毫安信号转换电压信号电路
- 格式:doc
- 大小:110.00 KB
- 文档页数:5
4-20毫安电流转1-5V电压转换电路最简单的4-20mA输入/5V输出的I/V转换电路在与电流输出的传感器接口时,为把传感器(变送器)输出的1-10mA或者4 -20mA电流信号转换成为电压信号,往往都会在后级电路的最前端配置一个I /V转换电路,图1就是这种电路最简单的应用示意图。
仅使用一只I/V转换取样电阻,就能够把输入电流转换成为信号电压,其取样电阻可以按照Vin/I=R求出,Vin是单片机须要的满度A/D信号电压,I是输入的最大信号电流。
这样的电路虽然简单,但却不实用,首先,其实际意义是零点信号的时候,会有一个零点电流流过取样电阻,如果按照4~20mA输入电流转换到最大5 V电压来分析,零点的时候恰好是1V,这个1V在单片机资源足够的时候,可以由单片机软件去减掉它。
可是这样一来。
其有用电压就会剩下5-1=4V而不是5V了。
由于单片机的A/D最大输入电压就是单片机的供电电压,这个电压通常就是5V,因此,处理这种简单的输入转换电路时比较麻烦。
为了达到A/D转换的位数,就会导致芯片成本增加。
LM324组成的4-20mA输入/5V输出的I/V转换电路解决上面问题的简单方法是在单片机输入之前配置一个由运算放大器组成的缓冲处理电路,见图2。
增加这级运算放大器可以起到对零点的处理会变得更加方便,无需耗用单片机的内部资源,尤其单片机是采用A/D接口来接受这种零点信号不为零电压的输入时,可以保证A/D转换位数的资源能够全部应用于有用信号上。
以4~20mA 例,图B中的RA0是电流取样电阻,其值的大小主要受传感变送器供电电压的制约,当前级采用24V供电时,RA0经常会使用500Ω的阻值,对应20mA 的时候,转换电压为10V,如果仅仅需要最大转换电压为5V,可以取RA0=250Ω,这时候,传感变送器的供电只要12V就够用了。
因为即使传送距离达到1000米,RA0最多也就几百Ω而已。
同时,线路输入与主电路的隔离作用,尤其是主电路为单片机系统的时候,这个隔离级还可以起到保护单片机系统的作用。
4-20mA输出电路一、4-20mA电流环工作原理在工业现场,用一个仪表放大器来完成信号的调理并进行长线传输,会产生以下问题:1.由于传输的信号是电压信号,传输线会受到噪声的干扰;2.传输线的分布电阻会产生电压降;3.在现场如何提供仪表放大器的工作电压也是个问题。
为了解决上述问题和避开相关噪声的影响,我们用电流来传输信号,因为电流对噪声并不敏感。
4~20mA的电流环便是用4mA表示零信号,用20mA表示信号的满刻度,而低于4mA 高于20mA的信号用于各种故障的报警。
对4-20mA电路的输出要求1)输出电流与输入电压成正比;2)输出电流为恒流源。
即当负载电阻在规定范围内变化时,输出电流保持不变;3)输出电流对电源变化、环境温度等的变化不敏感。
一般地,还要附加一个要求,即输入电压与输出电流共地。
二、4-20mA电路1. 93由图可见,电路中的主要元件为一运算放大器LM324和三极管BG9013及其他辅助元件构成,V0为偏置电压,Vin为输入电压即待转换电压,R 为负载电阻。
其中运算放大器起比较器作用,将正相端电压V+输入信号与反相端电压V-进行比较,经运算放大器放大后再经三极管放大,BG9013的射级电流Ie作用在电位器Rw上。
由运放性质可知:V-= Ie•Rw= (1+ k)Ib•Rw (k为BG9013的放大倍数),流经负荷R 的电流Io即BG9013的集电极电流等于k•Ib。
令R1=R2,则有V+= V- = V0+Vm= (1+k)Ib•Rw= (1+1/k)Io•Rw,其中k>1所以Io≈ (Vo+Vin)/Rw其中:Io 为输出到负载的电流Vo 为偏置电压Vin为输入电压即待转换电压Rw为反馈电阻即三极管射极电流Ie流经的电位器或电阻由上述分析可见,输出电流Io的大小与输入电压Vin成正比(偏置电压和反馈电阻Rw为定值时),而与负载电阻R的大小无关,说明电路良好的恒流性能。
在改变Vo的大小,可在Vin=0时改变Io的输出。
100ma电流运放转电压电流运放是一种常用的电子器件,它可以将电流信号转换为相应的电压信号。
在很多电子电路中,我们需要将电流信号转换为电压信号,以便进行后续的处理或测量。
而100mA电流运放则是指其最大输入电流为100mA。
我们来了解一下电流运放的基本原理。
电流运放的输入端有一个非常低的输入阻抗,可以接受外部电路输入的电流信号。
当输入的电流信号通过电流运放时,电流运放会将其转换为相应的电压信号输出。
这个转换过程是通过电流运放内部的电流-电压转换电路实现的。
100mA电流运放是指其输入端可以接受的最大电流为100mA。
这意味着,如果输入的电流信号超过了100mA,电流运放将无法正常工作,甚至可能损坏。
因此,在使用100mA电流运放时,我们需要确保输入的电流信号不超过其最大输入电流。
在实际应用中,100mA电流运放可以用于很多场合。
例如,我们可以将100mA电流运放应用于电流测量电路中。
当需要测量一个电路中的电流时,我们可以将该电流通过电流传感器转换为电压信号,然后再通过100mA电流运放进行放大和处理,最终得到我们需要的电压信号。
除了电流测量之外,100mA电流运放还可以用于电流控制电路中。
例如,在一些电子设备中,我们需要对电路中的电流进行控制,以满足设备的工作要求。
我们可以通过100mA电流运放来实现电流的精确控制。
通过调节电流运放的放大倍数,我们可以控制输出电压的大小,从而实现对电路中电流的控制。
需要注意的是,在使用100mA电流运放时,我们需要注意使用电源的电压和电流。
因为电流运放是一种放大器,它需要外部电源来工作。
如果电源电压过高或过低,都会影响电流运放的工作效果。
此外,电流运放的输入和输出端都需要接地,以确保正常工作。
总结一下,100mA电流运放是一种将电流信号转换为电压信号的常用器件。
它可以应用于电流测量和电流控制等电子电路中。
在使用100mA电流运放时,我们需要注意其最大输入电流和电源的匹配,以确保其正常工作。
4-20mA信号转换至0-5V电压输出应用电路选编4~20mA电流环工作原理:在工业现场,用一个仪表放大器来完成信号的调理并进行长线传输,会产生以下问题:第一,由于传输的信号是电压信号,传输线会受到噪声的干扰;第二,传输线的分布电阻会产生电压降;第三,在现场如何提供仪表放大器的工作电压也是个问题。
为了解决上述问题和避开相关噪声的影响,我们用电流来传输信号,因为电流对噪声并不敏感。
4~20mA的电流环便是用4mA表示零信号,用20mA表示信号的满刻度,而低于4mA高于20mA的信号用于各种故障的报警。
4~20mA电流环有两种类型:二线制和三线制。
当监控系统需要通过长线驱动现场的驱动器件如阀门等时,一般采用三线制变送器,这里XTR位于监控的系统端,由系统直接向XTR供电,供电电源是二根电流传输线以外的第三根线。
二线系统是XTR和传感器位于现场端,由于现场供电问题的存在,一般是接收端利用4~20mA的电流环向远端的XTR 供电,通过4~20mA来反映信号的大小。
以下是本人在网上收集的4-20mA转换成0-5V的电路:输入4mA,输出电压=0.(实际输出是-125.3uV,在10 位A/D 输入中需要4.89mV 才会显示1个字,所以-125.3uV 不会造成零点显示误差)。
输入16+4=20mA,输出电压=5V。
—————————————— ——————————————输入4mA,输出电压=0.(实际上,在10位A/D中需要4.89mV才能造成显示一个字,所以,这里的非真正的“0”输出-905.6uV不会造成零点显示误差)。
输入16+4=20mA,输出电压=5V。
—————————————— ——————————————输入4mA,输出电压=0.(实际上,在10位A/D中需要4.89mV才能造成显示一个字,所以,这里的非真正的“0”输出-666.6uV不会造成零点显示误差)。
输入16+4=20mA,输出电压=5V。
0~20ma转0~10v 并联电阻0~20mA转0~10V并联电阻是一种常见的信号转换电路,用于将4-20mA的电流信号转换为2-10V的电压信号。
在工业自动化控制系统中,电流信号更容易传输和抗干扰能力更强,而电压信号更易处理和解算。
因此,0~20mA转0~10V并联电阻常用于工业领域的信号转换。
在了解电路原理之前,我们先了解一下什么是并联电阻。
并联电阻是指将多个电阻器按照平行的方式连接在一起,电流可同时通过每个电阻器,且各个电阻器间的电压相等。
通过合理选择电阻值和数量,可以实现对电流和电压的精确控制。
0~20mA转0~10V并联电阻的核心原理是利用欧姆定律和电流分配定律。
其中欧姆定律指出电流和电压成正比,电流分配定律指出并联电路中,各个分支的电流与电阻值成反比。
根据这两个定律,我们可以通过设置合适的电阻值,实现电流信号到电压信号的转换。
0~20mA转0~10V并联电阻电路的主要构成部分包括两个电阻器和一个电压源。
其中一个电阻器用于限制输入电流的范围,另一个电阻器用于将输入电流转换为对应的输出电压。
这两个电阻器是并联连接的,即它们的一个端子连接在一起,另一个端子分别连接到电流源和地。
为了实现0~20mA到0~10V的电流到电压转换,我们需要选择合适的电阻值。
根据欧姆定律,电阻值越大,电压也就越大。
因此,我们可以选择两个不同阻值的电阻器来实现转换的范围。
通常,第一个电阻器的阻值选择为250欧姆,用于限制输入电流的范围为0~20mA。
第二个电阻器的阻值选择为500欧姆,用于将输入电流转换为0~10V的输出电压。
在实际电路中,为了保证精确的转换,还需要考虑引入的误差。
常见的误差来源包括电阻器的阻值容差、电压源的精度和电流源的精度等。
为了减小误差,可以采用精密电阻器和高精度电压源。
总结起来,0~20mA转0~10V并联电阻是一种常见的信号转换电路,可以将4-20mA的电流信号转换为2-10V的电压信号。
4~20mA电流变送器的工业控制应用4~20mA电流环工作原理在工业现场,用一个仪表放大器来完成信号的调理并进行长线传输,会产生以下问题:第一,由于传输的信号是电压信号,传输信号就会受到噪声的干扰而不纯洁;第二,传输线的电阻会产生电压降,那么接收端的信号就会产生误差;第三,在现场如何提供仪表放大器的不同的工作电压也是个问题。
为了解决上述问题和避开相关噪声的影响,我们用电流来传输信号,因为电流对噪声并不敏感。
4~20mA的电流环便是用4mA表示零信号,用20mA表示信号的满刻度,而低于4mA高于20mA的信号用于各种故障的报警。
4~20mA电流环有两种类型:二线制和三线制。
当监控系统需要通过长线驱动现场的驱动器件如阀门等时,一般采用三线制变送器,这里XTR位于监控的系统端,由系统直接向XTR供电,供电电源是二根电流传输线以外的第三根线。
二线系统是XTR和传感器位于现场端,由于现场供电问题的存在,一般是接收端利用4~20mA的电流环向远端的XTR供电,通过4~20mA来反映信号的大小。
4~20mA产品的典型应用是传感和测量应用,在工业现场有许多种类的传感器可以被转换成4~20mA的电流信号,TI 拥有一些很方便的用于RTD和电桥的变送器芯片。
由于TI的变送器芯片含有通用的功能电路比如电压激励源、电流激励流、稳压电路、仪表放大器等,所以可以很方便地把许多传感器的信号转化为4~20mA的信号。
4~20mA的校正传统的4~20mA校正,要求特殊的夹具固定,需要特别的激光或手动电阻器调整,而调整是相互影响的,需要一个测试、调整,再测试、再调整的过程,调整次数和范围有限。
电子器件和传感器调整起来不够方便。
现代的数字化4~20mA校正,它允许电子器件和传感器在封装之后进行调整;可通过计算机计算出校正系数来简化数值调整;可以有无限的调整次数,并且有很好的分辨率和较宽的调整范围;调整过程中不存在相互影响;电子器件和传感器可以很方便地调整。
最简单的4-20mA输入/5V输出的I/V转换电路在与电流输出的传感器接口的时候,为了把传感器(变送器)输出的1-10mA或者4-20mA电流信号转换成为电压信号,往往都会在后级电路的最前端配置一个I/V转换电路,图1就是这种电路最简单的应用示意图。
仅仅使用一只I/V转换取样电阻,就可以把输入电流转换成为信号电压,其取样电阻可以按照Vin/I=R 求出,Vin是单片机需要的满度A/D信号电压,I是输入的最大信号电流。
这种电路虽然简单,但是却不实用,首先,其实际意义是零点信号的时候,会有一个零点电流流过取样电阻,如果按照4~20mA输入电流转换到最大5V电压来分析,零点的时候恰好就是1V,这个1V在单片机资源足够的时候,可以由单片机软件去减掉它。
可是这样一来。
其有用电压就会剩下5-1=4V而不是5V 了。
由于单片机的A/D最大输入电压就是单片机的供电电压,这个电压通常就是5V,因此,处理这种简单的输入转换电路时比较麻烦。
为了达到A/D转换的位数,就会导致芯片成本增加。
LM324组成的4-20mA输入/5V输出的I/V转换电路解决上面问题的简单方法是在单片机输入之前配置一个由运算放大器组成的缓冲处理电路,见图2。
增加这级运算放大器可以起到对零点的处理会变得更加方便,无需耗用单片机的内部资源,尤其单片机是采用A/D接口来接受这种零点信号不为零电压的输入时,可以保证A/D转换位数的资源能够全部应用于有用信号上。
以4~20mA 例,图B中的RA0是电流取样电阻,其值的大小主要受传感变送器供电电压的制约,当前级采用24V供电时,RA0经常会使用500Ω的阻值,对应20mA 的时候,转换电压为10V,如果仅仅需要最大转换电压为5V,可以取RA0=250Ω,这时候,传感变送器的供电只要12V就够用了。
因为即使传送距离达到1000米,RA0最多也就几百Ω而已。
同时,线路输入与主电路的隔离作用,尤其是主电路为单片机系统的时候,这个隔离级还可以起到保护单片机系统的作用。
#1楼主:4-20毫安电流转1-5V电压转换电路贴子发表于:2008/8/14 21:35:04最简单的4-20mA输入/5V输出的I/V转换电路在与电流输出的传感器接口的时候,为了把传感器(变送器)输出的1-10mA或者4-20mA电流信号转换成为电压信号,往往都会在后级电路的最前端配置一个I/V转换电路,图1就是这种电路最简单的应用示意图。
仅仅使用一只I/V转换取样电阻,就可以把输入电流转换成为信号电压,其取样电阻可以按照Vin/I=R求出,Vin是单片机需要的满度A/D信号电压,I是输入的最大信号电流。
这种电路虽然简单,但是却不实用,首先,其实际意义是零点信号的时候,会有一个零点电流流过取样电阻,如果按照4~20mA输入电流转换到最大5V电压来分析,零点的时候恰好就是1V,这个1V在单片机资源足够的时候,可以由单片机软件去减掉它。
可是这样一来。
其有用电压就会剩下5-1=4V而不是5V了。
由于单片机的A/D最大输入电压就是单片机的供电电压,这个电压通常就是5V,因此,处理这种简单的输入转换电路时比较麻烦。
为了达到A/D转换的位数,就会导致芯片成本增加。
LM324组成的4-20mA输入/5V输出的I/V转换电路解决上面问题的简单方法是在单片机输入之前配置一个由运算放大器组成的缓冲处理电路,见图2。
增加这级运算放大器可以起到对零点的处理会变得更加方便,无需耗用单片机的内部资源,尤其单片机是采用A/D 接口来接受这种零点信号不为零电压的输入时,可以保证A/D转换位数的资源能够全部应用于有用信号上。
以4~20mA 例,图B中的RA0是电流取样电阻,其值的大小主要受传感变送器供电电压的制约,当前级采用24V供电时,RA0经常会使用500Ω的阻值,对应20mA 的时候,转换电压为10V,如果仅仅需要最大转换电压为5V,可以取RA0=250Ω,这时候,传感变送器的供电只要12V就够用了。
因为即使传送距离达到1000米,RA0最多也就几百Ω而已。
产品简介:
在电路信号传输的过程中电压信号会随着传输距离的增加而变弱,采用电流传输可以避免信号的变弱。
本模块用于电流信号传输末端,将信号转换成电压信号供单片机检测。
电流输入支持4-20Ma、0-20mA,电压输出支持0-3.3V 0-5V 0-10V。
产品亮点:
供电电压范围宽,输出电压支持多个量程;
零点和满量程都里可以自行调节;
稳定性高,线性度好,工业级;
电流信号采样电阻采用高精度色环电阻,精度高,温漂小,功率大。
使用说明:
1. 模块按定义接线,供电电压7-36V(若输出要到10V,供电电压必须大于12V)
2. 上电后,D2灯应当亮,否则请检查线连接。
板子带反接保护,反接不烧。
3. 当电流输入为最小值(0mA或4mA)时,调整ZERO电位器,使VOUT输出为最小值(0.0V或其他电压)
4. 当电流输入为最大值(20mA)时,调节SPAN电位器,使VOUT输出为最大值(3.3V或5V或10V,当输入是4-20ma时,输出最小可以到2.5V)。
根据您的需求,通过跳线帽选择相应的量程:
4--20ma:
0--2.5V范围: J1 1、2脚短接,3、4脚短接
0--3.3V范围: J1 1、2脚断开,3、4脚断开
0--5.0V范围: J1 1、2脚短接,3、4脚短接
0--10.0V范围:J1 1、2脚短接,3、4脚断开
0--20ma:
0--3.3V范围: J1 1、2脚短接,3、4脚短接
0--5.0V范围: J1 1、2脚短接,3、4脚短接
0--10.0V范围:J1 1、2脚短接,3、4脚断开
产品尺寸:。
实用的4~20mA输入/0~5V输出的I/V转换电路_电路图
最简单的4-20mA输入/5V输出的I/V转换电路
在与电流输出的传感器接口的时候,为了把传感器(变送器)输出的1-10mA或者4-20mA 电流信号转换成为电压信号,往往都会在后级电路的最前端配置一个I/V转换电路,图1就是这种电路最简单的应用示意图。
仅仅使用一只I/V转换取样电阻,就可以把输入电流转换成为信号电压,其取样电阻可以按照Vin/I=R求出,Vin是单片机需要的满度A/D信号电压,I是输入的最大信号电流。
这种电路虽然简单,但是却不实用,首先,其实际意义是零点信号的时候,会有一个零点电流流过取样电阻,如果按照4~20mA输入电流转换到最大5V电压来分析,零点的时候恰好就是1V,这个1V在单片机资源足够的时候,可以由单片机软件去减掉它。
可是这样一来。
其有用电压就会剩下5-1=4V而不是5V了。
由于单片机的A/D最大输入电压就是单片机的供电电压,这个电压通常就是5V,因此,处理这种简单的输入转换电路时比较麻烦。
为了达到A/D转换的位数,就会导致芯片成本增加。
LM324组成的4-20mA输入/5V输出的I/V转换电路
解决上面问题的简单方法是在单片机输入之前配置一个由运算放大器组成的缓冲处理电路,见图2。
增加这级运算放大器可以起到对零点的处理会变得更加方便,无需耗用单片机的内部资源,尤其单片机是采用A/D接口来接受这种零点信号不为零电压的输入时,可以保证A/D转换位数的资源能够全部应用于有用信号上。
以4~20mA 例,图B中的RA0是电流取样电阻,其值的大小主要受传感变送器供电电压的制约,当前级采用24V供电时,RA0经常会使用500Ω的阻值,对应20mA 的时候,转换电压为10V,如果仅仅需要最大转换电压为5V,可以取RA0=250Ω,这时候,传感变送器的供电只要12V就够用了。
因为即使传送距离达到1000米,RA0最多也就几百Ω而已。
同时,线路输入与主电路的隔离作用,尤其是主电路为单片机系统的时候,这个隔离级还可以起到保护单片机系统的作用。
图2 采用的是廉价运放LM324,其对零点的处理是在反相输入端上加入一个调整电压,其大小恰好为输入4mA时在RAO上的压降。
有了运算放大器,还使得RAO的取值可以更加小,因为这时信号电压不够大的部分可以通过配置运放的放大倍数来补足。
这样,就可以真正把4~20mA电流转换成为0~5V电压了。
使用运算放大器也会带来一些麻烦,尤其在注重低成本的时候,选择的运放往往是最最廉价的,运放的失调与漂移,以及因为运放的供电与单片机电路供电的稳定性,电源电压是否可以保证足够稳定,运放的输入阻抗是否对信号有分流影响,以及运放是否在整个信号范围内放大特性平坦,如此等等,造成这种廉价电路的实际效果不如人意。
而最大的不如人意之处还是在零点抵消电路上,随着信号电流的变化,运放的反相端的电压总是会与零点调整电压发生矛盾,就是这个零点电压也在随着运放输出的变化而变化,只不过由于有了信号有用电压的存在,而在结果中不容易区分而已。
这种现象最容易造成非线性加大。
虽然可以在单片机里采用软件校正
来纠正,但是,就具体措施而言,这样做需要增加编程人员不少的工作量,而且需要多点采集数据来应对。
OP07组成的4-20mA输入/5V输出的I/V转换电路
图3电路是一种被推荐使用的较好线路,首先,对运放的供电采用了由DIP封装的TL431组成的高精度稳压电路,这种TL431采用DIP8封装,耗散功率达到1W,更改供电电压只需更换分压电阻就可以轻易办到。
其次,运算放大器选择使用的是高精度低失调的OP07,其参数指标大大优于普通廉价运放。
最为关键的是在对零点信号的处理上,可以保证输入4mA的时候,运放ICC的输出电压等于零。
分析一下这部分电路的工作原理:运放ICD的同相输入端电压由经过TIA31稳压后的负电源提供,它通过R15与R14的分压,取R14上的电压与R10 上在4mA 时的电压一样,然后,经过运放的缓冲,从运放输出接有一只PNP型三极管用于扩展输出能力,实际这是一个典型的运算放大器稳压电源,其输出将跟随着运放同相端的电压,可以从接近零的电压起调。
R10就是4~20mA的I/V转换电阻,按照上述道理,由于运放的作用,这个电阻的最小取值可以很小,电阻越小越能减轻前方传感变送器的供电要求。
正是考虑到传感变送器属于一种远传信号的使用环境,为了防止引入干扰信号,加有输入滤波电容器C0和两只1N4148二极管对输入信号可能出现的危险电
压进行保护。
例如:
取R10=25Ω,4mA时,其压降=0.1V,把ICD的同相端输入电压配置为负的0.1V,这样,输入信号的0.1V与这个I/V配置的负0.1V恰好互相抵消,ICC 输出将是零电压。
随着输入电流的增大,如果输入电流是5mA,I/V转换电压将是0.125V……如果输入电流是20mA,I/V取样电压就是500mV。
这样,我们可以把这个电压放大10倍得到5V满度输出,或者放大20倍得到10V满度输出。
为了方便工程上的工作方便,减少同时手续,对R10、R15、R14、R01、R02等重要电阻,必须选择其精度0.1%的E96分度的金属膜电阻,其温度漂移参数最好能够不大于50ppm。
许多传感器变送器输入标注着4~20mA的输出指标,可是,在实际上,这些参数都是不够精确的,包括一些进口传感交送器,实际测试零点电流有误差高达18%的,即标称的4mA变成了3.3mA或4.7mA,这时候,就需要进行零点调整。
在零点调整的时候,需要注意,R10与R14原来是1:4的关系,是因为它们流过的电流恰好是4:l的关系。
因此,如果需要调整零点电压的时候,千万不要再动R10与R14,而应该在零点调整时更改R15,在满度调整时更改 R01。
在工程上,人们往往会采取比较快捷的工程应用方法而不是理论推导来完成
化生产的品种里头去选择搭配,而且,在调试时,也不可能按照理论计算的数值去测量,尤其当计算结果带着超过4位小数以上时.对所使用的仪表就会要求很高,成为"鸡蛋里头挑骨头了"。
我们可以通过一个实际例子来说明这种电路的调试过程。
首先,必须把实际的传感交送器拿到手并且进行实际的测量,例如测量到的数据为:零点电流=4.25mA,满度电流=20.5mA。
然后,根据最大输入电流的实际数值来求出最大输入电压:20.5mA时R10上的电压就是:20.5×25=512.5mV,其次求出零点电压:4.25×25=106.25mV。
完成上面的简单计算后,接着,对电路的参数进行调整,零点的时候调整R15,满度的时候调整R01。
按照说明提到过得,ICD的同相输入电压等于零点时R10上的电压,可以求出:R15=(2500-106.25)/(106.25/100)=2.25KΩ。
R01=[5000/(512.5-106.25)-1]×1=11.3l等于(5000是满度输出电压,512.5是满度输入电压,106.25是零点输入电压,-1是因为同相放大器会自然+1,-1是因为R02=1KΩ)。
验算一下:
零点电流输入时,输入电压为:4.25×25=(2.5×100)/(225+100),结果:106.25=106.4,误差:0.0014。
满度电流输入时的满度输出电压:(20.5×25-106.4)×(1 1.31/1+1)=4999.09,误差:0.00018。
上面的计算和对电阻的取值都省略了小数点后多于3位的数字,因为实用中已经不够现实了。
就目前的数值而言,在实际应用中也可以满足许多较高精度测量的要求了。
提示:
1.运算放大器OP-07本身在零电压输而输出不为零时,可以在其1PN8P上连
接微调电位器进行静态零点调整,也可以在零点电流输入时一并处理。
2.由ICA和ICB组成的高精度稳压电源,其输出电压应该大于主电路要求的
满度输入电压至少3V以上,这时候,不能使用T902小功率封装的TL431来替换本电路DIP8封装的TL431。
3.当需要本电路处理其他非4~20mA输入的信号时,可以去掉R10,这时候,
利用OP-07的优良性能和供电电源的高精度,作为通用放大器来使用。
也是非常理想的。