第一课生物信息学概论
- 格式:ppt
- 大小:2.76 MB
- 文档页数:52
生物信息学概论 陈新 生命科学学院2001年10月(一)、概述 (3)(二)、生物信息学发展 (3)1.生物信息学的诞生和发展 (3)2.生物信息学的国内外现状 (4)(三)、生物信息学的主要研究内容 (14)一、基因组相关信息的收集、储存、管理与提供 (14)二、新基因的发现、鉴定 (14)****BLAST简介 (14)三、非编码区信息结构分析 (21)四、生物进化的研究 (21)五、完整基因组的比较研究 (21)六、基因组信息分析方法研究 (22)七、大规模基因功能表达谱的分析 (22)八、蛋白质分子空间结构预测、模拟和分子设计 (22)1.蛋白质分子模型的建立与显示 (23)2.蛋白质结构预测 (23)3、蛋白质分子模拟软件 (25)九、药物设计 (25)1、蛋白质改性和分子设计 (25)2、基于生物大分子结构的药物设计 (26)3、药物设计中理论方法 (28)(四)、展望 (29)(一)、概述生物信息学是在数学、计算机科学和生命科学的基础上形成的一门新型交叉学科,是指为理解各种数据的生物学意义,运用数学、计算机科学与生物学手段进行生物信息的收集、加工、储存、传播、分析与解析的科学。
近年来随着快速序列测定、基因重组、基因芯片,多维核磁共振等技术的应用,生物学实验数据呈爆炸趋势增长,同时计算机和国际互联网络的发展使对大规模数据的贮存、处理和传输成为可能。
作为一门新的学科领域,它是将基因组DNA序列信息分析作为源头,在获得了蛋白质编码区的信息之后进行蛋白质空间结构模拟和预测,然后依据特定蛋白质的功能进行必要的药物设计。
它由相互依赖、相互渗透的两个研究领域组成,即构筑现代生物学所必需的信息基础研究,以及旨在解析基本生物学问题的基于计算机技术的基础生物学研究。
因此,在基因组研究时代,基因组信息学、蛋白质的结构模拟以及药物设计必将有机的结合在一起,它们是生物信息学的三个重要组成部分。
生物信息学更多的具备研究领域的特征,而非一套完整的科学概念和原理,因而具有独特的开放性和应用途径的多样性等特征。
生物信息学概论
生物信息学是一门生物学、计算机科学和统计学交叉的新兴学科,利
用计算机科学、统计学和生物学等领域的技术手段,研究生物学中的信息
问题。
生物信息学的发展得益于计算机技术的迅速发展和基因组学的大规
模进展,是推动生命科学发展和实现个性化医学的关键技术之一。
生物信息学的研究内容主要包括基因组学、转录组学、蛋白质组学、
代谢组学、系统生物学和生物信息学软件等方面。
其中,基因组学是生物
信息学的核心内容,研究的是基因组的结构、功能和进化等问题。
转录组
学是研究基因的转录和表达的分子生物学学科,蛋白质组学是研究所有蛋
白质的表达和功能,代谢组学研究的是生物体内代谢产物的组成和代谢活动。
系统生物学则是研究生物体系统级的调控规律和功能。
生物信息学也是个充满挑战和机遇的领域。
生物物种之间的差异和基
因组的复杂性,给生物信息学的研究和应用带来了很大的挑战。
目前生物
信息学面临着数据管理、数据标准化、数据挖掘和信息整合等方面的挑战。
同时,在生物信息学应用中,还有重要的伦理和法律问题等等。
总之,生物信息学不仅是一个新兴专业,也是生命科学与计算机科学、统计学等交叉领域的典型代表,它将成为解决许多生命科学研究的重要工具,对医学、农业等领域的发展也将产生深远影响。
生物信息学知识点总结分章第一章:生物信息学概述生物信息学是一门综合性学科,结合计算机科学、数学、统计学和生物学的知识,主要研究生物系统的结构、功能和演化等方面的问题。
生物信息学的发展可以追溯到20世纪70年代,随着基因组学、蛋白质组学和生物技术的发展,生物信息学逐渐成为生物学研究的重要工具。
生物信息学的主要研究内容包括基因组学、蛋白质组学、代谢组学、系统生物学等。
生物信息学方法主要包括序列分析、结构分析、功能预测和系统分析等。
第二章:生物数据库生物数据库是生物信息学研究的重要基础,主要用于存储、管理和共享生物学数据。
生物数据库包括基因组数据库、蛋白质数据库、代谢数据库、生物通路数据库等。
常用的生物数据库有GenBank、EMBL、DDBJ等基因组数据库,Swiss-Prot、TrEMBL、PDB等蛋白质数据库,KEGG、MetaCyc等代谢数据库,Reactome、KeggPathway等生物通路数据库等。
生物数据库的建设和维护需要大量的人力和物力,目前国际上已建立了众多生物数据库,为生物信息学研究提供了丰富的数据资源。
第三章:序列分析序列分析是生物信息学研究的重要内容,主要应用于DNA、RNA、蛋白质序列的比对、搜索和分析。
常用的序列分析工具包括BLAST、FASTA、ClustalW等,这些工具可以帮助研究人员快速比对和分析生物序列数据,从而挖掘出序列的相似性、保守性和功能等信息。
序列分析在基因组学、蛋白质组学和系统生物学等领域发挥着重要作用,是生物信息学研究的基础工具之一。
第四章:结构分析结构分析是生物信息学研究的另一个重要内容,主要应用于蛋白质、核酸等生物分子的三维结构预测、模拟和分析。
常用的结构分析工具包括Swiss-Model、Modeller、Phyre2等,这些工具可以帮助研究人员预测蛋白质或核酸的三维结构,分析结构的稳定性、功能和相互作用等特性。
结构分析在蛋白质结构与功能研究、蛋白质药物设计等方面发挥着重要作用,为生物信息学研究提供了重要的技术支持。