=A\bD=null(A,'r')endX =97/40-169/40-3/4例1.解:>> syms x y>>ezplot(x^2-y^)3) 例2. 解: >> syms t>> ezpolar(1+cos(t)) 例3. 解: >> syms t>> ezplot3(sin(t),cos(t),t,[0,6*pi])实验结果报告及实验总结:1.(1)的解为x = kk 0 0(2)的解为x = 00 02的解为X =97/40 -169/40 -3/4 例1.图形结果:xyx 2-y 3 = 0例2.图形结果:902701800r = 1+cos(t)例3.图形结果:-1xx = sin(t), y = cos(t), z = tyz实验总结:对于以上题目的解析,这是我第一次用MATLAB 进行编程来求解实际问题,虽然过程有点艰辛,但每一步都亲力亲为,这让我收获很多,通过做次实验,让我对MATLAB有了进一步的了解,了解了它的强大的功能和他如何求解实际问题,激发了我学好MATLAB的决心。
数学实验报告一、实验目的1.学会用软件对矩阵进行一些数值运算。
2.学会用软件解线性方程组。
3.掌握逆矩阵的一种应用:整数逆矩阵加密、解密方法。
4.熟悉三维空间中的线性变换,加深对正交变换保持距离不变性的理解。
5.掌握泰勒级数在近似计算中的应用,从而理解数值逼近思想。
6.了解无理数e和欧拉常数C的由来历史。
7.了解圆周率π的计算历史,掌握计算圆周率π近似值的多种方法。
8.利用幂级数展开式计算无理数e和欧拉常数C的近似值。
9.学会根据实际问题建立线性规划模型。
10.掌握用软件求解线性函数极值问题。
11.学会建立0-1规划模型,掌握用软件求解0-1规划问题。
二、实验内容1.实验五:练习1:1.(1)程序代码[2,11,1;32,13;1,43,5][1;42][]()结果显示特解:(0.8571,-0.7143,0,0)基础解系:ξ1=(0.1429,-1.2857,1,0),ξ2=(0.1429,0.7143,0,1)通解:0.1429 0.1429 0.8571-1.2857 0.7143 -0.7143k1 1 + k2 0 + 0 12єR0 10感想与反思:A.通过解这道题,熟练掌握了用软件解线性方程组的方法B.手工解线性方程组非常繁琐,通过这道题,进一步认识到的强大2.实验五.练习2.24*4的加密锁:程序代码[3 7 15 22;2 5 11 17;3 6 13 21;9 18 36 46](q)(q)[68 105 108 105 103 101 110 99 101 32 105 115 116 32 116 104 101 32 109 111 116 104 101 114 32 111 102 32 115 117 99 99 101 115 115 32](w,4,9)(q)*b结果显示6*6的加密锁代码[2 3 4 2 1 6;7 7 11 9 2 17;4 6 9 5 2 12;8 7 12 9 2 17;3 3 4 2 1 6;6 4 6 6 1 2](q)(q)[68 105 108 105 103 101 110 99 101 32 105 115 116 32 116 104 101 32 109 111 116 104 101 114 32 111 102 32 115 117 99 99 101 115 115 32](w,6,6)*a(q)*b感想与反思:A.通过解这道题,熟练掌握了逆矩阵的一种应用:整数逆矩阵加密、解密方法B.用矩阵就可以完成对于信息的加密和解密,体会到了矩阵和的神奇C.在选择密码锁矩阵时可以对于一个单位矩阵进行多次初等变换,便于找到3.实验七,练习2.1程序代码单数阶导数在0处的值为零。