二极管潜在失效模式和后果分析
- 格式:xls
- 大小:35.00 KB
- 文档页数:4
TVS二极管失效分析摘要:常用电路保护器件的主要失效模式为短路,瞬变电压抑制器(TvS)亦不例外。
TvS 一旦发生短路失效,释放出的高能量常常会将保护的电子设备损坏.这是TvS 生产厂家和使用方都想极力减少或避免的情况。
通过对TVS 筛选和使用短路失效样品进行解剖观察获得其失效部位的微观形貌特征.结合器件结构、材料、制造工艺、工作原理、筛选或使用时所受的应力等。
采用理论分析和试验证明等方法分析导致7rvS 器件短路失效的原因。
分析结果表明引发 TvS 短路失效的内在质量因素包括粘结界面空洞、台面缺陷、表面强耗尽层或强积累层、芯片裂纹和杂质扩散不均匀等。
使用因素包括过电应力、高温和长时间使用耗损等。
1 引言瞬变电压抑制器(TVS:Transient Voltage Suppressor)是为了解决电子设备电压瞬变和浪涌防护问题而设计出的一种高性能的电子电路保护器件,瞬变电压抑制二极管,主要用于对电路进行瞬态保护。
当TVS 管两端经受瞬间的高能量冲击时,它能以极高的速度把两端间的阻抗变为低阻抗,吸收一个大电流,从而把它两端间的电压钳制在一个预订的数值上,保护后面的电路原件不因瞬态高电压冲击而损坏。
国内外在电子产品和国内高可靠设备中的应用都十分普遍。
随着TVS 使用范围和使用数量的增加,TVS 自身的可靠性备受关注,因为 TVS 可靠性不仅是 TVS 本身的问题,还关系到被保护电子电路的使用可靠性。
研究 TVS 的可靠性须对 TVS 的失效模式和失效机理有深入的了解。
文献表明TVS 的失效模式有短路、开路和电特性退化。
其中,短路失效最为常见,且对电路的影响最为严重。
目前,国内对国产TVS 短路失效机理的研究缺乏深度,不够系统,因此,对国产 TVS 短路失效机理进行深入、系统的研究十分必要。
2 TVS 短路失效样品和失效分析程序在国内主要TVS 生产厂商的支持下,搜集了有关国产 TVS 筛选和使用中短路失效的样品和筛选应力条件或使用条件等失效数据,对这些样品进行电参数测试、开帽、去保护胶、管芯与电极分离、去焊料和显微观察等步骤,找出失效部位,分析引发TVS 短路失效的内在质量因素或使用因素,以及失效的发生过程。
二极管基本失效率概述说明以及解释1. 引言1.1 概述在现代电子行业中,二极管的基本失效率是一个重要的指标。
二极管作为一种常见的半导体器件,广泛应用于各种电子设备和电路中。
然而,由于各种原因,二极管会发生失效,导致其功能受损或完全无法使用。
本文将对二极管基本失效率进行概述和说明。
我们将讨论二极管的基本概念、失效原因以及其对电子设备的影响。
此外,还将解释二极管基本失效率的重要性,并探讨它在电子行业和电路设计中的作用。
1.2 文章结构本文按照以下结构组织:引言、二极管基本失效率、解释二极管基本失效率的重要性、实例分析与案例讨论以及结论与展望。
每个部分将深入探讨相关主题,并提供相关实例和案例加以说明。
1.3 目的编写这篇长文的目的是使读者能够全面了解二极管基本失效率这一概念,并认识到它对电子设备可靠性和寿命的重要影响。
通过学习和理解文章内容,读者将能够更好地理解和应用二极管的基本失效率相关知识,从而提高电子设备及其电路设计的质量和可靠性。
2. 二极管基本失效率2.1 二极管基本概念说明二极管是最简单的半导体器件之一,由P型和N型材料结合而成。
它具有单向导通特性,即电流可以从P端流向N端,而反向电流很小。
二极管具有快速开关能力和稳定的电压特性,在电子领域中广泛应用于整流、放大、保护等电路中。
2.2 二极管失效原因分析二极管的失效可能由以下原因引起:- 过载:工作在超过额定电流或电压范围内时,二极管会受到过载损坏。
- 温度过高:当温度超过二极管承受能力时,其内部材料会融化或熔断。
- 极限震动和冲击:长时间的机械震动或剧烈冲击可能会损坏二极管内部连接或晶体结构。
- 湿度与腐蚀:湿度高、环境恶劣以及化学物质腐蚀都会对二极管产生不可逆损害。
- 动态击穿:当反向电压超过二极管的击穿电压时,会发生动态击穿破坏。
2.3 二极管失效对电子设备的影响二极管失效会对电子设备产生以下影响:- 功能丧失:二极管无法正常导通或截断,导致整个电路功能丧失。
发光二极管失效分析蔡伟智(厦门三安电子有限公司,福建厦门361009)1引言和半导体器件一样,发光二极管(LED)早期失效原因分析是可靠性工作的重要部分,是提高LED可靠性的积极主动的方法。
LED失效分析步骤必须遵循先进行非破坏性、可逆、可重复的试验,再做半破坏性、不可重复的试验,最后进行破坏性试验的原则。
采用合适的分析方法,最大限度地防止把被分析器件(DUA)的真正失效因素、迹象丢失或引入新的失效因素,以期得到客观的分析结论。
针对LED所具有的光电性能、树脂实心及透明封装等特点,在LED早期失效分析过程中,已总结出一套行之有效的失效分析新方法。
2LED失效分析方法2.1减薄树脂光学透视法在LED失效非破坏性分析技术中,目视检验是使用最方便、所需资源最少的方法,具有适当检验技能的人员无论在任何地方均能实施,所以它是最广泛地用于进行非破坏检验失效LED的方法。
除外观缺陷外,还可以透过封装树脂观察内部情况,对于高聚光效果的封装,由于器件本身光学聚光效果的影响,往往看不清楚,因此在保持电性能未受破坏的条件下,可去除聚光部分,并减薄封装树脂,再进行抛光,这样在显微镜下就很容易观察LED芯片和封装工艺的质量。
诸如树脂中是否存在气泡或杂质;固晶和键合位置是否准确无误;支架、芯片、树脂是否发生色变以及芯片破裂等失效现象,都可以清楚地观察到了。
2.2半腐蚀解剖法对于LED单灯,其两根引脚是靠树脂固定的,解剖时,如果将器件整体浸入酸液中,强酸腐蚀祛除树脂后,芯片和支架引脚等就完全裸露出来,引脚失去树脂的固定,芯片与引脚的连接受到破坏,这样的解剖方法,只能分析DUA的芯片问题,而难于分析DUA引线连接方面的缺陷。
因此我们采用半腐蚀解剖法,只将LEDDUA单灯顶部浸入酸液中,并精确控制腐蚀深度,去除LEDDUA单灯顶部的树脂,保留底部树脂,使芯片和支架引脚等完全裸露出来,完好保持引线连接情况,以便对DUA全面分析。
图1所示为半腐蚀解剖前后的φ5LED,可方便进行通电测试、观察和分析等试验。
光电子元器件的失效模式和失效机理朱炜容1.1 光电子器件的分类在光电子技术中,光电子元器件包括光源器件以及光探测器件。
其中光源器件主要有发光二极管和激光器。
光探测器件主要是光电二极管。
作为电气元件,光纤和光缆也是光电子技术中不可缺少的组成元件。
1.2 激光器的失效模式及失效机理随着工作时间的增加,半导体激光器的工作性能将会劣化,发射功率和效率下降,有时还会发生突然失效的灾变性损坏。
造成半导体激光器退化的原因除了其本身的因素外,还有使用温度、工作条件等环境因素。
一、暗线缺陷暗线缺陷是激光器工作时形成的缺陷网络,这些缺陷最终会导致发射功率的下降。
暗线缺陷的形成除了材料、工艺过程中会引入外,其形成过程与温度有很大的关系,它所引起的退化速率强烈地依赖于温度。
二、腔面损伤退化腔面的损伤退化一般有灾变性退化和化学腐蚀损伤退化。
在高功率密度激光的作用下,由于局部过热、氧化、腐蚀、介质膜的针孔和杂质等因素使腔面遭受损伤,从而使局部电流密度增加,局部大量发热,在热电正反馈的作用下,最终腔面局部熔融,导致灾难性的损伤,器件完全失效。
腔面的化学腐蚀是由于光化学作用使腔面表面发生氧化,并形成局部缺陷,导致腔面局部发热,使激光器性能退化甚至失效。
三、电极退化高功率半导体激光器的欧姆接触退化和热阻退化与其他电子器件的电极退化相似。
电极金属和半导体材料间存在互扩散,在烧结的部位,孔洞和晶须的生长现象是常见的退化模式。
另外,热应力导致的电极损伤也很常见。
由于电极远离器件的有源区,电极退化对器件特性的影响一般在老化或工作一定时间后再表现出来。
半导体激光器的工作性能对温度非常敏感,温度升高将加速暗线缺陷的生长,腔面氧化等失效机理,严重影响激光器的寿命。
激光器的转换效率不高,自身的功耗很大,因此降低热阻是提高激光器寿命和可靠性的主要方法之一。
芯片电极烧结质量的好坏不但影响了热阻的大小,而且还关系到电极的电阻,因为激光器在正常工作时,其一般工作电流为几十甚至上百安培,即使是很小的电极电阻,也将产生很大的热功耗,减小电极电阻可以减小激光器本身的热功耗。
潜在失效模式及后果分析简介潜在失效模式及后果分析(Potential Failure Mode and Effects Analysis,简称PFMEA)是一种用于识别潜在失效模式及其对系统、产品或过程的影响的方法。
该分析方法可帮助我们在设计或制造过程中预测和预防潜在的问题,并采取相应的措施来减少系统故障风险和提高可靠性。
潜在失效模式分析潜在失效模式是指在特定条件下,系统、产品或过程可能发生的失效模式。
通过对失效模式进行分析,我们可以了解这些失效模式的原因和机制,并制定相应的预防措施。
以下是一些常见的潜在失效模式:1. 机械失效机械失效是指由于机械部件的损坏、磨损或故障导致系统无法正常工作的情况。
例如,机械零件的材料疲劳、断裂或松动等。
2. 电气失效电气失效是指由于电路断路、短路或电子元件故障导致系统电气功能失效的情况。
例如,电源线路短路、电路板焊接不良或电子元件损坏等。
3. 环境失效环境失效是指由于环境条件变化引起的系统性能下降或失效的情况。
例如,温度变化引起的热胀冷缩、湿度变化引起的腐蚀等。
4. 人为错误人为错误是指由于人员操作不当、维护不当或设计不当导致系统无法正常工作的情况。
例如,操作员误操作、保养人员维护不到位或设计人员设计不合理等。
后果分析后果分析是评估失效模式对系统、产品或过程造成的影响和后果。
对失效后果进行评估可以帮助我们了解失效的严重性,并确定需要采取的措施。
以下是一些常见的失效后果:1. 安全风险失效后果可能导致人员受伤、工作环境不安全或设备损坏,从而造成安全风险。
例如,机械失效可能导致意外伤害,电气失效可能引发火灾或触电事故。
2. 生产效率下降失效后果可能导致生产过程中断、产品质量下降或生产效率低下,从而影响企业的运营和利润。
例如,机械失效可能导致生产线停工,电气失效可能导致产品质量问题。
3. 用户体验不良失效后果可能导致产品性能下降,用户无法正常使用或满足需求,从而影响用户体验和满意度。
led主要失效模式综述
LED(发光二极管)作为一种节能环保、发光效率高、应用广泛的光源,被广泛应用于多种场合。
但是,LED也有自己的失效模式。
下面将从以下几个方面来简要介绍LED的主要失效模式:
1.暗化。
由于LED的结构设计,使LED的发光效率和发光过程相关,
如果LED长时间运行,电子发射体的温度会上升,从而活性层的发光
效率下降,使LED发光减弱;
2.单点失效。
LED各部分物理机械结构决定了它最终发光量,在使用过程中可能发生短路、断路、开路、损坏等故障,导致LED部分点发生
单点失效;
3.发光破裂。
由于LED的使用环境或者LED本身结构设计问题,LED发光片很容易发生开裂,导致LED发光片发生破裂,从而影响发光量;
4.元器件失效。
由于LED应用环境比较复杂,特别是在外在环境变化
比较大的情况下,很容易导致LED的元器件发生失效,从而影响LED
的正常使用;
5.热击穿失效。
LED元器件操作时,由于过大的电流,LED结构发生热
击穿,产生热拉龙纹,以及消耗过多的电力,使LED发光减弱或失效。
总之,LED的失效模式主要有暗化、单点失效、发光破裂、元器件失效和热击穿失效等,需要用户从各个方面综合考虑,以便正确地使用LED。
潜在失效模式及后果分析(模版)磷化过程PFMEA过程潜在潜在严级失效频现行过程控现行过探测风险建议部门/个措施的结果功能失效失效重别潜在度制预防程控制度顺序措施人职责采取严重频探测风险顺要求模式后果度原因探测数与完成的措度度度序数日期施1)“过程功能/要求”:是指被分析的过程或工艺。
该过程或工艺可以是技术过程,如焊接、产品设计、软件代码编写等,也可以是管理过程,如计划编制、设计评审等。
尽可能简单地说明该工艺过程或工序的目的,如果工艺过程包括许多具有不同失效模式的工序,那么可以把这些工序或要求作为独立过程列出;(2)“潜在的失效模式”:是指过程可能发生的不满足过程要求或设计意图的形式或问题点,是对某具体工序不符合要求的描述。
它可能是引起下一道工序的潜在失效模式,也可能是上一道工序失效模式的后果。
典型的失效模式包括断裂、变形、安装调试不当等;(3)“失效后果”:是指失效模式对产品质量和顾客可能引发的不良影响,根据顾客可能注意到或经历的情况来描述失效后果,对最终使用者来说,失效的后果应一律用产品或系统的性能来阐述,如噪声、异味、不起作用等;(4)“严重性”:是潜在失效模式对顾客影响后果的严重程度,为了准确定义失效模式的不良影响,通常需要对每种失效模式的潜在影响进行评价并赋予分值,用1-10 分表示,分值愈高则影响愈严重。
“可能性”:是指具体的失效起因发生的概率,可能性的分级数着重在其含义而不是数值,通常也用1—10 分来评估可能性的大小,分值愈高则出现机会愈大。
“不易探测度”:是指在零部件离开制造工序或装备工位之前,发现失效起因过程缺陷的难易程度,评价指标也分为1—10 级,得分愈高则愈难以被发现和检查出;(5)“失效的原因/机理”:是指失效是怎么发生的,并依据可以纠正或控制的原则来描述,针对每一个潜在的失效模式在尽可能广的范围内,列出每个可以想到的失效起因,如果起因对失效模式来说是唯一的,那么考虑过程就完成了。