当前位置:文档之家› 高等数学MATLAB实验三 不定积分、定积分及其应用 实验指导书

高等数学MATLAB实验三 不定积分、定积分及其应用 实验指导书

高等数学MATLAB实验三 不定积分、定积分及其应用 实验指导书
高等数学MATLAB实验三 不定积分、定积分及其应用 实验指导书

实验三 不定积分、定积分及其应用

【实验类型】验证性

【实验学时】2学时

【实验目的】

1.掌握用MA TLAB 求函数不定积分、定积分的方法;

2.理解定积分的概念及几何意义;

3.掌握定积分的应用;

【实验内容】

1.熟悉利用MATLAB 计算不定积分的命令、方法;

2.通过几何与数值相结合的方法演示定积分的概念和定积分的几何意义;

【实验目的】

1.掌握利用MATLAB 计算不定积分的命令、方法;

2.通过几何与数值相结合的方法演示定积分的概念和定积分的几何意义;

3.掌握利用MATLAB 计算定积分、广义积分的命令、方法;

4.掌握利用MA TLAB 计算有关定积分应用的各种题型,包括平面图形的面积、旋转体的体积、平面曲线的弧长等;

【实验前的预备知识】

1.原函数与不定积分的概念;

2.不定积分的换元法和分部积分法;

3.定积分的概念;

4.微积分基本公式;

5.广义积分的敛散性及计算方法;

6.利用定积分计算平面图形的面积;

7.利用定积分计算旋转体的体积;

8.利用定积分计算平面曲线的弧长;

【实验方法或步骤】

一、实验使用的MATLAB 函数

1.int( f (x ) , x ); 求()f x 的不定积分;

2.int( f (x ), x , a , b );求()f x 在[,]a b 上的定积分;

3.int( f (x ) , x , -inf, inf );计算广义积分()d f x x ∞

-∞?;

4.solve('eqn1','eqn2',...,'eqnN','var1,var2,...,varN');求解n 元方程组;

二、实验指导

例1 计算不定积分cos 2x e xdx ?

。 输入命令:

syms x;

int(exp(x)*cos(2*x),x)

运行结果:

ans =

1/5*exp(x)*cos(2*x)+2/5*exp(x)*sin(2*x)

例2 计算不定积分

。 输入命令:

syms x;

int(1/(x^4*sqrt(1+x^2)))

运行结果:

ans =

-1/3/x^3*(1+x^2)^(1/2)+2/3/x*(1+x^2)^(1/2)

例3 以几何图形方式演示、理解定积分()b

a f x dx ?概念,并计算近似值。

先将区间[,]a b 任意分割成n 份,为保证分割加细时,各小区间的长度趋于0,在取分点时,让相邻两分点的距离小于2()/b a n -,分点取为()()/i i x a i u b a n =++-([0,1]i u ∈为随机数),在每一区间上任取一点1()i i i i i c x v x x +=+-([0,1]i v ∈为随机数)作积分和进行计算,程序如下:

function juxs(fname,a,b,n) % 定积分概念演示,随机分割、 随机取近似,并求近似值 xi(1)=a; xi(n+1)=b;

for i=1:n-1

xi(i+1)=a+(i+rand(1))*(b-a)/n;

end

I=0;

hold on;

for i=1:length(xi)-1

sxi=xi(i)+rand(1)*(xi(i+1)-xi(i));

syi=feval(fname,sxi);

I=I+syi*(xi(i+1)-xi(i));

xii=[xi(i) xi(i) xi(i+1) xi(i+1) xi(i)];

yii=[0 syi syi 0 0];

fill(xii,yii,'c');

end

x=a:(b-a)/100:b;

y=feval(fname,x);

plot(x,y,'r','markersize',20);

hold off;

fprintf('n=%6d, I=%12.5f\n',n,I); function y=fex(x)

y=x.^2+1;

以积分

22

2

(1)

x dx

-

+

?为例,调用上述函数,观察如下:

(1)几何上

图3.1

我们知道,当()0f x ≥时,定积分的值表示由,,0,()x a x b y y f x ====所围成的曲边梯形的面积,从图形3.1上可以看出,用小矩形面积和逼近曲边梯形面积的过程。

值得注意的是,虽然每次运行后的图形可能有所差异(相同的参数下),但总的趋势是,分点个数越多,小矩形的面积之和越逼近曲边梯形的面积,即积分和越逼近积分值。

(2) 数值上

当对区间逐步进行细分时,反复调用上述程序,可得一系列积分近似值(运行结果可能有差异),可以看到,随着区间数的增大,近似值越来越接近精确值(精确值为28/3)。 n= 20, I= 9.12818

n= 40, I= 9.38262

n= 160, I= 9.34459

n= 320, I= 9.33352

n= 640, I= 9.33158

n= 1280, I= 9.33324

n= 2480, I= 9.33364

例4 计算定积分

20153sin dx x π+?。 输入命令:

syms x;

int(1/(5+3*sin(x)),x,0,2*pi)

运行结果:

ans =

1/2*pi

例5 计算定积分

0a x ?。

输入命令:

syms x;

int(x^2*sqrt(a^2-x^2),x,0,a)

运行结果:

ans =

1/16*a^5*(1/a^2)^(1/2)*pi

例6 计算广义积分

20122

dx x x ∞++?。 输入命令:

syms x; int(1/(x^2+2*x+2),x,-inf,inf)

运行结果:

ans =

1/4*pi

例7 判别广义积分

1201dx x -?的敛散性。

输入命令:

syms x;

int(1/sqrt(1-x^2),x,0,1)

运行结果:

ans =

1/2*pi

所以原积分收敛。

例8 求由抛物线22y x =和直线4y x =-+所围图形的面积。

首先画出函数图形,输入命令:

x=0:0.1:9;

plot(x,-x+4,’b ’,x,sqrt(2*x),'r',x,-sqrt (2*x),'r')

运行结果如图3.2所示。

再求解方程组,得到两曲线交点,输入命令:

[x,y]=solve('y^2-2*x=0','y+x-4=0');

运行结果:

x = [8 2] , y = [-4 2]

以 y 为积分变量求面积,输入命令:

int(-y+4-y^2/2,y,-4,2)

运行结果:

ans = 图3.2

18

例9 求由圆3cos r θ=和双纽线1cos r θ=+所围图形的面积。

首先在极坐标系下画出两曲线的图形,输入命令:

th=0:0.05:2*pi;

r1=3*cos(th); r2=1+cos(th);

polar(th,r1,'b');

hold on; polar(th,r2,'r') ; hold off;

运行结果如图3.3所示

由对称性,求得交点(/3,3/2)π,求面积再

输入命令:

s1=int(1/2*r2^2,th,0,pi/3);

s2=int(1/2*r1^2,th,pi/3,pi/2);

S=2*(s1+s2)

运行结果:

S=

5/4*pi 例10 求曲线2arctan 1ln(1)2

x t y t =???=+??上相应于从0t =到1t =的一段弧长。 首先画出曲线的图形如图 3.4所

示,求弧长输入命令:

syms t;

x=atan(t); y=log(1+t^2)/2;

dx=diff(x); dy=diff(y);

s=int(sqrt(dx^2+dy^2),t,0,1)

运行结果:

s =

-log(2^(1/2)-1)

例11 将星形线2/32/32/3x y a +=图3.3

图3.4

所围成的图形绕x 轴旋转一周,计算所得旋转体的体积。

星形线的参数方程为33cos (02)sin x a t t y a t

π?=?≤≤?=??,取1a =,画出星形线的图形如图3.5所示,计算旋转体体积输入命令:

syms a real;

syms t;

x=a*cos(t)^3;y=a*sin(t)^3;

dx=diff(x);

V=2*int(pi*y^2*dx,t,0,pi/2)

运行结果:

V=

-32/105*pi*a^3

【实验练习】

1.用MATLAB 计算下列不定积分。

(1)21x dx +? >> syms x

int(sqrt(x.^2+1)/x^2,x)

ans =

-1/x*(x^2+1)^(3/2)+x*(x^2+1)^(1/2)+asinh(x)

(2)2sin cos x a x xdx ?

>> syms x a

int(a.^x*sin(x)*(cos(x))^2,x)

ans =

((11*log(a)^2+9)/(10*log(a)^2+log(a)^4+9)*exp(x*log(a))*tan(1/2*x)^2+(log(a)^2+3)/(10*log(a)图3.5

^2+log(a)^4+9)*exp(x*log(a))*tan(1/2*x)^6+2*(log(a)^2+3)/(10*log(a)^2+log(a)^4+9)*log(a)*e xp(x*log(a))*tan(1/2*x)-(11*log(a)^2+9)/(10*log(a)^2+log(a)^4+9)*exp(x*log(a))*tan(1/2*x)^4+2*(log(a)^2+3)/(10*log(a)^2+log(a)^4+9)*log(a)*exp(x*log(a))*tan(1/2*x)^5-(log(a)^2+3)/(10*log(a)^2+log(a)^4+9)*exp(x*log(a))-4*log(a)*(log(a)^2-1)/(10*log(a)^2+log(a)^4+9)*exp(x*log(a))*tan(1/2*x)^3)/(1+tan(1/2*x)^2)^3

2.设32()35([1,3])f x x x x x =-++∈-,根据定积分定义编写一段程序,从几何上演示用小矩形面积和逼近曲边梯形面积的过程。

3.用MA TLAB 求解下列各积分。

(1)

220

e cos x xdx π? (2)0e sin 2t tdt ∞

-?

(3)设201()12

x x f x x x ?≤≤=?<≤?,求20()f x dx ?。 4.求由曲线22(5)16x y +-=绕x 轴旋转所产生的旋转体的体积。

5.求下列曲线与所围成图形的面积:

(1)212y x =

与228x y +=(两部分都要计算);

(2)r θ=与2cos 2r θ=

6.计算半立方抛物线232(1)3y x =-被抛物线23

x y =截得的一段弧的长度。 7.试找出几个由MATLAB 不能求解的积分题。

高数不定积分例题

不定积分例题 例1、设)(x f 的一个原函数是x e 2-,则=)(x f ( ) A 、x e 2- B 、2-x e 2- C 、4-x e 2- D 、4x e 2- 分析:因为)(x f 的一个原函数是x e 2- 所以)(x f ='=-)(2x e 2-x e 2- 答案:B 例2、已知?+=c x dx x xf sin )(,则=)(x f ( ) A 、x x sin B 、x x sin C 、x x cos D 、x x cos 分析:对?+=c x dx x xf sin )(两边求导。 得x x xf cos )(=,所以= )(x f x x cos 答案:C 例3、计算下列不定积分 1、dx x x 23)1(+ ? 2、dx x e e x x x )sin 3(2-+? 分析:利用基本积分公式积分运算性质进行积分,注意在计算时,对被积函数要进行适当的变形 解:1、dx x x 23)1 (+?dx x x x )12(3++ =? c x x x dx x dx x xdx +-+=++=? ??22321ln 22112 2、dx x e e x x x )sin 3(2-+?dx x dx e x ??+=2sin 1)3(c x e x +-+=cot 3ln 1)3( 例4、计算下列积分

1、dx x x ?-21 2、dx e e x x ?+2) 1( 分析:注意到这几个被积函数都是复合函数,对于复合函数的积分问题一般是利用凑微分法,在计算中要明确被积函数中的中间变量)(x u ?=,设法将对x 求积分转化为对)(x u ?=求积分。 解:1、dx x x ?-21c x x d x +--=---=?2221)1(1121 2、dx e e x x ?+2) 1(c e e d e x x x ++-=++=?11)1()1(12 例5、计算?+xdx x sin )1( 分析:注意到这些积分都不能用换元积分法,所以要考虑分部积分,对于分部积分法适用的函数及u ,v '的选择可以参照下列步骤①凑微分,从被积函数中选择恰当的部分作为dx v ',即dv dx v =',使积分变为?udv ;②代公式,?udv ?-=vdu uv ,计算出dx u du '=;③计算积分?vdu 解:?+xdx x sin )1(???--=+=x x xd xdx xdx x cos cos sin sin ?+-+-=---=c x x x x x xdx x x cos sin cos cos )cos cos (

高等数学定积分应用

第六章 定积分的应用 本章将应用第五章学过的定积分理论来分析和解决一些几何、物理中的问题,其目的不仅在于建立这些几何、物理的公式,而且更重要的还在于介绍运用元素法将一个量表达为定积分的分析方法。 一、教学目标与基本要求: 使学生掌握定积分计算基本技巧;使学生用所学的定积分的微元法(元素法)去解决各种领域中的一些实际问题; 掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、变力作功、引力、压力及函数的平均值等) 二、本章各节教学内容及学时分配: 第一节 定积分的元素法 1课时 第二节 定积分在几何学上的应用 3课时 第三节 定积分在物理学上的应用 2课时 三、本章教学内容的重点难点: 找出未知量的元素(微元)的方法。用元素法建立这些几何、物理的公式解决实际问题。运用元素法将一个量表达为定积分的分析方法 6.1定积分的微小元素法 一、内容要点 1、复习曲边梯形的面积计算方法,定积分的定义 面积A ?∑=?==→b a n i i i dx x f x f )()(lim 1 ξλ 面积元素dA =dx x f )( 2、计算面积的元素法步骤: (1)画出图形; (2)将这个图形分割成n 个部分,这n 个部分的近似于矩形或者扇形; (3)计算出面积元素; (4)在面积元素前面添加积分号,确定上、下限。 二、教学要求与注意点 掌握用元素法解决一个实际问题所需要的条件。用元素法解决一个实际问题的步骤。 三、作业35 6.2定积分在几何中的应用

一、内容要点 1、在直角坐标系下计算平面图形的面积 方法一 面积元素dA =dx x x )]()([12??-,面积 A = x x x b a d )]()([12??-? 第一步:在D 边界方程中解出y 的两个表达式)(1x y ?=,)(2x y ?=. 第二步:在剩下的边界方程中找出x 的两个常数值a x =,b x =;不够时由)(1x ?)(2x ?=解出, b x a ≤≤,)()(21x y x ??≤≤,面积S =x x x b a d )]()([12??-? 方法二 面积元素dA =dy y y )]()([12??-,面积 A = y y y d c d )]()([12??-? 第一步:在D 边界方程中解出x 的两个表达式)(1y x ?=,)(2y x ?=. 第二步:在剩下的边界方程中找出y 的两个常数值c y =,d y =;不够时由)(1y ?)(2y ?=解出, d y c ≤≤,)()(21y x y ??≤≤,面积S =y y y d c d )]()([12??-? 例1 求22-=x y ,12+=x y 围成的面积 解?????+=-=1 222x y x y ,1222+=-x x ,1-=x ,3=x 。当31<<-x 时1222+<-x x ,于是 面积?--=+-=--+=3 1 313223 210)331 ()]2()12[(x x x dx x x 例2 计算4,22-==x y x y 围成的面积 解 由25.0y x =,4+=y x 得,4,2=-=y y ,当42<<-y 时 45.02+

高等数学MATLAB实验三 不定积分、定积分及其应用 实验指导书

实验三 不定积分、定积分及其应用 【实验类型】验证性 【实验学时】2学时 【实验目的】 1.掌握用MA TLAB 求函数不定积分、定积分的方法; 2.理解定积分的概念及几何意义; 3.掌握定积分的应用; 【实验内容】 1.熟悉利用MATLAB 计算不定积分的命令、方法; 2.通过几何与数值相结合的方法演示定积分的概念和定积分的几何意义; 【实验目的】 1.掌握利用MATLAB 计算不定积分的命令、方法; 2.通过几何与数值相结合的方法演示定积分的概念和定积分的几何意义; 3.掌握利用MATLAB 计算定积分、广义积分的命令、方法; 4.掌握利用MA TLAB 计算有关定积分应用的各种题型,包括平面图形的面积、旋转体的体积、平面曲线的弧长等; 【实验前的预备知识】 1.原函数与不定积分的概念; 2.不定积分的换元法和分部积分法; 3.定积分的概念; 4.微积分基本公式; 5.广义积分的敛散性及计算方法; 6.利用定积分计算平面图形的面积; 7.利用定积分计算旋转体的体积; 8.利用定积分计算平面曲线的弧长; 【实验方法或步骤】 一、实验使用的MATLAB 函数 1.int( f (x ) , x ); 求()f x 的不定积分; 2.int( f (x ), x , a , b );求()f x 在[,]a b 上的定积分;

3.int( f (x ) , x , -inf, inf );计算广义积分()d f x x ∞ -∞?; 4.solve('eqn1','eqn2',...,'eqnN','var1,var2,...,varN');求解n 元方程组; 二、实验指导 例1 计算不定积分cos 2x e xdx ? 。 输入命令: syms x; int(exp(x)*cos(2*x),x) 运行结果: ans = 1/5*exp(x)*cos(2*x)+2/5*exp(x)*sin(2*x) 例2 计算不定积分 。 输入命令: syms x; int(1/(x^4*sqrt(1+x^2))) 运行结果: ans = -1/3/x^3*(1+x^2)^(1/2)+2/3/x*(1+x^2)^(1/2) 例3 以几何图形方式演示、理解定积分()b a f x dx ?概念,并计算近似值。 先将区间[,]a b 任意分割成n 份,为保证分割加细时,各小区间的长度趋于0,在取分点时,让相邻两分点的距离小于2()/b a n -,分点取为()()/i i x a i u b a n =++-([0,1]i u ∈为随机数),在每一区间上任取一点1()i i i i i c x v x x +=+-([0,1]i v ∈为随机数)作积分和进行计算,程序如下: function juxs(fname,a,b,n) % 定积分概念演示,随机分割、 随机取近似,并求近似值 xi(1)=a; xi(n+1)=b; for i=1:n-1 xi(i+1)=a+(i+rand(1))*(b-a)/n; end

高等数学不定积分例题思路和答案超全

高等数学不定积分例题思路和答案超全 内容概要 课后习题全解 习题4-1 :求下列不定积分1.知识点:。直接积分法的练习——求不定积分的基本方法思路分析:!利用不定积分的运算性质和基本积分公式,直接求出不定积分(1)★思路: 被积函数,由积分表中的公式(2)可解。 解: (2)★思路: 根据不定积分的线性性质,将被积函数分为两项,分别积分。解: (3)★思路: 根据不定积分的线性性质,将被积函数分为两项,分别积分。:解. (4)★思路: 根据不定积分的线性性质,将被积函数分为两项,分别积分。解: (5)思路:观察到后,根据不定积分的线性性质,将被积函数分项,分别积分。

解: (6)★★思路:注意到,根据不定积分的线性性质,将被积函数分项,分别积分。 解: 注:容易看出(5)(6)两题的解题思路是一致的。一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。(7)★思路:分项积分。 解: (8)★思路:分项积分。 解: (9)★★思路:?看到,直接积分。 解: (10)★★思路: 裂项分项积分。解: (11)★解: (12)★★思路:初中数学中有同底数幂的乘法:指数不变,底数相乘。显然。 解: (13)★★思路:应用三角恒等式“”。 解: (14)★★思路:被积函数,积分没困难。 解: (15)★★思路:若被积函数为弦函数的偶次方时,一般地先降幂,再积分。 解: (16)★★思路:应用弦函数的升降幂公式,先升幂再积分。 解: () 17★思路:不难,关键知道“”。 :解. ()18★思路:同上题方法,应用“”,分项积分。 解: ()19★★思路:注意到被积函数,应用公式(5)即可。 解: ()20★★思路:注意到被积函数,则积分易得。 解: 、设,求。2★知识点:。考查不定积分(原函数)与被积函数的关系思路分析::。即可1直接利用不定积分的性质解::等式两边对求导数得 、,。求的原函数全体设的导函数为3★知识点:。仍为考查不定积分(原函数)与被积函数的关系思路分析:。连续两次求不定积分即可解:,由题意可知:。所以的原函数全体为、证明函数和都是的原函数4★知识点:。考查原函数(不定积分)与被积函数的关系思路分析:。只需验证即可解:,而、,且在任意点处的切线的斜率都等于该点的横坐标的倒数,求此曲线的方程。一曲线通过点5★知识点:属于第12章最简单的一阶线性微分方程的初值问题,实质仍为考查原函数(不定积分)与被积函数的关系。 思路分析:求得曲线方程的一般式,然后将点的坐标带入方程确定具体的方程即可。 解:设曲线方程为,由题意可知:,; 又点在曲线上,适合方程,有, 所以曲线的方程为 、,:问6一物体由静止开始运动,经秒后的速度是★★(1)在秒后物体离开出发点的距离是多少?

高等数学不定积分习题

第四章 不 定 积 分 § 4 – 1 不定积分的概念与性质 一.填空题 1.若在区间上)()(x f x F =',则F(x)叫做)(x f 在该区间上的一个 , )(x f 的 所有原函数叫做)(x f 在该区间上的__________。 2.F(x)是)(x f 的一个原函数,则y=F(x)的图形为?(x)的一条_________. 3.因为 dx x x d 2 11)(arcsin -= ,所以arcsinx 是______的一个原函数。 4.若曲线y=?(x)上点(x,y)的切线斜率与3 x 成正比例,并且通过点A(1,6)和B(2,-9),则该 曲线方程为__________?。 二.是非判断题 1. 若f ()x 的某个原函数为常数,则f ()x ≡0. [ ] 2. 一切初等函数在其定义区间上都有原函数. [ ] 3. ()()()??'='dx x f dx x f . [ ] 4. 若f ()x 在某一区间内不连续,则在这个区间内f ()x 必无原函数. [ ] 5. =y ()ax ln 与x y ln =是同一函数的原函数. [ ] 三.单项选择题 1.c 为任意常数,且)('x F =f(x),下式成立的有 。 (A )?=dx x F )('f(x)+c; (B )?dx x f )(=F(x)+c; (C )? =dx x F )()('x F +c; (D) ?dx x f )('=F(x)+c. 2. F(x)和G(x)是函数f(x)的任意两个原函数,f(x)≠0,则下式成立的有 。 (A )F(x)=cG(x); (B )F(x)= G(x)+c; (C )F(x)+G(x)=c; (D) )()(x G x F ?=c. 3.下列各式中 是| |sin )(x x f =的原函数。 (A) ||cos x y -= ; (B) y=-|cosx|; (c)y={ ;0,2cos , 0,cos <-≥-x x x x (D) y={ . 0,cos ,0,cos 21<+≥+-x c x x c x 1c 、2c 任意常数。 4.)()(x f x F =',f(x) 为可导函数,且f(0)=1,又2 )()(x x xf x F +=,则f(x)=______.

高等数学微积分复习题

第五章 一元函数积分学 1.基本要求 (1)理解原函数与不定积分的概念,熟记基本积分公式,掌握不定积分的基本性质。 (2)掌握两种积分换元法,特别是第一类换元积分法(凑微分法)。 (3)掌握分部积分法,理解常微分方程的概念,会解可分离变量的微分方程,牢记非齐次 线性微分方程的通解公式。 (4)理解定积分的概念和几何意义,掌握定积分的基本性质。 (5)会用微积分基本公式求解定积分。 (6)掌握定积分的凑微分法和分部积分法。 (7)知道广义积分的概念,并会求简单的广义积分。 (8)掌握定积分在几何及物理上的应用。特别是几何应用。 2.本章重点难点分析 (1) 本章重点:不定积分和定积分的概念及其计算;变上限积分求导公式和牛顿—莱布 尼茨公式;定积分的应用。 (2) 本章难点:求不定积分,定积分的应用。 重点难点分析:一元函数积分学是微积分学的一个重要组成部分,不定积分可看成是微分运算的逆运算,熟记基本积分公式,和不定积分的性质是求不定积分的关键,而定积分则源于曲边图形的面积计算等实际问题,理解定积分的概念并了解其几何意义是应用定积分的基础。 3.本章典型例题分析 例1:求不定积分sin3xdx ? 解:被积函数sin3x 是一个复合函数,它是由()sin f u u =和()3u x x ?==复合而成,因此,为了利用第一换元积分公式,我们将sin3x 变形为'1 sin 3sin 3(3)3x x x = ,故有 ' 111 sin 3sin 3(3)sin 3(3)3(cos )333 xdx x x dx xd x x u u C ===-+??? 1 3cos33 u x x C =-+ 例2:求不定积分 (0)a > 解:为了消去根式,利用三解恒等式2 2 sin cos 1t t +=,可令sin ()2 2 x a t t π π =- << ,则 cos a t ==,cos dx a dt =,因此,由第二换元积分法,所以积分 化为 2221cos 2cos cos cos 2 t a t a tdt a tdt a dt +=?==??? 2222cos 2(2)sin 22424a a a a dt td t t t C =+=++?? 2 (sin cos )2 a t t t C =++ 由于sin ()2 2 x a t t π π =- << ,所以sin x t a = ,arcsin(/)t x a =,利用直角三角形直接写

高等数学 第七章 定积分的应用

第七章定积分的应用 一、本章提要 1.基本概念 微元法,面积微元,体积微元,弧微元,功微元,转动惯量微元,总量函数. 2.基本公式 平面曲线弧微元分式. 3.基本方法 (1)用定积分的微元法求平面图形的面积, (2)求平行截面面积已知的立体的体积, (3)求曲线的弧长, (4)求变力所作的功, (5)求液体的侧压力, (6)求转动惯量, (7)求连续函数f(x)在[]b a,区间上的平均值, (8)求平面薄片的质心,也称重心. 二、要点解析 问题1什么样的量可以考虑用定积分求解?应用微元法解决这些问题的具体步骤如何? 解析具有可加性的几何量或物理量可以考虑用定分求解,即所求量Q必须满足条件:(1)Q与变量x和x的变化区间[]b a,以及定义在该区间上某一函数f(x)有关;(2)Q在[]b a, 上具有可加性,微元法是“从分割取近似,求和取极限”的定积分基本思想方法中概括出来的,具体步骤如下: (1)选变量定区间:根据实际问题的具体情况先作草图,然后选取适当的坐标系及适当的变量(如x),并确定积分变量的变化区间[]b a,; (2)取近似找微分:在[]b x d ,+,当x d很小时运用“以 x a,内任取一代表性区间[]x 直代曲,以不变代变”的辩证思想,获取微元表达式d=()d Q f x x≈Q ?为量Q在小 ?(Q 区间[]x ,+上所分布的部分量的近似值); x x d

(3)对微元进行积分得 =d ()d b b a a Q Q f x x = ?? . 下面举例说明. 例1 用定积分求半径为R 的圆的面积. 解一 选取如图所示的坐标系,取x 为积分变量,其变化区间为[]R R ,-,分割区间 []R R ,-成若干个小区间,其代表性小区间[]x x x d ,+所对应的面积微元 x x R x x R x R A d 2d ))((d 222222-=----=, 于是 ? ? ---== R R R R x x R A A d 2d 2 2=2 πR . 解二 选取如图所示的坐标系, 取θ 为积分变量,其变化区间为[]π2,0.分割区间[]π2,0成若干个小区间,其代表性小区 间[]θθθd ,+所对应的面积微元θd 2 1d 2 R A = ,于是 2 2π20 2 π20 ππ22 1d 2 1d R R R A A =?= = = ? ? θ. 解三 选取r 为积分变量, 其变化区间为[]R ,0,如图,分割[]R ,0成若干个小区间,

《高等数学》不定积分课后习题详解Word版

不定积分内容概要

课后习题全解 习题4-1 1.求下列不定积分: 知识点:直接积分法的练习——求不定积分的基本方法。 思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分!★(1) 思路: 被积函数 5 2 x- =,由积分表中的公式(2)可解。 解:53 22 2 3 x dx x C -- ==-+ ? ★ (2)dx - ? 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:114 111 333 222 3 ()2 4 dx x x dx x dx x dx x x C -- -=-=-=-+ ???? ★(3)2 2x x dx + ?() 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:223 21 22 ln23 x x x x dx dx x dx x C +=+=++ ??? ( ) ★(4)3) x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:3153 2222 2 3)32 5 x dx x dx x dx x x C -=-=-+ ??

★★(5)4223311 x x dx x +++? 思路:观察到422223311311 x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。 解:42232233113arctan 11x x dx x dx dx x x C x x ++=+=++++??? ★★(6)2 21x dx x +? 思路:注意到222221111111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项, 分别积分。 解:2221arctan .11x dx dx dx x x C x x =-=-+++??? 注:容易看出(5)(6)两题的解题思路是一致的。一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。 ★(7)x dx x x x ?34134(-+-)2 思路:分项积分。 解:3411342x dx xdx dx x dx x dx x x x x --=-+-?? ???34134(-+-)2 223134ln ||.423 x x x x C --=--++ ★(8) 23(1dx x -+? 思路:分项积分。 解: 2231(323arctan 2arcsin .11dx dx x x C x x -=-=-+++?? ★★(9) 思路=11172488x x ++==,直接积分。 解:715888.15 x dx x C ==+? ★★(10)221(1)dx x x +? 思路:裂项分项积分。

实验一B Matlab基本操作与微积分计算

实验一Matlab基本操作与微积分计算 实验目的 1.进一步理解导数概念及其几何意义. 2.学习matlab的求导命令与求导法. 3.通过本实验加深理解积分理论中分割、近似、求和、取极限的思想方法. 4.学习并掌握用matlab求不定积分、定积分、二重积分、曲线积分的方法. 5.学习matlab命令sum、symsum与int. 实验内容 一、变量 1、变量 MA TLAB中变量的命名规则是: (1)变量名必须是不含空格的单个词; (2)变量名区分大小写; (3)变量名最多不超过19个字符; (4)变量名必须以字母打头,之后可以是任意字母、数字或下划线,变量名中不允许使用标点符号. 1、创建简单的数组 x=[a b c d e f ]创建包含指定元素的行向量 x=first:step: last创建从first起,逐步加step计数,last结束的行向量, step缺省默认值为1 x=linspace(first,last,n)创建从first开始,到last结束,有n个元素的行向量 x=logspace(first,last,n)创建从first开始,到last结束,有n个元素的对数分隔行向量. 注:以空格或逗号分隔的元素指定的是不同列的元素,而以分号分隔的元素指定了不同行的元素. 2、数组元素的访问 (1)访问一个元素: x(i)表示访问数组x的第i个元素. (2)访问一块元素: x(a :b :c)表示访问数组x的从第a个元素开始,以步长为b到第c个元素(但

不超过c),b可以为负数,b缺损时为1. (3)直接使用元素编址序号: x ([a b c d]) 表示提取数组x的第a、b、c、d个元素构成一个新的数组[x (a) x (b) x(c) x(d)]. 3、数组的运算 (1)标量-数组运算 数组对标量的加、减、乘、除、乘方是数组的每个元素对该标量施加相应的加、减、乘、除、乘方运算. 设:a=[a1,a2,…,an], c=标量, 则: a+c=[a1+c,a2+c,…,an+c] a .*c=[a1*c,a2*c,…,an*c] a ./c= [a1/c,a2/c,…,an/c](右除) a .\c= [c/a1,c/a2,…,c/an] (左除) a .^c= [a1^c,a2^c,…,an^c] c .^a= [c^a1,c^a2,…,c^an] (2)数组-数组运算 当两个数组有相同维数时,加、减、乘、除、幂运算可按元素对元素方式进行的,不同大小或维数的数组是不能进行运算的. 设:a=[a1,a2,…,an], b=[b1,b2,…,bn], 则: a +b= [a1+b1,a2+b2,…,an+bn] a .*b= [a1*b1,a2*b2,…,an*bn] a ./b= [a1/b1,a2/b2,…,an/bn] a .\b=[b1/a1,b2/a2,…,bn/an] a .^b=[a1^b1,a2^b2,…,an^bn] 三、矩阵 1、矩阵的建立 矩阵直接输入:从“[ ” 开始,元素之间用逗号“,”(或空格),行之间用分号“;”(或回车),用“ ]”结束. 特殊矩阵的建立: a=[ ] 产生一个空矩阵,当对一项操作无结果时,返回空矩阵,空矩阵的大小为零. b=zeros (m,n) 产生一个m行、n列的零矩阵 c=ones (m,n) 产生一个m行、n列的元素全为1的矩阵 d=eye (m,n) 产生一个m行、n列的单位矩阵 eye (n) %生成n维的单位向量 eye (size (A)) %生成与A同维的单位阵 2、矩阵中元素的操作 (1)矩阵A的第r行A(r,:) (2)矩阵A的第r列A(:,r) (3)依次提取矩阵A的每一列,将A拉伸为一个列向量A(:) (4)取矩阵A的第i1~i2行、第j1~j2列构成新矩阵:A(i1:i2, j1:j2) (5)以逆序提取矩阵A的第i1~i2行,构成新矩阵:A(i2:-1:i1,:) (6)以逆序提取矩阵A的第j1~j2列,构成新矩阵:A(:, j2:-1:j1 ) (7)删除A的第i1~i2行,构成新矩阵:A(i1:i2,:)=[ ] (8)删除A的第j1~j2列,构成新矩阵:A(:, j1:j2)=[ ] (9)将矩阵A和B拼接成新矩阵:[A B];[A;B] 3、矩阵的运算 (1)标量-矩阵运算同标量-数组运算. (2)矩阵-矩阵运算 a. 元素对元素的运算,同数组-数组运算.(A/B %A右除B; B\A%A左除B) b. 矩阵运算: 矩阵加法:A+B 矩阵乘法:A*B 方阵的行列式:det(A) 方阵的逆:inv(A)

[全]高等数学之不定积分的计算方法总结[下载全]

高等数学之不定积分的计算方法总结不定积分中有关有理函数、三角函数有理式、简单无理函数的求法,是考研中重点考察的内容,也是考研中的难点。不定积分是计算定积分和求解一阶线性微分方程的基础,所以拿握不定积分的计算方法很重要。不定积分考查的函数特点是三角函数、简单无理函数、有理函数综合考查,考查方法是换元积分法、分部积分法的综合应用。不定积分的求法的理解和应用要多做习题,尤其是综合性的习题,才能真正掌握知识点,并应用于考研。 不定积分的计算方法主要有以下三种: (1)第一换元积分法,即不定积分的凑微分求积分法; (2)第二换元积分法 (3)分部积分法常见的几种典型类型的换元法:

樂,Q? o 金J犷- / .乍治阳必厶二如皿盒.「宀丄" 名% =a仏 找.』x二a沁沁r 年”十I '九久二严詈严妬5inx八ic5兄厶 整 I—炉 叶严 山二启虫? 常见的几种典型类型的换元法 题型一:利用第一换元积分法求不定积分

分析: 1-3 ? - IK )-忑.旦r x 二)祝成);网><可久切 二2氐化如(長)寸 a 花不直押、朱 J 、 解: 2少弋協“尤十C__

-辿迪牆H JS m 弟 R Eff 洱 ->1和弟r 直 - —7朮呻' g 丄 U P A J 齐—系卩£.§计 一 H a8~t ' J 乂 u D y " ?朮?

p o r t v 卩 J (r 4 5*〉J" 卩?对渎 t-k )+c p T + T d ? g T + c m -辿」

当积分j/O心(X)不好计算容易计算时[使用分部私jf(A-)Jg(.v)二f(x)g(x)- J g(x)df(x).常见能使用分部积分法的类型: ⑴卩"“dx J x n srn xdx J尢"cos皿等,方法是把。',sin-t, cosx 稽是降低X的次数 是化夫In 尢9 arcsine arctanx. 例11: J (1 + 6-r )arctanAz/.r :解:arctan f xdx等,方法是把疋; Jx" arcsm11xdx

南邮MATLAB数学实验答案(全)

第一次练习 教学要求:熟练掌握Matlab 软件的基本命令和操作,会作二维、三维几何图形,能够用Matlab 软件解决微积分、线性代数与解析几何中的计算问题。 补充命令 vpa(x,n) 显示x 的n 位有效数字,教材102页 fplot(‘f(x)’,[a,b]) 函数作图命令,画出f(x)在区间[a,b]上的图形 在下面的题目中m 为你的学号的后3位(1-9班)或4位(10班以上) 1.1 计算30sin lim x mx mx x →-与3 sin lim x mx mx x →∞- syms x limit((902*x-sin(902*x))/x^3) ans = 366935404/3 limit((902*x-sin(902*x))/x^3,inf) ans = 0 1.2 cos 1000 x mx y e =,求''y syms x diff(exp(x)*cos(902*x/1000),2) ans = (46599*cos((451*x)/500)*exp(x))/250000 - (451*sin((451*x)/500)*exp(x))/250 1.3 计算 22 11 00 x y e dxdy +?? dblquad(@(x,y) exp(x.^2+y.^2),0,1,0,1) ans = 2.1394 1.4 计算4 2 2 4x dx m x +? syms x int(x^4/(902^2+4*x^2)) ans = (91733851*atan(x/451))/4 - (203401*x)/4 + x^3/12 1.5 (10)cos ,x y e mx y =求 syms x diff(exp(x)*cos(902*x),10) ans = -356485076957717053044344387763*cos(902*x)*exp(x)-3952323024277642494822005884*sin(902*x)*exp(x) 1.6 0x =的泰勒展式(最高次幂为4).

高等数学-不定积分例题、思路和答案(超全)

第4章不定积分

习题4-1 1.求下列不定积分: 知识点:直接积分法的练习——求不定积分的基本方法。 思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分! ★(1) 思路: 被积函数52 x - =,由积分表中的公式(2)可解。 解: 53 2 2 23x dx x C -- ==-+? ★(2) dx - ? 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:1 14111 33322 23()2 4dx x x dx x dx x dx x x C - - =-=-=-+???? ★(3)22 x x dx +? () 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:2 2 3 2122ln 23 x x x x dx dx x dx x C +=+=++? ??() ★(4) 3)x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解: 3153 22 222 3)325 x dx x dx x dx x x C -=-=-+?? ★★(5)4223311x x dx x +++? 思路:观察到422 223311311 x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积 分。 解:4223 2233113arctan 11x x dx x dx dx x x C x x ++=+=++++??? ★★(6)2 21x dx x +?

思路:注意到 22222 111 1111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。 解:22 21arctan .11x dx dx dx x x C x x =-=-+++??? 注:容易看出(5)(6)两题的解题思路是一致的。一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。 ★(7)x dx x x x ? 34134( -+-)2 思路:分项积分。 解:34 11342x dx xdx dx x dx x dx x x x x --=-+-?????34134(- +-)2 223134 ln ||.423 x x x x C --=--++ ★ (8) 23(1dx x -+? 思路:分项积分。 解 :2231( 323arctan 2arcsin .11dx dx x x C x x =-=-+++? ? ★★ (9) 思路 =? 1117248 8 x x ++==,直接积分。 解 : 7 15 8 88 .15x dx x C ==+? ? ★★(10) 221 (1)dx x x +? 思路:裂项分项积分。 解: 222222 111111 ()arctan .(1)11dx dx dx dx x C x x x x x x x =-=-=--++++???? ★(11)21 1 x x e dx e --? 解:21(1)(1)(1).11 x x x x x x x e e e dx dx e dx e x C e e --+==+=++--??? ★★(12) 3x x e dx ?

高等数学定积分的应用

授课单元12教案

教学内容 课题1用定积分求平面图形的面积 一、微元法 在本章第1节定积分概念的两个实例(曲边梯形的面积和变速直线运动的路程)中,我们是先把所求整体量进行分割,然后在局部范围内“以不变代变”,求出整体量在局部范围内的f (?)?x 的形式;再把这些近似值加起来,得到整体量的近似值;最近似值,即表成乘积 iinb ??????x ?ff ?xdx ?lim (即整体量) 后,当分割无限加密时取和式的极限得定积分. iia 0??1i ? 事实上,对于求几何上和物理上的许多非均匀分布的整体量都可以用这种方法计算.但在实 ??b ,aQ 的定积分的方法简化成下面的上的某个量际应用时,为了方便,一般把计算在区间 : 两步: x [a ,b ] ,求出积分区间确定积分变量1) ([x ,x ?dx ]]a ,b [ ,并在该小区间上找出所求量Q ) 在区间上,任取一小区间的微分元(2素 dQf (x )dx =b Q 的定积分表达式(3) 写出所求量?dxxQ ?)f (a 用以上两步来解决实际问题的方 法称为元素法或微元法.下面我们就用元素法来讨论定积分在几何、物理和经济学中的一些应用. 二、在直角坐标系下求平面图形的面积 b ? f (?x )dxA oxba ,x ?x ?)(xy ?f 1、 .由 轴所围成图形面积公式 及,a

d????(y?)dyA y dy,x??(y),y?c1及、轴所围成图形面积公式c3xy?2x??1,x?例求曲线轴所 ???xxdxs???dx解 围成的图形面积及x与直线172033 40?1??????????xxxy?yyx?yy?yx?a,x?b(a?b)所围2、和由两条连续曲线与直线 ?dxyy?xx?A)的面积成平面图形(如图112a 2211b??????

同济大学(高等数学)_第四章_不定积分

第四章不定积分 前面讨论了一元函数微分学,从本章开始我们将讨论高等数学中的第二个核心内容:一元函数积分学.本章主要介绍不定积分的概念与性质以及基本的积分方法. 第1节不定积分的概念与性质 不定积分的概念 在微分学中,我们讨论了求一个已知函数的导数(或微分)的问题,例如,变速直线运动中已知位移函数为 =, s s t () 则质点在时刻t的瞬时速度表示为 =. () v s t' 实际上,在运动学中常常遇到相反的问题,即已知变速直线运动的质点在时刻t的瞬时速度 v v t =, () 求出质点的位移函数 =. s s t () 即已知函数的导数,求原来的函数.这种问题在自然科学和工程技术问题中普遍存在.为了便于研究,我们引入以下概念.

1.1.1原函数 定义 1 如果在区间I 上,可导函数()F x 的导函数为()f x ,即对任一x I ∈,都有 ()()F x f x '= 或 d ()()d F x f x x =, 那么函数()F x 就称为()f x 在区间I 上的原函数. 例如,在变速直线运动中,()()s t v t '=,所以位移函数()s t 是速度函数()v t 的原函数; 再如,(sin )'cos x x =,所以 sin x 是 cos x 在 (,) -∞+∞上的一个原函 数.1 (ln )'(0),x x x =>所以ln x 是1x 在(0,)+∞的一个原函数. 一个函数具备什么样的条件,就一定存在原函数呢这里我们给出一个充分条件. 定理1 如果函数()f x 在区间I 上连续,那么在区间I 上一定存在可导函数()F x ,使对任一∈x I 都有 ()()'=F x f x . 简言之,连续函数一定有原函数.由于初等函数在其定义区间上都是连续函数,所以初等函数在其定义区间上都有原函数. 定理1的证明,将在后面章节给出. 关于原函数,不难得到下面的结论:

高等数学定积分复习题

1. 求 dx e x ?-2ln 01。5.解:设t e x =-1,即)1ln(2+=t x ,有dt t t dx 122+= 当0=x 时,0=t ;当2ln =x 时,1=t 。 dt t dt t t dx e x )111(21211021 0222ln 0???+-=+=- 22)1arctan 1(2)arctan (210π- =-=-=x t . 2. 求由两条曲线2x y =与2y x =围成的平面区域的面积。 .解:两条曲线的交点是)0,0(与)1,1(,则此区域的面积 31)3132()(1 0323210=-=-=?x x dx x x S 3. 求反常积分 ?+∞-+222x x dx 。 解:dx x x x x dx x x dx b b b b )2111(lim 3 12lim 222222+--=-+=-+???+∞→+∞→+∞ 4ln 3 1)4ln 21(ln lim 31)21ln(lim 312=++-=+-=+∞→+∞→b b x x b b b 5、 4. 设???≤<≤≤-+=20,02,13)(32x x x x x f ,求?-22)(dx x f 解:原式=??-+0 22 0)()(dx x f dx x f ---------5分 =14 ----------5分 6. 求由曲线32,2+==x y x y 所围成的区域绕x 轴旋转而得的旋转体体积。 解:两曲线交点为(-1,1)(3,9)-------2分 面积?--+=3122)32(dx x x S π ---------5分 =17 256 7. 计算定积分2 2π π -? 8. 设()f x 在区间[,]a b 上连续,且()1b a f x dx =?,求() b a f a b x dx +-?。 答案:解:令u a b x =+-,则当x a =时,u b =;当x b =时,u a =,且d x d u =-, 故 ()b a f a b x dx +-?=()a b f u du -? =()1b a f x dx =?。

MATLAB_实验04 多元函数微积分

实验04 多元函数微积分 一实验目的 (2) 二实验内容 (2) 三实验准备 (2) 四实验方法与步骤 (3) 五练习与思考 (7)

一 实验目的 1 了解多元函数、多元函数积分的基本概念,多元函数的极值及其求法; 2 理解多元函数的偏导数、全微分等概念,掌握积分在计算空间立体体积或表面积等问题中的应用; 3 掌握MATLAB 软件有关求导数的命令; 4 掌握MATLAB 软件有关的命令. 二 实验内容 1 多元函数的偏导数,极值; 2 计算多元函数数值积分; 3计算曲线积分,计算曲面积分. 三 实验准备 1 建立符号变量命令为sym 和syms ,调用格式为: x=sym('x') 建立符号变量x ; syms x y z 建立多个符号变量x ,y ,z ; 2 matlab 求导命令diff 的调用格式: diff(函数(,)f x y ,变量名x) 求(,)f x y 对x 的偏导数 f x ??; diff(函数(,)f x y ,变量名x,n) 求(,)f x y 对x 的n 阶偏导数n n f x ??; 3 matlab 求雅可比矩阵命令jacobian 的调用格式: jacobian([f;g;h],[],,x y z )给出矩阵 f f f x y z g g g x y z h h h x y z ????? ???? ? ???? ???? ? ???? ?????? 4 MATLAB 中主要用int 进行符号积分,常用格式如下: ① int(s)表示求符号表达式s 的不定积分 ② int(s,x)表示求符号表达式s 关于变量x 的不定积分 ③ int(s,a,b)表示求符号表达式s 的定积分,a ,b 分别为积分的上、下限 ④ int(s,x,a,b)表示求符号表达式s 关于变量x 的定积分,a,b 分别为积分的上、下限 5 MATLAB 中主要用trapz,quad,quad8等进行数值积分,常用格式如下: ① trapz(x,y)采用梯形积分法,其中x 是积分区间的离散化向量,y 是与x 同维数的向量、用来表示被积函数. ② quad8('fun',a,b,tol)采用变步长数值积分,其中fun 为被积函数的M 函数名,a,b 分别为积分上、下限,tol 为精度,缺省值为1e-3. ③ dblquad('fun',a,b,c,d)表示求矩形区域的二重数值积分,其中fun 为被积函数的

相关主题
文本预览
相关文档 最新文档