当前位置:文档之家› 第01讲生物信息学概述

第01讲生物信息学概述

第01讲生物信息学概述

第01讲生物信息学概述

生物信息学软件及使用概述

生物信息学软件及使 刘吉平 liujiping@scau.edu.cn 用概述 生 物秀-专心做生物! w w w .b b i o o .c o m

生物信息学是一门新兴的交叉学生物信息学的概念: 科,它将数学和计算机知识应用于生物学,以获取、加工、存储、分类、检索与分析生物大分子的信息,从而理解这些信息的生物学意义。 生 物秀-专心做生物! w w w .b b i o o .c o m

分析和处理实验数据和公共数据,生物信息学软件主要功能 1.2.提示、指导、替代实验操作,利用对实验数据的分析所得的结论设计下一阶段的实验 3.实验数据的自动化管理 4.寻找、预测新基因及其结构、功能 5.蛋白质高级结构及功能预测(三维建模,目前研究的焦点和难点) 生 物秀-专心做生物! w w w .b b i o o .c o m

功能1. 分析和处理实验数据和公共数据,加快研究进度,缩短科研时间 ?核酸:序列同源性比较,分子进化树构建,结构信息分析,包括基元(Motif)、酶切点、重复片断、碱基组成和分布、开放阅读框(ORF ),蛋白编码区(CDS )及外显子预测、RNA 二级结构预测、DNA 片段的拼接; ?蛋白:序列同源性比较,结构信息分析(包括Motif ,限制酶切点,内部重复序列的查找,氨基酸残基组成及其亲水性及疏水性分析),等电点及二级结构预测等等; ?本地序列与公共序列的联接,成果扩大。 生 物秀-专心做生物! w w w .b b i o o .c o m

Antheprot 5.0 Dot Plot 点阵图 Dot plot 点阵图能够揭示多个局部相似性的复杂关系 生 物秀-专心做生物! w w w .b b i o o .c o m

生物信息学课后题及答案-推荐下载

生物信息学课后习题及答案 (由10级生技一、二班课代表整理) 一、绪论 1.你认为,什么是生物信息学? 采用信息科学技术,借助数学、生物学的理论、方法,对各种生物信息(包括核酸、蛋 白质等)的收集、加工、储存、分析、解释的一门学科。2.你认为生物信息学有什么用?对你的生活、研究有影响吗?(1)主要用于: 在基因组分析方面:生物序列相似性比较及其数据库搜索、基因预测、基因组进化和分 子进化、蛋白质结构预测等 在医药方面:新药物设计、基因芯片疾病快速诊断、流行病学研究:SARS 、人类基因组计划、基因组计划:基因芯片。 (2)指导研究和实验方案,减少操作性实验的量;验证实验结果;为实验结果提供更多的支持数据等材料。 3.人类基因组计划与生物信息学有什么关系? 人类基因组计划的实施,促进了测序技术的迅猛发展,从而使实验数据和可利用信息急剧增加,信息的管理和分析成为基因组计划的一项重要的工作 。而这些数据信息的管理、分析、解释和使用促使了生物信息学的产生和迅速发展。 4简述人类基因组研究计划的历程。 通过国际合作,用15年时间(1990-2005)至少投入30亿美元,构建详细的人类基因组遗传图和物理图,确定人类DNA 的全部核苷酸序列,定位约10万基因,并对其他生物进行类似研究。 1990,人类基因组计划正式启动。 1996,完成人类基因组计划的遗传作图,启动模式生物基因组计划。 1998完成人类基因组计划的物理作图,开始人类基因组的大规模测序。Celera 公司加入,与公共领域竞争启动水稻基因组计划。 1999,第五届国际公共领域人类基因组测序会议,加快测序速度。 2000,Celera 公司宣布完成果蝇基因组测序,国际公共领域宣布完成第一个植物基因组——拟南芥全基因组的测序工作。 2001,人类基因组“中国卷”的绘制工作宣告完成。 2003,中、美、日、德、法、英等6国科学家宣布人类基因组序列图绘制成功,人类基因组计划的.目标全部实现。2004,人类基因组完成图公布。 2.我国自主知识产权的主要基因组测序计划有哪些?水稻(2002),家鸡(2004),家蚕(2007),家猪(2012),大熊猫(2010) 2.第一章 、管路敷设技术通过管线不仅可以解决吊顶层配置不规范高中资料试卷问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标高等,要求技术交底。管线敷设技术包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内,强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行 高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。 、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

生物信息学概论

2013/5/23
生物信息学概论
2013-5
提纲
1. 发展简史 2. 主要研究领域 3. 软件和工具
1. 发展简史
1946年 1946 年
美国生产出第一台全自动电子数字计算机“埃尼阿克”
1

2013/5/23
1. 发展简史
1955年 1955 年
Frederick Sanger determined the complete amino acid sequence of insulin in 1955 and earned him his first Nobel prize in Chemistry in 1958.
1. 发展简史
1965年 1965 年
The first Atlas of Protein Sequence and Structure contained sequence information on 65 proteins.
Dr. Margaret Oakley Dayhoff (1925-1983) was a pioneer in the use of computers in chemistry and biology, beginning with her PhD thesis project in 1948. Her work was multi-disciplinary, and used her knowledge of chemistry, mathematics, biology and computer science to develop an entirely new field. She is credited today as a founder of the field of Bioinformatics.
1. 发展简史
1965年 1965 年
First use of molecular sequences for evolutionary studies
One of the founding fathers of the field of molecular evolution
Zuckerkandl, E. and Pauling, L. (1965). "Molecules as documents of evolutionary history." Journal of theoretical biology 8(2): 357.
2

生物信息学简介范文

1、简介 生物信息学(Bioinformatics)是在生命科学的研究中,以计算机为工具对生物信息进行储存、检索和分析的科学。它是当今生命科学和自然科学的重大前沿领域之一,同时也将是21世纪自然科学的核心领域之一。其研究重点主要体现在基因组学(Genomics)和蛋白质组学(Proteomics)两方面,具体说就是从核酸和蛋白质序列出发,分析序列中表达的结构功能的生物信息。 具体而言,生物信息学作为一门新的学科领域,它是把基因组DNA序列信息分析作为源头,在获得蛋白质编码区的信息后进行蛋白质空间结构模拟和预测,然后依据特定蛋白质的功能进行必要的药物设计。基因组信息学,蛋白质空间结构模拟以及药物设计构成了生物信息学的3个重要组成部分。从生物信息学研究的具体内容上看,生物信息学应包括这3个主要部分:(1)新算法和统计学方法研究;(2)各类数据的分析和解释;(3)研制有效利用和管理数据新工具。 生物信息学是一门利用计算机技术研究生物系统之规律的学科。 目前的生物信息学基本上只是分子生物学与信息技术(尤其是因特网技术)的结合体。生物信息学的研究材料和结果就是各种各样的生物学数据,其研究工具是计算机,研究方法包括对生物学数据的搜索(收集和筛选)、处理(编辑、整理、管理和显示)及利用(计算、模拟)。 1990年代以来,伴随着各种基因组测序计划的展开和分子结构测定技术的突破和Internet的普及,数以百计的生物学数据库如雨后春笋般迅速出现和成长。对生物信息学工作者提出了严峻的挑战:数以亿计的ACGT序列中包涵着什么信息?基因组中的这些信息怎样控制有机体的发育?基因组本身又是怎样进化的? 生物信息学的另一个挑战是从蛋白质的氨基酸序列预测蛋白质结构。这个难题已困扰理论生物学家达半个多世纪,如今找到问题答案要求正变得日益迫切。诺贝尔奖获得者W. Gilbert在1991年曾经指出:“传统生物学解决问题的方式是实验的。现在,基于全部基因都将知晓,并以电子可操作的方式驻留在数据库中,新的生物学研究模式的出发点应是理论的。一个科学家将从理论推测出发,然后再回到实验中去,追踪或验证这些理论假设”。 生物信息学的主要研究方向:基因组学- 蛋白质组学- 系统生物学- 比较基因组学,1989年在美国举办生物化学系统论与生物数学的计算机模型国际会议,生物信息学发展到了计算生物学、计算系统生物学的时代。 姑且不去引用生物信息学冗长的定义,以通俗的语言阐述其核心应用即是:随着包括人类基因组计划在内的生物基因组测序工程的里程碑式的进展,由此产生的包括生物体生老病死的生物数据以前所未有的速度递增,目前已达到每14个月翻一番的速度。同时随着互联网的普及,数以百计的生物学数据库如雨后春笋般迅速出现和成长。然而这些仅仅是原始生物信息的获取,是生物信息学产业发展的初组阶段,这一阶段的生物信息学企业大都以出售生物数据库为生。以人类基因组测序而闻名的塞莱拉公司即是这一阶段的成功代表。 原始的生物信息资源挖掘出来后,生命科学工作者面临着严峻的挑战:数以亿计的ACGT序列中包涵着什么信息?基因组中的这些信息怎样控制有机体的发育?基因组本身又是怎样进化的?生物信息学产业的高级阶段体现于此,人类从此进入了以生物信息学为中心的后基因组时代。结合生物信息学的新药创新工程即是这一阶段的典型应用。 2、发展简介 生物信息学是建立在分子生物学的基础上的,因此,要了解生物信息学,就必须先对分子生物学的发展有一个简单的了解。研究生物细胞的生物大分子的结构与功能很早就已经开始,1866年孟德尔从实验上提出了假设:基因是以生物成分存在,1871年Miescher从死的白细胞核中分离出脱氧核糖核酸(DNA),在Avery和McCarty于1944年证明了DNA是生命器官的遗传物质以前,人们仍然认为染色体蛋白质携带基因,而DNA是一个次要的角色。1944年Chargaff发现了著名的Chargaff规律,即DNA中鸟嘌呤的量与胞嘧定的量总是相等,腺嘌呤与胸腺嘧啶的量相等。与此同时,Wilkins与Franklin用X射线衍射技术测

生物信息学的发展历程

生物信息学的发展历程 生命科学领域原始研究,尤其是序列数据的快速积累,为发现重大学规律提供了可能。然而,原始数据并不等同于信息和知识,如何通过对海量数据的存储、比较、注释和分析,挖掘出这些数据所蕴含的生物学意义,是生命科学领域中最为关键的问题之一。在这一背景下,早期的生物信息学应运而生。它主要定位为一种技术支撑,其研究内容则主要取决于算法所服务或适用的分析领域,包括基因测序与序列装配、识别与注释、序列相似性比对、结构比对和预测等。一些着名的生物信息学工具和库,如序列分析工具BLAST、基因预测工具GeneScan、序列数据库GenBank等,对生命科学研究产生了深远的影响。 自从20世纪80年代启动人类组测序计划以来,各种高通量技术引起生物的指数增长。2004年,被誉为生命“阿波罗计划”的人类基因组计划宣告完成,自此人们开始了对基因组功能的系统解读,标志着生命科学研究进入“后基因组学”时代。生物学数据的积累不仅表现在序列方面,与其同步的还有的一级结构和高级结构数据、高通量转录表达谱数据和蛋白表达谱数据、表观遗传学数据、相互作用数据、疾病易感性数据和高通量成像数据等。 此外,分子演化和比较基因组学、基于结构的药物设计、生物系统的建模和仿真、代谢网络分析等多个前沿交叉领域均产生了海量数据,分子生物学的研究进入到一个通量化的“组学”时代。Nucleic Acids Researc杂志连续21年在其每年的第一期中详细介绍最新版本的各类生物数据库。根据该杂志的统计,截止到2013年1月,在上述海量数据基础上派生、整理出来的数据库已有1512个。海量生物数据的积累,促成了生物信息学由起初单纯的技术支撑,逐步发展到对生物学问题的系统诠释;从简单地提供数据管理和算法支持,发展为从海量数据出发,通过计算技术对其进行分析、整合、模拟,并在必要时辅以实验验证,最终发现生命科学新规律的新型学科体系。 近年来,新一代测序技术(next generation sequencing,又名深度测序技术)的兴起进一步加速了人们探索未知生命现象的进程,而生物信息学在这一新的时代背景下焕发出新的活力。以HiSeq 2000新一代测序技术平台为例,该平台满负荷运转可实现在一周内完成对四个人类个体的全基因组重测序,而一个人全基因组测序仅需5000美元。在此平台基础上,经过对前期样本处理的适当调整,可实现在全基因组范围内对基因表达的精确定量、对基因结构和可变剪切事件的准确定义、对转录因子和microRNA结合位点的准确鉴定等。 通过巧妙的前期样本处理,这一核酸测序平台甚至可用于解决蛋白表达定量、DNA三级结构等难题,例如,通过巧妙地对核糖体保护的mRNA片断进行测序,核糖体图谱技术可实现在全基因组范围内对蛋白表达的定量,并对蛋白的翻译速度进行估计,很好地补充了现有的蛋白质组学技术。而通过对染色体相邻位置的交联和深度测序,Hi-C等新技术实现了对染色体三维结构的从头重构,对理解长程的表达调控提供了结构基础。这些改进极大地拓展了新一代测序技术在多层次组学调控研究中的应用,而生物信息学则紧随这一进程,逐渐渗透到生命科学的各个研究环节,利用学科交叉优势创新尖端的技术,提出崭新的假设并最终致力于探索生命的新规律。

生物信息学

1.1简述DNA双螺旋结构模型要点 a.DNA两条链逆平行、围绕同中心轴右手螺旋的双链结构,双螺旋结构的直径为2.0nm,螺距为3.4nm。 b.脱氧核糖和磷酸基团构成亲水性骨架位于双螺旋结构的外侧,疏水碱基位于螺旋内侧。每周约10个碱基。 c.两条链借助彼此之间的的氢键结合在一起。AT配对有两个氢键GC配对有三个氢键。每两个碱基对之间的相对旋转角度为36° d.双螺旋结构的表面形成了一个大沟(major groove)和一个小沟(minor groove)。 1.2 名词解释:DNA的变性与复性;DNA分子杂交 DNA的变性:在某些理化因素作用下,DNA双链解开成两条单链的过程。DNA变性的本质是双链间氢键的断裂。 DNA的复性:当变性条件缓慢地除去后,两条解离的互补链可重新配对,恢复原来的双螺旋结构,这一现象称为DNA复性(renaturation) 。 DNA分子杂交:热变性的DNA在缓慢冷却过程中,具有碱基序列互补的不同DNA之间或DNA与RNA之间形成杂环双链的现象称为核酸分子杂交。 1.3 简述核酸分子杂交技术 不同种类的DNA单链分子或RNA分子放在同一溶液中,只要两种单链分子之间存在着一定程度的碱基配对关系,在适宜的条件可以在不同的分子间形成杂化双链(heteroduplex)。这种杂化双链可以在不同的DNA与DNA之间形成,也可以在DNA和RNA分子间或者RNA与RNA 分子间形成。这种现象称为核酸分子杂交 1.4生物体内氨基酸有180多种,组成蛋白质的氨基酸只有(20)种,都是(α-氨基酸)。 1.5 写出氨基酸的结构通式 1.6名词解释:氨基酸的等电点 氨基酸的等电点:调节氨基酸溶液PH值,使氨基酸溶液中的氨基和羧基的解离度完全相等,即氨基酸所带静电荷为0,在电场中既不向阴极移动,也不向阳极移动,此时,氨基酸溶液的PH 值称为该氨基酸的等电点,以符号PI表示。 2.1 Sanger通过氨基酸与(2,4-二硝基氟苯(DNFB))反应测定了胰岛素的序列。 2.2 Edman反应是指用(苯异硫氰酸酯(PITC))与氨基酸的氨基发生反应来测定多肽序列的。 2.3名词解释:肽键与肽平面 肽键:氨基酸与氨基酸之间脱水缩合之后形成肽链其中一个氨基酸上的氨基与另一个氨基酸上的羟基脱水缩合后形成的就叫肽键即-CO-NH-. 肽平面:与肽键相关的6个原子共处于一个平面,称为酰胺平面或肽平面。 肽键具有一定程度的双键性质,参与肽键的六个原子C、H、O、N、Cα1、Cα2不能自由转动,位于同一平面,此平面就是肽平面,也叫酰胺平面。 2.4详细叙述蛋白质的分子结构。 一级结构:组成蛋白质多肽链的线性氨基酸序列。 二级结构:依靠不同氨基酸之间的C=O和N-H基团间的氢键形成的稳定结构,主要为α螺旋和β折叠。 三级结构:通过多个二级结构元素在三维空间的排列所形成的一个蛋白质分子的三维结构。四级结构:用于描述由不同多肽链(亚基)间相互作用形成具有功能的蛋白质复合物分子。 2.5 蛋白质二级结构的有哪几种?

生物信息学概论复习题

生物信息学概论复习题 一、名词解释: 1.合成生物学 2.蛋白质组学 3.相似性,同一性,同源性 4.直系同源基因,旁系同源基因 5.序列比对 6.生物信息学 7.多序列比对 8.打分矩阵 9.蛋白质同源建模 10.分子钟 11.虚拟细胞 12.蛋白质结构比对 13.EST 14.contig 15.unigene 16.Entrez 17.一级数据库 18.二级数据库 19.系统发育 20.BLAST 21.外类群 22.有根树 23.系统生物学 24.比较蛋白质组学 二、简述题: 1.常用的序列比对软件有哪些?

2.序列比对有哪些用途? 3.蛋白质结构比对? 4.系统生物学与分子生物学的差异和联系? 5.分子进化的中性学说? 6.GO数据库的内容及用途? 7.KEGG数据库的内容及用途? 8.蛋白质组与基因组的差别? 9.蛋白质组的研究内容? 10.列举分离鉴定蛋白质技术有哪些? 11.基因组外显子的组成特征有哪些? 12.NCBI Blast程序有哪些子程序?有何区别? 13.蛋白质数据库有哪些?各自特点是什么? 14.列举可以通过NCBI进行的生物信息学分析。 15.设计引物要遵循哪些原则? 16.知道某蛋白的氨基酸序列后,如何进行各级结构的生物信息学分析? 17.系统发育树的构建步骤是什么? 18.蛋白质有哪些结构层次,如何定义? 19.蛋白质组的特点? 20.双向电泳及其工作原理? 21.构建系统树的主要方法? 22.主要的生物信息数据库有哪些? 三、论述题 1.构建进化树有几种方法?如何选择? 2.第二代测序技术与第一代测序技术相比有什么异同?优势是什么? 3.什么EST序列?得到EST数据后,如何进行生物信息学分析?

国内外生物信息学发展状况

国内外生物信息学发展状况 1.国外生物信息发展状况 国外非常重视生物信息学的发展各种专业研究机构和公司如雨后春笋般涌现出来,生物科技公司和制药工业内部的生物 信息学部门的数量也与日俱增。美国早在1988年在国会的支持 下就成立了国家生物技术信息中心(NCBI),其目的是进行计 算分子生物学的基础研究,构建和散布分子生物学数据库;欧 洲于1993年3月就着手建立欧洲生物信息学研究所(EBI), 日本也于1995年4月组建了信息生物学中心(CIB)。目前, 绝大部分的核酸和蛋白质数据库由美国、欧洲和日本的3家数 据库系统产生,他们共同组成了 DDBJ/EMBL/Gen Bank国际核 酸序列数据库,每天交换数据,同步更新。以西欧各国为主的 欧洲分子生物学网络组织(EuropeanMolecular Biology Network, EMB Net)是目前国际最大的分子生物信息研究、开 发和服务机构,通过计算机网络使英、德法、瑞士等国生物信 息资源实现共享。在共享网络资源的同时,他们又分别建有自 己的生物信息学机构、二级或更高级的具有各自特色的专业数 据库以及自己的分析技术,服务于本国生物(医学)研究和开 发,有些服务也开放于全世界。 从专业出版业来看,1970年,出现了《Computer Methods and Programs in Biomedicine》这本期刊;到1985年4月, 就有了第一种生物信息学专业期刊《Computer Application

in the Biosciences》。现在,我们可以看到的专业期刊已经很多了。 2 国内生物信息学发展状况 我国生物信息学研究近年来发展较快,相继成立了北京大学生物信息学中心、华大基因组信息学研究中心、中国科学院上海生命科学院生物信息中心,部分高校已经或准备开设生物信息学专业。2002年国家自然科学基金委在生物化学、生物物理学与生物医学工程学学科设立了生物信息学项目,并列入生命科学部优先资助的研究项目。国家 863计划特别设立了生物信息技术主题,从国家需求的层面上推动我国生物信息技术的大力发展[3]。 但是由于起步较晚及诸多原因,我国的生物信息学发展水平远远落后于国外。在PubMed收录的以关键词“Bioinformatics”检索到的历年发表的文章数,可以看出大量的研究文献出现在21世纪以后。其中我国共有138篇占全部5548篇的2.5%,而美国则发表2160篇占全部的39%之多(统计数据截至2004年2月15日)。我国学者在生物信息学领域发表的有高影响力的论文只有不到美国学者发表数量的6%,差距相当大[4]。在生物信息学领域,一些著名院士和教授在各自领域取得了一定成绩,显露出蓬勃发展的势头,有的在国际上还占有一席之地。如北京大学的罗静初和顾孝诚教授在生物信息学网站建设方面、中科院生物物理所的陈润生研究员在EST

生物信息学课程设计

生物信息学课程设计报告 题目:用blast、clustalx2和mega来分析鼠伤寒沙门氏菌的四环素抗性基因 专业:生物技术 班级:11-2 学号:11114040235 姓名:邹炜球 指导教师:马超 广东石油化工学院生物工程系 2013年 12 月 21 日

摘要 生物信息学(Bioinformatics)是研究生物信息的采集,处理,存储,传播,分析和解释等各方面的一门学科,它通过综合利用生物学,计算机科学和信息技术而揭示大量而复杂的生物数据所赋有的生物学奥秘。本课程设计主要通过分析鼠伤寒沙门氏菌的四环素抗性基因来介绍生物信息学里面常用的数据库NCBI和一些常用的软件(如blast、clustalx2、Primer Premier 5和mega),由于生物信息学这一门课在生物研究领域所起到的作用非常大,所以熟练一些常用的生物信息学软件和数据库是非常有必要的。 关键词:NCBI、blast、clustalx2、Primer Premier 、mega、生物信息学、序列比对、系统发育树

目录 1绪论 (4) 1.1生物信息学的发展概况 (4) 1.2生物信息学的发展展望 (4) 2 课题设计内容 (5) 2.1以某一基因或蛋白为研究对象搜索一条序列(DNA长度为300-1500bp,蛋白质序列 为100-500)及相关信息,并分别表示出他的GENBANK和FASTA格式 (6) 2.2以设计内容1为目标序列进行BLAST分析 (7) 2.3通过BLAST或相关软件下载8条基因或蛋白质序列 (9) 2.4以8条基因序列进行多序列比对 (10) 2.5依照设计内容4构建系统发育树 (10) 2.6以其中一条基因序列设计一条长度为200-500bp的一对引物 (12) 参考文献 (16)

生物信息学期末考试答案分析解析

一、名词 Bioinformatics:生物信息学——是一门综合运用生物学、数学、物理学、信息科学以及计算机科学等诸多学科的理论方法,以互联网为媒介、数据库为载体、利用数学和计算机科学对生物学数据进行储存、检索和处理分析,并进一步挖掘和解读生物学数据。 Consensus sequence:共有序列——决定启动序列的转录活性大小。各种原核启动序列特定区域内(通常在转录起始点上游-10及-35区域)存在共有序列,是在两个或多个同源序列的每一个位置上多数出现的核苷酸或氨基酸组成的序列。 Data mining:数据挖掘——数据挖掘一般是指从大量的数据中自动搜索隐藏于其中的有着特殊关系性的信息的过程。数据挖掘通常是利用计算方法分析生物数据,即根据核酸序列预测蛋白质序列、结构、功能的算法等,实现对现有数据库中的数据进行发掘。 EST:(Expressed Sequence Tag)表达序列标签——是某个基因cDNA克隆测序所得的部分序列片段,长度大约为200~600bp。 Similarity:相似性——是直接的连续的数量关系,是指序列比对过程中用来描述检测序列和目标序列之间相同DNA碱基或氨基酸残基顺序所占比例的高低。 Homology:同源性——是两个对象间的肯定或者否定的关系。如两个基因在进化上是否曾具有共同祖先。从足够的相似性能够判定二者之间的同源性。 Alignment:比对——从核酸以及氨基酸的层次去分析序列的相同点和不同点,以期能够推测它们的结构、功能以及进化上的联系。或是指为确定两个或多个序列之间的相似性以至于同源性,而将它们按照一定的规律排列。 BLOSUM:模块替换矩阵——是指在对蛋白质数据库搜索时,采用不同的相似性分数矩阵进行检索的相似性矩阵。以序列片段为基础,从蛋白质模块数据库BLOCKS中找出一组替换矩阵,用于解决序列的远距离相关。在构建矩阵过程中,通过设置最小相同残基数百分比将序列片段整合在一起,以避免由于同一个残基对被重复计数而引入的任何潜在的偏差。在每一片段中,计算出每个残基位置的平均贡献,使得整个片段可以有效地被看作为单一序列。通过设置不同的百分比,产生了不同矩阵。 PAM(Point Accepted Mutation):突变数据矩阵PAM即可接受点突变——指1个PAM表示100个残基中发生一个残基突变概率的进化距离。在序列比对中,能够反映一个氨基酸发生改变的概率与两个氨基酸随机出现的概率的比值的矩阵。 Contig:叠连群——是指一组相互两两头尾拼接的可装配成长片段的DNA序列克隆群,也指彼此间可通过重叠序列而连接成连续的、扩展的、不间断的DNA序列的交叠片段产物。通过比对不同的序列,我们能够发现片段的顺序,并且contigs能被添加、删除、重排列来形成新的序列。 Phylogenetic tree:系统发生树又称为演化树(evolutionary tree)——是表明被认为具有共同祖先的各物种间演化关系的树,是一种亲缘分支分类方法。在树中,每个节点代表其各分支的最近共同祖先,而节点间的线段长度对应演化距离(如估计的演化时间)。它用来表示系统发生研究的结果,用它描述物种之间的进化关系。 In Silico Cloning:电子克隆——是近年来发展起来的一门基于表达序列标签(ESTs)的快速克隆基因的新技术,其利用种子序列从EST及UniGene数据库中搜索相似性序列,进行拼装、检索、分析等,以此获得目标基因的全长cDNA,在此基础上也能够实现基因作图定位。 二、问题思考 1、生物信息学这门学科是如何发展起来的? 答:生物学数据爆炸式增长 生物大分子数据库相继建立 生物技术与计算机技术并行飞速发展

基因组学与生物信息学教案

《基因组学与生物信息学》教案 授课专业:生物学大类各专业 课程名称:基因组学与生物信息学 主讲教师:夏庆友程道军赵萍徐汉福

课程说明 一、课程名称:基因组学与生物信息学 二、总课时数:36学时(理论27学时实验9学时) 三、先修课程:遗传学、分子生物学、基因工程 四、使用教材: 杨金水. 基因组学. 北京:高等教育出版社,2002. 张成岗. 贺福初, 生物信息学方法与实践. 北京:科学出版社,2002. 五、教学参考书: T.A.布朗著,袁建刚译著,基因组(2rd版),北京:科学出版社,2006. 沈桂芳,丁仁瑞,走向后基因组时代的分子生物学,杭州:浙江教育出版社,2005. 罗静初译,生物信息学概论,北京:北京大学出版社,2002. 六、考核方式:考查 七、教案编写说明: 教案又称课时授课计划,是任课教师的教学实施方案。任课教师应遵循专业教学计划制订的培养目标,以教学大纲为依据,在熟悉教材、了解学生的基础上,结合教学实践经验,提前编写设计好每门课程每个章、节或主题的全部教学活动。教案可以按每堂课(指同一主题连续1~2节课)设计编写。教案编写说明如下: 1、编号:按施教的顺序标明序号。 2、教学课型表示所授课程的类型,请在相应课型栏内选择打“√”。 3、题目:标明章、节或主题。 4、教学内容:是授课的核心。将授课的内容按逻辑层次,有序设计编排,必要时标以“*”、“#”“?” 符号分别表示重点、难点或疑点。 5、教学方式既教学方法,如讲授、讨论、示教、指导等。教学手段指教科书、板书、多媒体、模型、 标本、挂图、音像等教学工具。 6、讨论、思考题和作业:提出若干问题以供讨论,或作为课后复习时思考,亦可要求学生作为作业 来完成,以供考核之用。 7、参考书目:列出参考书籍、有关资料。 8、日期的填写系指本堂课授课的时间。

生物信息学发展概况及研究进展

生物信息学发展概况及研究进展 韩龙生物化学与分子生物学2010200531 1 概述 生物信息学是在生命科学、计算机科学和数学的基础上逐步发展而形成的一门新兴的边缘学科,它以核酸和蛋白质为主要研究对象,以数学、计算机科学为主要研究手段,对生物学实验数据进行获取、加工、存储、检索与分析,从而达到揭示数据所蕴含的生物学意义的目的[1]。 生物信息学的发展大致经历了前基因组时代、基因组时代和后基因组时代。目前,它的主要研究内容已经从对DNA和蛋白质序列比较、编码区分析、分子进化转移到大规模的数据整合、可视化,转移到比较基因组学、代谢网络分析、基因表达谱网络分析、蛋白质技术数据分析处理、蛋白质结构与功能分析以及药物靶点筛选等[1]。在后基因组时代的今天,生物信息学已经成为目前极其热门的系统生物学研究的重要手段。 利用各种功能的软件系统平台,目前生物信息学方法主要通过序列比对与分析、功能基因组与基因表达数据的分析、蛋白质结构预测以及基于结构的药物设计等方面应用于各个生命科学研究领域。 1.1序列比对与分析 序列比对是生物信息学的基础,是比较两个或两个以上符号序列的相似性或不相似性。两个序列的比对现在已有较成熟的动态规划算法,以及在此基础上编写的比对软件包——BLAST和FASTA;两个以上序列的多重序列是生物信息学中尚未解决的一个NP完全的组合优化问题,是目前研究的热点[2]。比较经典的算法有SAGA算法[3]、CLUSTAL算法以及隐马尔可夫模型(Hidden Markov Models,HMM)多重序列比对算法,另外,如Notredame等[4]开发的T-Coffee算法、Timo等[5]设计的Kalign算法、张琎等[6]设计的基于GC-GM多序列比对穷举遗传算法,是通过穷举某个特定范围内的所有序列的长度取值,来确定最终最佳比对长度的一种多序列比对算法。这些算法已应用于各种多序列比对软件,并在应用中不断得到优化。 1.2 功能基因组学 在后基因时代的今天,基因组学的研究已从结构基因组学(Structural genomics)转向功能基因组学(Functional genomics)[1] 。功能基因组的任务是进行基因组功能注释(Genome annotation),了解基因功能、认识基因与疾病的关系、掌握基因的产物及其在生命活动中的作用。基因的时空差异表达是功能基因组学研究的理论基础。

生物信息学札记(第4版)

生物信息学札记(第4版) 樊龙江 浙江大学作物科学研究所 浙江大学生物信息学研究所 浙江大学IBM生物计算实验室 2017年9月 本材料已由浙江大学出版社出版:《生物信息学》,樊龙江主编,2017 部分内容可通过下列网址获得: http://ibi.zju.edu.cn/bioinplant/

札记前言 第一版 这份材料是我学习和讲授《生物信息学》课程时的备课笔记,材料大多是根据当时收集的一些外文资料翻译编辑而成。学生在学习过程中经常要求我给他们提供一些中文的讲义或材料,这促使我把我的这份笔记整理并放到网上,供大家参考。要提醒使用者的是,这份材料仅是根据我对生物信息学的一些浮浅的认识整理而成,其中的错误和偏颇只能请读者自鉴了。 2001年6月 第二版 自1999年开始接触生物信息学以来,一晃已近六年,而本札记也近四岁了。2001和2002年中国科学院理论物理所的郝柏林院士在浙江大学首次开设生物信息学研究生课程,我作为他的助教系统地学习了生物信息学;同时,借着我国水稻基因组测序计划的机遇,在他的带领下从2001年开始从事水稻基因组分析,从此自己便完全投入到这一崭新、引人入胜的领域中来。 不断有来信向我索要本札记的电子版文件,同时在不少网站上看到推荐该札记的内容。生物信息学、基因组学等发展很快,现在再回头审看该札记,有些部分已惨不忍读,这促使我下决心更新它。但因时间和学识问题,还是有不少部分自己不甚满意,就只有待日后再努力了。欢迎告诉我札记中的BUG,我的信箱fanlj@zju.edu.cn或bioinplant@zju.edu.cn。 2005年3月30日 第三版 近年来高通量测序技术产生的序列数据大量出现(如小RNA和大规模群体SNP数据),本次更新根据这一进展增加了两章内容,分别是第七章有关小RNA的分析和第八章遗传多态性及正向选择检测。两章内容由我的博士生王煜为主编写,李泽峰和刘云参与了文献整理。另外还更新了第四章有关水稻基因组分析一节。 2010年1月 第四版 2014年浙江大学开展本科生教材建设工作,我当时作为系主任要带头,就承诺编写我主讲的《生物信息学》教材。编写教材的确不是一件容易的事,经过几番挣扎和多方努力,总算完成了编写,算是了却了一桩心思。该教材内容比较完整,也跟踪了生物信息学领域的最新进展。我就权且把该教材内容作为札记的第四版,也算给该札记一个完美的结尾。 2017年9月

生物信息学(第二版)

《精要速览系列-先锋版生物信息学(第二版)》 D.R.Westhead,J.H.Parish & R.M.Twyman 科学出版社2004 A生物信息学概述 相关学习网站www.bios.co.uk/inbioinformatics B数据采集 DNA,RNA和蛋白质测序 1.DNA测序原理 DNA中核苷酸的顺序是通过链式终止测序【也称为脱氧测序(dideoxy sequencing)或以发明人命名的Sanger方法】来确定。 2.DNA序列的类型 基因组DNA,是直接从基因组中得到,包括自然状态的基因 复制DNA(copy DNA, cDNA),通过反转录mRNA得到的 重组DNA,包括载体序列如质粒,修饰过的病毒和在实验室使用的其他遗传元件等 3.基因组测序策略 散弹法测序(shotgun sequence)包括随机DNA片段的生成,通过大量片段测序来覆盖整个基因组 克隆重叠群测序(clone contig)DNA片段用推理的方法亚克隆,并且进行系统的测序直到整个序列完成 4.序列质量控制 通过在DNA双链上进行多次读取完成高质量序列数据的测定 可使用如Phred等程序对最初的跟踪数据(trace data)进行碱基识别和质量判断。 载体序列和重复的DNA片段被屏蔽后,使用Phred等程序将序列拼接成重叠群 (contigs),剩下的不一致部分通过人工修饰解决 5.单遍测序 低质量的序列数据可以由单次读段(read)产生(单遍测序,single-pass sequencing)。 尽管不很准确,但单遍测序如ESTs和GSS s,可以低廉的价格快速大量的产生 6.RNA测序 因为有大量的小核苷酸(minor nucleotide)(化学改变的核苷)存在于转移RNA (tRNA)和核糖体RNA(rRNA)中,所以RNA测序不能像DNA测序那样直接进行。 需要用特殊的方法来识别被改变的核苷,包括生化实验,核磁共振谱(NRM spectroscopy)和质谱(MS)技术 7.蛋白质测序 蛋白质序列可以通过DNA序列推断得到,而RNA测序不能提供有关已改变残基或其他类型的翻译后蛋白质修饰(比如剪接或二硫键的形成) 大部分蛋白质测序是通过质谱(MS)技术进行的

生物信息学基础知识

分子生物学基础知识太仓生命信息研究所 2011-7

前言 本文仅适用于对非生物专业的员工进行基础知识普及。如有深入学习的要求,请选用正规权威教材。 本教材以蛋白质、DNA、RNA、复制、转录和翻译为主要讲解内容,目的是帮助员工理解在工作中会遇到的常见生物学概念及术语 目录 前言 (2) 目录 (2) 蛋白质 (3) 1. 什么是蛋白质 (3) 2. 蛋白质的3D结构 (5) DNA (7) 1. DNA的组成—4种碱基 (7) 2. DNA的复制 (8) 3. DNA转录为RNA (9) 4. mRNA翻译成氨基酸序列 (11)

蛋白质 1.什么是蛋白质 蛋白质是由20中基本氨基酸链接而成的,生物体的大部分是有蛋白质构成的。每种氨基酸由4部分组成:碳原子C,羧基coo-,氨基H3N和R group。 20中氨基酸按照不同的排列和不同的长度,就形成了蛋白质。不同的R group把氨基酸分为5类: 无极性脂肪类R Group:

芳香类R Group 有极性,无电荷R Group

正电荷R Group 负电荷R Group 2.蛋白质的3D结构 氨基酸链在三维空间里呈现出一定的结构。各个氨基酸分子于相邻的氨基酸之间有氢键连接。 一级结构:氨基酸的排列顺序,可以用氨基酸的缩写在书面上表达。 氨基和羧基之间的氢键使得单个的氨基酸分子能够链接起来。

二级结构:单条氨基酸链所形成的2D形态。常见的有Alpha helix Beta sheet。 Alpha helix:氨基酸分子按顺时针或逆时针的方向螺旋上升。 Beta sheet:多条氨基酸分子链并列在一起。 三级结构:氨基酸链在各个方向的形态综合在一起。

浅谈生物信息学的发展和前景1

浅谈生物信息学的发展和前景 摘要:生物信息学已成为整个生命科学发展的重要组成部分,成为生命科学研究的前沿。本文对生物信息学的产生背景及其研究现状等方面进行了综述,并展望生物信息学的发展前景。生物信息学的发展在国内、外基本上都处在起步阶段。因此,这是我国生物学赶超世界先进水平的一个百年一遇的极好机会。 关键字:生物信息学、产生背景、发展现状、前景 随着生物科学技术的迅猛发展,生物信息数据资源的增长呈现爆炸之势,同时计算机运算能力的提高和国际互联网络的发展使得对大规模数据的贮存、处理和传输成为可能,为了快捷方便地对已知生物学信息进行科学的组织、有效的管理和进一步分析利用,一门由生命科学和信息科学等多学科相结合特别是由分子生物学与计算机信息处理技术紧密结合而形成的交叉学科——生物信息学(Bioinformatics)应运而生,并大大推动了相关研究的开展, 被誉为“解读生命天书的慧眼”。 一、生物信息学产生的背景 生物信息学是80年代未随着人类基因组计划(Human genome project)的启动而兴起的一门新的交叉学科。它通过对生物学实验数据的获取、加工、存储、检索与分析,进而达到揭示数据所蕴含的生物学意义的目的。由于当前生物信息学发展的主要推动力来自分子生物学,生物信息学的研究主要集中于核苷酸和氨基酸序列的存储、分类、检索和分析等方面,所以目前生物信息学可以狭义地定义为:将计算机科学和数学应用于生物大分子信息的获取、加工、存储、分类、检索与分析,以达到理解这些生物大分子信息的生物学意义的交叉学科。事实上,它是一门理论概念与实践应用并重的学科。 生物信息学的产生发展仅有10年左右的时间---bioinformatics这一名词在1991年左右才在文献中出现,还只是出现在电子出版物的文本中。事实上,生物信息学的存在已有30多年,只不过最初常被称为基因组信息学。美国人类基因组计划中给基因组信息学的定义:它是一个学科领域,包含着基因组信息的获取、处理、存储、分配、分析和解释的所有方面。自1990年美国启动人类基因组计划以来,人与模式生物基因组的测序工作进展极为迅速。迄今已完成了约40多种生物的全基因组测序工作,人基因组约3x109碱基对的测序工作也接近完成。至2000年6月26日,被誉为生命“阿波罗计划”的人类基因组计划终于完成了工作草图,预示着完成人类基因组计划已经指日可待。截止目前为止,仅登录在美国GenBank 数据库中的DNA序列总量已超过70亿碱基对。此外,迄今为止,已有一万多种蛋白质的空间结构以不同的分辨率被测定。基于cDNA序列测序所建立起来的EST数据库其纪录已达数百万条。在这些数据基础上派生、整理出来的数据库已达500余个。这一切构成了一个生物学数据的海洋。这种科学数据的急速和海量积累,在人类的科学研究历史中是空前的。数据并不等于信息和知识,但却是信息和知识的源泉,关键在于如何从中挖掘它们。与正在以指数方式增长的生物学数据相比,人类相关知识的增长(粗略地用每年发表的生物、医学论文数来代表)却十分缓慢。一方面是巨量的数据;另一方面是我们在医学、药物、农业和环保等方面对新知识的渴求,这些新知识将帮助人们改善其生存环境和提高生活质量。这就构成了一个极大的矛盾。这个矛盾就催生了一门新兴的交叉科学,这就是生物信息学。二、生物信息学研究的发展现状 资金和实力非常重要,生物信息的研究投入短期不算大,但是结合成果,其投入相当的大。因为目前生物信息主要在于教学和和研究,商业领域的应用不算很广。如一套LIMS加上软件就要花上数千万。加上相关项目的研究开发,不是国内相关的机构所能承受的。所以需要得到政府的支持和帮助。以及有识之士的投入。否则我们又将远远落后国外。国内的制药行业将永不得翻身!基因的流失(国外一些国家打着给国内免费治疗,分析疾病的考旗帜,

相关主题
文本预览
相关文档 最新文档