第五届日本算术奥林匹克竞赛预赛试题
- 格式:docx
- 大小:278.92 KB
- 文档页数:13
最大与最小知识要点在日常生活和工作中,经常会遇到这样一类问题:怎样安排时间最省、怎样行走路线最短、怎样管理费用最低、怎样设计面积最大、怎样合作效率最高、怎样加工利用率最大等等,它们都可以归结为在一定条件下的最大值或最小值方面的数学问题。
最大和最小都是在某一固定范围內比较的结果。
固定的范围就是一个定值,抓住这个“定值”就抓住了解题的关键。
解决极值问题的策略,常常因题而异,归纳起来主要有以下四个“突破口”:①从极端情况入手;②用枚举比较入手;③由分析推理入手;④凭构造方程入手。
最小1.(2008年4月13日第六届小学“希望杯”全国数学邀请赛五年级第2试第4题)有一排椅子有27个座位,为了使后去的人随意坐在哪个位置都有人与他相邻,则至少要先坐_______人。
2.圆桌周围恰好有12把椅子,现在已经有一些人在桌边就坐。
当再有一人入座时,就必须和已就坐的某人相邻。
问:已就坐的最少有多少人?3.阶梯教室座位有10排,每排有16个座位,当有150个人就座时,某些排坐着的人数就一样多。
我们希望人数一样的排数尽可能少,这样的排数至少有多少排?4.(2007年台湾第十一届小学数学世界邀请赛个人赛第6题)商店里销售的铅笔有两种包装,五支包装的每包售价6元,七支包装的每包售价7元。
某校至少要购买铅笔111支,请问至少要花费_______元。
5.若干名家长(爸爸或妈妈,他们都不是老师)和老师陪同一些小学生参加某次数学竞赛,已知家长和老师共有22人,家长比老师多,妈妈比爸爸多,女老师比妈妈多2人,至少有1名男老师,那么在这22人中,爸爸有多少人?6.(2007年“我爱数学夏令营”综合测试题第7题)一个小公司有5个职工,月平均工资为2700元。
已知最高工资是最低工资的2倍,那么最高月工资最少为_______元。
7.(1999年第八届日本小学数学奥林匹克大赛决赛第7题)有一批货物,它们的总重量是19500千克,不知道每一件货物的重量,但没有一件货物的重量超过350千克。
日本算数奥林匹克第五届BEE 预赛2013年日本算数奥林匹克第五届BEE 预赛2013年6月16日13:3014:30-【问题1】四个互不相同的数字今年是2013年,2、0、1、3四个数字互不相同。
那么,在今年之前,距离今年最近的一个四个数字互不相同的年是哪一年? 【分析与解】2012的千位与个位都是2; 2011的十位与个位都是1; 2010的百位与个位都是0; 200⨯的百位与十位都是0; 199⨯的百位与十位都是9; 1989的百位与个位都是9; 1988的十位与个位都是8;故在今年之前,距离今年最近的一个四个数字互不相同的年是1987年。
日本算数奥林匹克第五届BEE 预赛有A 、B 、C 、D 四名儿童,他们的年龄互不相同。
A 和B 的年龄的乘积是24,C 和D 的年龄的乘积是12,B 和D 的年龄之和是10。
请分别求出A 、B 、C 、D 的年龄。
【分析与解】将24拆成两个数相乘:241242123846=⨯=⨯=⨯=⨯; 将12拆成两个数相乘:121122634=⨯=⨯=⨯;“24的一个因数”+“12的一个因数”10=的情况有3种:4610+=、6410+=、8210+=; 当4B =时,2446A =÷=,1046D =-=,A 与D 相等,不符题意; 当6B =时,2464A =÷=,1064D =-=,A 与D 相等,不符题意; 当8B =时,2483A =÷=,1082D =-=,1226C =÷=,符合题意; 综上所述,答案如下:ABC D3岁8岁 6岁2岁日本算数奥林匹克第五届BEE 预赛请将写有数字1、2、3、4、5的卡片分别放入虚线框内,使得这句话成为正确的结论。
日月日的一个星期后是月54321【分析与解】设A 月BC 日的一个星期后是D 月E 日; 若1B =,则一个星期后还是同一个月;若3B =,则1C =,一个星期后的日期E 是7; 故2B =。
第五届数学竞赛初赛试题及答案(满分100分)一、计算下面各题,并写出简要的运算过程(12分)2.1991×199219921992-1992+199119911991二、填空题(48分)1.有A、B两组数,每组数都按一定的规律排列着,并且每组都各有25个数。
A组数中前几个是这样排列的1,6,11,16,21……;B组数中最后几个是这样排列的……,105,110,115,120,125。
那么,A、B这两组数中所有数的和是__(3分)2.某沿海城市管辖7个县,这7个县的位置如图1。
现用红、黑、绿、蓝、紫五种颜色给图1染色,要求任意相邻的两个县染不同颜色。
共有__种不同的染色方法。
(5分)3.如图2的数阵是由77个偶数排成的,其中20、22、24、36、38、40这六个数由一个平行四边形围住,它们的和是180。
把这个平行四边形沿上下、左右平移后,又围住了右边数阵中的另外六个数,如果这六个数的和是660,那么,它们当中位于平行四边形左上角的那个数是__。
(4分)4.在左边的乘法算式中,我、学、数、乐各代表四个不相同的数字。
如果“乐”代表“9”,那么,“我”代表__,“数”代表__,“学”代表__。
(4分)5.1993年一月份有4个星期四、5个星期五,1993年1月4日是星期__。
6.一个小数去掉小数部分后得到一个整数,这个整数加上原来的小数与4的乘积,得27.6。
原来这个小数是__。
(5分)7.李志明、张斌、王大为三个同学毕业后选择了不同的职业,三人中有一个当了记者。
一次有人问起他们的职业,李志明说:“我是记者。
”张斌说:“我不是记者。
”王大为说:“李志明说了假话。
”如果他们三人的话中只有一句是真的,那么__是记者。
(3分)9.在1992后面补上三个数字,组成一个七位数,使它分别能被2、3、5、11整数,这个七位数最小是__。
(5分)的个位数字1992个“8”是__,十位数字是__,百位数字是__。
2005年小学数学奥林匹克预赛试卷(A)2005年3月20日上午8:30—9:301.计算:8-1.2×1.5+742÷(2.544÷2.4)=______。
2.计算:=______。
3.已知,那么x=______。
4.设表示,计算:______。
5.图中大长方形分别由面积为12平方厘米、24平方厘米、36平方厘米、48平方厘米的四个小长方形组成,那么图中的阴影面积为______。
6.按英国人的记法,2005年1月8日记作1-8-2005;按美国人的记法,2005年1月8日记作8-1-2005。
那么,2005年全年中共有______天会让英、美两国人在记法上产生误会。
7.某班在一次数学测验中,平均成绩是78分,男、女各自平均成绩是75.5与81分。
这个班男女生人数之比是______。
8.将+、-、×、÷四个运算符号分别填在下面算式的方格中,每个运算符号都用上,每一格内添一个符号,使这四个算式的答数之和尽可能的大,那么这四个数之和是______。
,,,9.有四个正方体,棱长分别是1,1,2,3。
把它们的表面粘在一起,所得的立体图形的表面积可能取得的最小值是______。
10.已知两个不同的单位分数的和是,且这两个单位分数的分母都是四位数,那么这两个单位分数的分母的差最小值是______。
11.用同样大小的正方形瓷砖铺一个正方形地面,两条对角线铺黑色(如图所示),其他地方铺成白色的瓷砖。
如果铺满这个地面共用了97块黑色的瓷砖,那么白色的瓷砖用了______块。
12.A、B两人以相同的速度先后从车站出发,10点钟时A与车站的距离是B与车站距离的5倍,10点24分时B正好位于A与车站距离的中点,那么A是在______时______分出发的。
1、706.22、50.53、4、25、56、1327、6∶58、59、72 10、1169 11、2304 12、9点20分1. 【解】原式=8-1.8+742÷1.06=6.2+700=706.22. 【解】分母=10=100分子=(2-1)+(4-3)+…+(100-99)=1+2+3+4+…+99+100=5050原式=5050÷100=50.53.【解】1+=,=-1=。
全等三角形的提高拓展训练知识点睛全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等. 寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边. (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角. (3)有公共边的,公共边常是对应边. (4)有公共角的,公共角常是对应角. (5)有对顶角的,对顶角常是对应角.(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角).要想正确地表示两个三角形全等,找出对应的元素是关键. 全等三角形的判定方法:(1) 边角边定理(SAS ):两边和它们的夹角对应相等的两个三角形全等. (2) 角边角定理(ASA ):两角和它们的夹边对应相等的两个三角形全等. (3) 边边边定理(SSS ):三边对应相等的两个三角形全等.(4) 角角边定理(AAS ):两个角和其中一个角的对边对应相等的两个三角形全等. (5) 斜边、直角边定理(HL ):斜边和一条直角边对应相等的两个直角三角形全等. 全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线.拓展关键点:能通过判定两个三角形全等进而证明两条线段间的位置关系和大小关系.而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础.例题精讲板块一、截长补短【例1】 (06年北京中考题)已知ABC ∆中,60A ∠=,BD 、CE 分别平分ABC ∠和.ACB ∠,BD 、CE 交于点O ,试判断BE 、CD 、BC 的数量关系,并加以证明.DOECB AD【例2】 如图,点M 为正三角形ABD 的边AB 所在直线上的任意一点(点B 除外),作60DMN ∠=︒,射线MN 与DBA ∠外角的平分线交于点N ,DM 与MN 有怎样的数量关系?【变式拓展训练】如图,点M 为正方形ABCD 的边AB 上任意一点,MN DM ⊥且与ABC ∠外角的平分线交于点N ,MD 与MN 有怎样的数量关系?【例3】 已知:如图,ABCD 是正方形,∠F AD =∠F AE . 求证:BE +DF =AE .【例4】 以ABC ∆的AB 、AC 为边向三角形外作等边ABD ∆、ACE ∆,连结CD 、BE 相交于点O .求证:OA 平分DOE ∠.NC D EB M A F E DCB A O ED CA【例5】 (北京市、天津市数学竞赛试题)如图所示,ABC ∆是边长为1的正三角形,BDC∆是顶角为120︒的等腰三角形,以D 为顶点作一个60︒的MDN ∠,点M 、N 分别在AB 、AC 上,求AMN ∆的周长.【例6】 五边形ABCDE 中,AB =AE ,BC +DE =CD ,∠ABC +∠AED =180°, 求证:AD 平分∠CDE板块二、全等与角度【例7】如图,在ABC ∆中,60BAC ∠=︒,AD 是BAC ∠的平分线,且AC AB BD =+,求ABC ∠的度数.D CB ANM D CB AC EDBA【例8】在等腰ABC ∆中,AB AC =,顶角20A ∠=︒,在边AB 上取点D ,使AD BC =,求BDC ∠.【例9】(“勤奋杯”数学邀请赛试题) 如图所示,在ABC ∆中,AC BC =,20C ∠=︒,又M 在AC 上,N 在BC 上,且满足50BAN ∠=︒,60ABM ∠=︒,求NMB ∠.【例10】 在四边形ABCD 中,已知AB AC =,60ABD ︒∠=,76ADB ︒∠=,28BDC ︒∠=,求DBC ∠的度数.【例11】 (日本算术奥林匹克试题) 如图所示,在四边形ABCD 中,12DAC ︒∠=,36CAB ︒∠=,48ABD ︒∠=,24DBC ︒∠=,求ACD ∠的度数.CDBADCBAANMCBA【例12】 (河南省数学竞赛试题) 在正ABC ∆内取一点D ,使DA DB =,在ABC ∆外取一点E ,使DBE DBC ∠=∠,且BE BA =,求BED ∠.【例13】 (北京市数学竞赛试题) 如图所示,在ABC ∆中,44BAC BCA ︒∠=∠=,M 为ABC∆内一点,使得30MCA ︒∠=,16MAC ︒∠=,求BMC ∠的度数.M CA B全等三角形证明经典50题(含答案)1.已知:AB=4,AC=2,D是BC中点,AD是整数,求AD延长AD到E,使DE=AD,则三角形ADC全等于三角形EBD即BE=AC=2 在三角形ABE中,AB-BE<AE<AB+BE即:10-2<2AD<10+2 4<AD<6又AD是整数,则AD=52.已知:D是AB中点,∠ACB=90°,求证:12 CD ABADB C3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2证明:连接BF 和EF 。
2005奥林匹克试题答案2005年奥林匹克数学竞赛试题解答问题一:题目描述:给定一个正整数n,将其各位数字重新排列可以得到一个新的数。
证明:对于任意的n,都存在一种排列方式,使得排列后的数是n的倍数。
解答:首先,我们设n的各位数字为a1, a2, ..., ak,且a1 * a2 * ... * ak = n。
我们需要证明存在一种排列方式,使得排列后的数是n的倍数。
考虑n的倍数的性质,一个数是n的倍数当且仅当它与n的任意一个非零因子(除了1和本身)的余数都为0。
因此,我们需要证明存在一种排列方式,使得排列后的数与n的每个非零因子的余数都为0。
我们可以通过构造法来证明这一点。
首先,我们将n的每个因子(除了1和n本身)对应的数字串起来,得到一个新的数字序列。
然后,我们将这个新序列与n的原始数字序列进行比较,如果新序列的每一位都小于或等于原始序列的对应位,那么我们就可以通过将新序列的数字按照原始序列的顺序排列,得到一个新的数,这个新的数就是n的倍数。
如果不存在这样的排列方式,那么至少存在一个因子,其对应的数字序列在某些位上大于原始序列的对应位。
这时,我们可以将这个因子对应的数字序列中大于原始序列对应位的数字与原始序列中的数字交换,然后再次进行比较。
通过有限次的交换,我们总能找到一种排列方式,使得新序列的每一位都不大于原始序列的对应位,从而证明了存在一种排列方式,使得排列后的数是n的倍数。
问题二:题目描述:给定一个正整数序列a1, a2, ..., an,其中每个数都是1或-1。
证明:序列中1的个数减去-1的个数是偶数。
解答:我们可以通过数学归纳法来证明这个结论。
首先,当序列中只有一个数时,显然1的个数减去-1的个数是0,是一个偶数。
假设当序列中有k个数时,结论成立,即1的个数减去-1的个数是偶数。
现在考虑序列中有k+1个数的情况。
我们可以从序列中去掉一个数,根据归纳假设,剩下的k个数中1的个数减去-1的个数是偶数。
如右图,长方体共有六个面(每个面都是长方形),八个顶点,十二条棱.c b aHGFED CBA①在六个面中,两个对面是全等的,即三组对面两两全等. (叠放在一起能够完全重合的两个图形称为全等图形.) ②长方体的表面积和体积的计算公式是: 长方体的表面积:2()S ab bc ca =++长方体; 长方体的体积:V abc =长方体.③正方体是各棱相等的长方体,它是长方体的特例,它的六个面都是正方形. 如果它的棱长为a ,那么:26S a =正方体,3V a =正方体.板块一 长方体与正方体的表面积【例 1】 如右图,在一个棱长为10的立方体上截取一个长为8,宽为3,高为2的小长方体,那么新的几何体的表面积是多少?【巩固】在一个棱长为50厘米的正方体木块,在它的八个角上各挖去一个棱长为5厘米的小正方体,问剩下的立体图形的表面积是多少?【例 2】 如右图,有一个边长是5的立方体,如果它的左上方截去一个边分别是5,3,2的长方体,那么它的表面积减少了多少?【巩固】一个长、宽、高分别为21厘米、15厘米、12厘米的长方形,现从它的上面尽可能大的切下一个正方体,然后从剩余的部分再尽可能大的切下一个正方体,最后再从第二次剩余的部分尽可能大的切下一个正方体,剩下的体积是多少平方厘米?【巩固】如右图,一个正方体形状的木块,棱长l米,沿水平方向将它锯成3片,每片又锯成4长条,每条又锯成5小块,共得到大大小小的长方体60块.那么,这60块长方体表面积的和是多少平方米?【巩固】(2008年走美六年级初赛)一个表面积为256cm的长方体如图切成27个小长方体,这27个小长方体表面积的和是2cm.【例3】右图是一个表面被涂上红色的棱长为10厘米的正方体木块,如果把它沿虚线切成8个正方体,这些小正方体中没有被涂上红色的所有表面的面积和是多少平方厘米?【巩固】用10块长5厘米,宽3厘米,高7厘米的长方体积木堆成一个长方体,这个长方体的表面积最小是多少?【巩固】要把6件同样的长17、宽7、高3的长方体物品拼装成一件大的长方体,表面积最小是多少?【例4】(05年清华附培训试题)将一个表面积涂有红色的长方体分割成若干个棱长为1厘米的小正方体,其中一面都没有红色的小正方形只有3个,求原来长方体的表面积是多少平方厘米?【例5】有30个边长为1米的正方体,在地面上摆成右上图的形式,然后把露出的表面涂成红色.求被涂成红色的表面积.【例6】有一塔形几何体由若干个正方体构成,构成方式如下图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点.已知最底层正方体的棱长为2,且该塔形的表面积(含最底层正方体的底面面积)超过39,则该塔形中正方体的个数至少是________.【例7】如图,这是一个用若干块体积相同的小正方体粘成的模型.把这个模型的表面(包括底面)都涂成红色,那么,把这个模型拆开以后,有三面涂上红色的小正方体比有两面涂上红色的小正方体多______ 块.【例8】右图是456⨯⨯正方体,如果将其表面涂成红色,那么其中一面、二面、三面被涂成红色的小正方体各有多少块?【例9】一个长方体,六个面均涂有红色,沿着长边等距离切5刀,沿着宽边等距离切4刀,沿着高边等距离切n次后,要使各面上均没有红色的小方块为24块,则n的取值是________.【例10】棱长是m厘米(m为整数)的正方体的若干面涂上红色,然后将其切割成棱长是1厘米的小正方体.至少有一面红色的小正方体个数和表面没有红色的小正方体个数的比为13:12,此时m的最小值是多少?【例11】有64个边长为1厘米的同样大小的小正方体,其中34个为白色的,30个为黑色的.现将它们拼成一个444⨯⨯的大正方体,在大正方体的表面上白色部分最多可以是多少平方厘米?【例12】一个长方体的长是12厘米,宽10厘米,高也是整厘米数,在它的表面涂满颜色后,截成棱长是1厘米的小正方体,其中一面有色的小正方体有448个.求原来长方体的体积与表面积.【例13】将一个棱长为整数分米的长方体6个面都涂上红色,然后把它全部切成棱长为1分米的小正方体.在这些小正方体中,6个面都没有涂红色的有12块,仅有两个面涂红色的有28块,仅有一个面涂红色的有块,原来长方体的体积是立方分米.【例14】右图是由27块小正方体构成的3⨯3⨯3的正方体.如果将其表面涂成红色,则在角上的8个小正方体有三面是红色的,最中央的小方块则一点红色也没有,其余18块小方块中,有12个两面是红的,6个一面是红的.这样两面有红色的小方块的数量是一面有红色的小方块的两倍,三面有红色的小方块的数量是一点红色也没有的小方块的八倍.问:由多少块小正方体构成的正方体,表面涂成红色后会出现相反的情况,即一面有红色的小方块的数量是两面有红色的小方块的两倍,一点红色也没有的小方块是三面有红色的小方块的八倍?【例15】有6个相同的棱长分别是3厘米、4厘米、5厘米的长方体,把它们的某些面染上红色,使得有的长方体只有1个面是红色的,有的长方体恰有2个面是红色的,有的长方体恰有3个面是红色的,有的长方体恰有4个面是红色的,有的长方体恰有5个面是红色的,还有一个长方体6个面都是红色的,染色后把所有长方体分割成棱长为1厘米的小正方体.分割完毕后,恰有一面是红色的小正方体最多有多少个?【例16】三个完全一样的长方体,棱长总和是288厘米,每个长方体相交于一个顶点的三条棱长恰是三个连续的自然数,给这三个长方体涂色,一个涂一面,一个涂两面,一个涂三面.涂色后把三个长方体都切成棱长为1厘米的小正方体,只有一个面涂色的小正方体最少有多少个?【例17】把一个大长方体木块表面上涂满红色后,分割成若干个同样大小的小正方体,其中恰好有两个面涂上红色的小正方体恰好是100块,那么至少要把这个大长方体分割成多少个小正方体?【例18】把正方体的六个表面都划分成9个相等的正方形.用红、黄、蓝三种颜色去染这些小正方形,要求有公共边的正方形染不同的颜色,那么,用红色染的正方形最多有多少个?【巩固】把正方体的六个表面都划分成4个相等的正方形.用红色去染这些小正方形,要求有公共边的正方形不能同时染上红色,那么,用红色染的正方形最多有多少个?【例 19】 (第九届“迎春杯”决赛)把1个棱长是3厘米的正方体分割成若干个小的正方体,这些小正方体的棱长必须是整厘米数.如果这些小正方体的体积不要求都相等,那么最少可分割成 个小正方体.【巩固】(第九届“祖冲之杯”数学邀请赛)有一个长方体的盒子,从里面量长40厘米,宽12厘米,高7厘米,在这个盒子里放长5厘米,宽4厘米,高3厘米的长方体木块.最多可放 块.444433333【例 20】 有甲、乙、丙3种大小的正方体木块,棱长比是1:2:3.如果用这三种正方体拼成尽量小的一个正方体,且每种都至少用一个,则最少需要这三种正方体共多少?【例 21】 用112⨯⨯、113⨯⨯、122⨯⨯三种小木块拼成333⨯⨯的正方体.现有足够多的122⨯⨯ 的小木块,还有14块113⨯⨯的小木块,如果要拼成10个333⨯⨯的正方体,则最少需要112⨯⨯的小木块________块.【例 22】 把一个长方体形状的木料分割成3小块,使这3小块的体积相等.已知这长方体的长为15厘米,宽为12厘米,高为9厘米.分割时要求只能锯两次,如图1就是一种分割线的图.除这种分割的方法外,还可有其他不同的分割方法,请把分割线分别画在图2的各图中.图1图2【例23】(第五届走进美妙数学花园六年级初赛试题)如图,把正方体用两个与它的底面平行的平面切开,分成三个长方体.这三个长方体的表面积比是3:4:5时,用最简单的整数比表示这三个长方体的体积比:::【例24】(第三届“华杯赛”复赛)如图从长为13厘米,宽为9厘米的长方形硬纸板的四角去掉边长2厘米的正方形,然后,沿虚线折叠成长方体容器.这个容器的体积是多少立方厘米?【巩固】(第七届“祖冲之杯”数学邀请赛)现有一张长40厘米、宽20厘米的长方形铁皮,请你用它做一只深是5厘米的长方体无盖铁皮盒(焊接处及铁皮厚度不计,容积越大越好),你做出的铁皮盒容积是多少立方厘米?【例25】一个长、宽、高分别为21厘米、15厘米、12厘米的长方形.现从它的上面尽可能大的切下一个正方体,然后从剩余的部分再尽可能大的切下一个正方体,最后再从第二次剩余的部分尽可能大的切下一个正方体,剩下的体积是多少立方厘米?【例26】小明用若干个大小相同的正方体木块堆成一个几何体,这个几何体从正面看如下图左,从上面看如下图右.那么这个几何体至少用了块木块.【巩固】右图是由22个小正方体组成的立体图形,其中共有多少个大大小小的正方体?由两个小正方体组成的长方体有多少个?【例 27】 有黑白两种颜色的正方体积木,把它摆成右图所示的形状,已知相邻(有公共面)的积木颜色不同,标A 的为黑色,图中共有黑色积木多少块?A【巩固】有许多相同的立方体,每个立方体的六个面上都写着同一个数字(不同的立方体可以写相同的数字)先将写着2的立方体与写着1的立方体的三个面相邻,再将写着3的立方体写着2的立方体相邻(见左下图).依这样构成右下图所示的立方体,它的六个面上的所有数字之和是多少?33223323322323111111【例 28】 如下图,用若干块单位正方体积木堆成一个立体,小明正确地画出了这个立体的正视图、俯视图和侧视图,问:所堆的立体的体积至少是多少?正视图俯视图侧视图【例29】(第十二届全国“华罗庚金杯”少年数学邀请赛)用一些棱长是1的小正方体码放成一个立体图形,从上向下看这个立体图形,如下图a,从正面看这个立体图形,如下图b,则这个立体图形的表面积最多是________.a b【例30】(2009年“希望杯”二试六年级)用棱长为1的小立方体粘合而成的立体,从正面、侧面、上面看到的视图均如下图所示,那么粘成这个立体最多需要块小立方体.【例31】(第十届华杯赛)第9届华罗庚金杯少年数学邀请赛总决赛于2004年5月10日在潮州举行,北京的选手们用N个大小相同的小正方体木块粘贴成了一个从正面看是2004,从左面看是9的模型(如图).问:N最大为多少?N最小为多少?【例32】(日本第七届算术奥林匹克)有很多白色或黑色的棱长是1cm的小正方体.取其中的27个,拼成一个棱长是3cm的大正方体,每一面都各用2个黑色的小正方体拼成了相同的图案。
解一题一方一法一一∞2005年一鼍学数学奥耥匹竟预赛题解新2005年小学数学奥林匹克预赛试题,突出体现了基础性、发展性和挑战性,难易适中,有利于调动参与者的积极性。
本文就其中的几道题解析如下,与同行共商。
题目1图中大长方形分别由面积为12平方厘米、24平方厘米、36平方厘米、48平方厘米的四个小长方形组成,那么图中的阴影面积为。
12二//r‘4814分析此题旨在从多方面对学生进行综合性考查:①对“积的变化规律”等知识点理解的深度;②图形变换能力;⑧假设思想方法掌握情况。
解把上面的两个小长方形和下面的两个小长方形分别看作较大的长方形,由“积的变化规律”知,在长相等(不变)的情况下,下面长方形的宽是上面长方形宽的(24+48)÷(12+36)=1.5倍。
由此知,(如下图)D的面积是24+1.5=16(平方厘米)。
把D分成左、右两个小长方形,则右边的小长方形的面积是16—12=4(平方厘米1。
根据上、下两个较大长方形宽的倍数关系,假设上面较大长方形的宽是2厘米,则下面较大长方形的宽是2x1.5=3(厘米)。
由此知,阴影三角形的底(公用)是4÷2=2(厘米)。
陕西宝鸡市教师进修学校宫正升DBCA故知,图中的阴影面积为2x2+2+2x3÷2=5(平方厘米)题目2某班在一次数学测验中,平均成绩是78分,男、女各自平均成绩是75.5与81分。
这个班男女生人数之比是分析此题旨在考查学生对求平均数基本思路的掌握情况。
解求平均数的基本思路是移多补少。
由题意知,男生的平均成绩比男女生平均成绩少78—75.5=2.5(分),而女生的平均成绩比男女生平均成绩多81—78=3(分)。
将女生5人多出的分数补给男生6人,可使这6名男生的成绩达到男女生的平均成绩。
故知,这个班男女生人数之比是6:5。
题目3将+、一、X、÷四个运算符号分别填在下面算式的方格中,每个运算符号都用上,每一格内添一个符号,使这四个算式的答数之和尽可能的大,那么这四个数之和是。
1992年第1届日本算术奥林匹克竞赛预赛问题1三位数加上396后,答案也正好和所选的三位数的数字顺序相反的话,可以选出若干组这样的三位数,那么,请回答下列问题:①请写出全部的百位是4的这样的三位数(除去428).②如果选包括百位是4的任意三位数加上396,使答案的三位数和所选的三位数的数字顺序相反的话,一共可以选出几个这样的三位数?问题2和子去鱼店买了以下几种鱼,每种鱼都超过1条,正好花了3600日元,请问和子买了几条竹荚鱼?(注:100A君、B君、C君、D君等4人参加了画“○”和画“×”的考试.一道题是10分,10道题一共是100分.4人问题4如果站在游泳池中用手拍打水面,就会有水波从拍打处向四周扩散,这时水波的速度仅仅和水的深度有关,如果游泳池的水深都一样的话,那么不管是站立打水,还是边走边打水、强烈打水、轻轻打水、水波的扩散速度都将是一样的,水波真是奇怪的东西.在一个游泳池(水深都一样)里,放入一台10秒钟可以打出6个水波的机器.这台机器带有轮子,所以也可以以一定的速度前进.水波是以每10秒钟12米的速度扩散.水波的最高处叫波峰,最低处叫波谷,请问:①这台机器静止不动打水,从一个波峰到另一个相邻的波峰的距离是多少米?②太郎以每10秒钟4米的速度面向正在静止站立打水的机器走去,太郎在10秒钟内可以碰上几个波峰?(时间的计算是一个波谷正好到太郎面前开始的)③这回是机器以每10秒钟4米的速度朝着站立不动的太郎边走边打水,太郎在10秒钟内可以碰上几个波峰?(时间的计算同上)④太郎和机器分别以每10秒钟4米的速度面对面地走,太郎在10秒钟内可以碰上几个波峰?(时间的计算同上)问题5如图所示,一个多边形的每条边长是1cm,一共有12条边;空白部分是正三角形,一共有12个.请算出阴影部分的面积.1cm问题6图1是一个边长为5cm的正方体,这个正方体是由边长为1cm的小正方体组成的.A、B、C、D、E、F、G、H分别是正方体的各个顶点,P是ABCD面的对角线的交点,请回答下列问题.图1图2①如图2所示,用一个通过EPF三点的平面将正方体切开,这时被切开的面是什么形状?②通过①切开后剩下的立方体(包括E、F、G、H面)的体积是多少?③再用通过F、P、G三点的平面进一步切开②剩余的立体,然后用通过P、G、H三点的平面再进一步切开,最后用通过P、H、E三点的面进行切断,将得到一个包括E、F、G、H面的立体,请写出此立体的名称(即是何形状的立体).④这个最后剩下的立体中,包括几个完整的棱长是1cm的小正方体?问题7这里有8个人在说话,他们说的话都包括自己在内,请认真读他们说的话,然后回答问题.请问说错话的人是谁?1992年第1届日本算术奥林匹克竞赛决赛问题1一些确定的并排排列的数叫做数列,数列中的一个一个数叫做项,如果对于第一项乘上一个数可以得出第二项,第二项再乘上相同的数可以得出第三项,以此类推的话,可以得到一个数列,叫做等比数列.乘数不限于整数.例如{3、6、12、24、48、96、192}是每项乘上2得到的一个等比数列,共有7项.现在请你写出一个由100以上、1000以下的整数组成的、项尽可能多的等比数列.(注意:不包括乘以1的数列.请列出此等比数列的每一项)问题2由一个工厂制造一种产品,此产品卖一个可以得到1000日元,一共做了11个产品,但是其中有一个是次品不能卖出去.现在用一种机器来检验产品质量,此机器有以下性能:①一次可以检验任何数量的产品.②每检验一次,需要花费1000日元手续费.③检验中没发现次品,则每一个产品可卖1000日元.④如果在一次检验中发现次品的话,则此次检验的产品全部报销,一个也不能卖出去.假如用这个机器一次检验一个产品的话,有下面几种情况出现:运气非常好的情况:第一次被检产品是次品.这样剩下的10个产品都是正品,可以卖出去.检验一次需1000日元手续费,因此可以得到1000×10-1000=9000日元的收入.运气最坏的情况:检验第10个产品时,发现是次品,这样前9个产品可分别卖1000日元,但检验费每次是1000日元,则等于没有收入.下面的问题请按运气最坏的情况考虑.请问:根据一次检验的个数及顺序可以有几种检验方法,如果在运气最坏的情况下想得到最高的收入的话,采用什么样的检验方法最好?并请答出此收入是多少?问题3从图A 看出,不论哪二个相邻圈里的数的差都正好是下面圈中的数,六个圈中正好是从1到6的数,一个数在一个圈里,请按这个规则将图B 的圈中填上从1到10的数(不能有重复的数出现),最下面的圈中数字为3.如果仅仅是左右的数字互换,则算为一种答案,如图A 和图C.解答不只一种,解答栏中写出4组,但不一定都填出,有几种解答就填几种.图A图B图C问题4图1是由3个正方体连接组成的看不出接缝的部件.图2是用9个这样的部件组成的正方体.请你从图2的底面看一下,画出部件的接缝.不限于一种答案,解答栏中可回答出6种,但不一定全部使用.图1问题5如图所示,无数量限制的黑、白色的正方形拼在一起.注意,相同的正方形不能用边相连,只能是顶点(角)相连.首先铺第一块正方形(颜色随意),选好顶点,然后以这个顶点作为中心画出一个圆(不要画出所铺的面积).无论是用大半径、小半径,所画出的圈中包括的黑色、白色的面积都正好相等,请考虑这是为什么,并说明理由.答案:白与黑的面积相等不管画什么样的圆,都可以沿着正方形的边画出作为对称轴的直径线。
本讲主要是通过一些速算技巧,培养学生的数感,并通过一些大数运算转化为简单运算,让学生感受学习的成就感,进而激发学生的学习兴趣一、运算定律 ⑴加法交换律:a b b a +=+的等比数列求和⑵加法结合律:()()a b c a b c ++=++⑶乘法交换律:a b b a ⨯=⨯⑷乘法结合律:()()a b c a b c ⨯⨯=⨯⨯⑸乘法分配律:()a b c a b a c ⨯+=⨯+⨯(反过来就是提取公因数)⑹减法的性质:()a b c a b c --=-+⑺除法的性质:()a b c a b c ÷⨯=÷÷()a b c a c b c +÷=÷+÷()a b c a c b c -÷=÷-÷上面的这些运算律,既可以从左到右顺着用,又可以从右到左逆着用.二、要注意添括号或者去括号对运算符号的影响⑴在“+”号后面添括号或者去括号,括号内的“+”、“-”号都不变;⑵在“-”号后面添括号或者去括号,括号内的“+”、“-”号都改变,其中“+”号变成“-”号,“-”号变成“+”号;⑶在“⨯”号后面添括号或者去括号,括号内的“⨯”、“÷”号都不变,但此时括号内不能有加减运算,只能有乘除运算;⑷在“÷”号后面添括号或者去括号,括号内的“⨯”、“÷”号都改变,其中“⨯”号变成“÷”号,“÷”号变成“⨯”号,但此时括号内不能有加减运算,只能有乘除运算.【例 1】 计算:315325335345÷+÷+÷+÷.【考点】四则混合运算之提取公因数 【难度】1星 【题型】计算【关键词】第二届,希望杯,四年级,第二试【解析】 原式313233345=+++÷()例题精讲 知识点拨教学目标整数四则混合运算130526=÷= 【答案】26【巩固】 计算:⑴ 36196419⨯+⨯⑵ 361964144⨯+⨯【考点】四则混合运算之提取公因数 【难度】2星 【题型】计算【解析】 ⑴原式3664191900=+⨯=()⑵原式36196419125=⨯+⨯+()36641964125190088125190080009900=+⨯+⨯=+⨯⨯=+=() 【答案】⑴1900 ⑵9900【例 2】 计算:234432483305+-⨯+÷= 。
第五届日本算术奥林匹克竞赛预赛试题Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998第五届日本算术奥林匹克竞赛预赛试题一、雨哗哗地不停地下着。
如在雨地里放一个如图1那样的长方体的容器,雨水将它注满要用1小时。
有下列A—E不同的容器(图2),雨水注满这些容器各需多长时间二、将一正方形的纸对折2次后,还是正方形(见图1)。
用同样的方法,可把某形状的纸对折3次后,成为图2那样的三角形。
已知可把4种形状的纸对折3次后,折成那样的三角形,请画出这4种形状。
三、有6个1克重的球,1个2克重的球,1个3克重的球,共有8个球。
把这8个球从①到⑧编上号,放到天平上称,就成为图中所示状态。
问:(1)2克重的球是几号球(2)3克重的球是几号球四、有193个人坐成一横排。
首先,正中间的一个人站起来,然后,按下述方法大家都或坐或站。
①邻座的人站起来,1秒钟后,自己也站起来。
②站起1秒钟后坐下。
③如果左右邻座的人同时是站着的话,即使过了1秒钟,自己仍然坐着。
问:(1)最初的那个人站起8秒钟后,有几个人站着(2)96秒钟后,有几个人站着五、有一个如图那样的方块网格,每1个小方块里有1个人,在这些人中间,有人戴着帽子,有人没戴。
每一个人都只能看见自己前方,后方和斜方的人的头,如图1所示,A方块里的人能看见8个人的头,B方块里的人能看见5个人的头,C方块里的人能看见3个人的头,自己看不见自己的头。
在图2的方格中,写着不同方块里的人能看见的帽子的数量,那么,请在图2中找出有戴帽子的人的方块,并把它涂成黑色。
六、某俱乐部有11个成员,他们的名字分别是A~K。
这些人分为两派,一派人总说实话,另一派人总说谎话。
某日,老师问:“11个人里面,总说谎话的有几个人”那天,J和K休息,余下的9个人这样回答:A说:“有10个人。
”B说:“有7个人。
”C说:“有11个人。
”D说:“有3个人。
”E说:“有6个人。
2001年第10届日本算术奥林匹克竞赛预赛问题1有数字5,9,17的卡片各10张,合计30张.现在从这30张中适当选出9张计算出它们的和.请判断下面(A)-(D)中哪个是答案.(A)90 (B)95 (C)100 (D)105 问题2将下图的长方形分成4个面积相等的图形.请问“?”的长度是多少cm?9cm问题3有六个不同的整数,这六个整数的和是365,6个整数中最大数为65,求其中的最小数. 问题4请在□中填入适当的数,使算式成立.2001×□□□□=2□0□0□1问题5太郎和一郎做游戏,两人轮流在下面的正方形网格中任意一格内填数,所填的数只能是1、3、4、5、6、7、8、9、10这9个数.每个数只能用一次.全部填完后,上下段的是的和为太郎的得分,左、右两列数的和为一郎的得分,得分高的人获胜.太郎先填,如果一定要取胜的话,最初要在哪一方格中填哪个数?如果答案有2个以上的话,填一个即可.上段下段问题6将10种不同的小球各100个放入同一个袋子里.从袋子中取出若干个小球,要想在取出的小球中必须有3种同样的球并有10个以上的话,最少要从袋中取出多少个小球?问题7下图为半径20cm 、中心角为144°的扇形图.点D 、E 、F 、G 、H 、I 、J 是将扇形的B 、C 弧线分成了8等份的点.求阴影部分的面积之和.(圆周率为3.14)问题8有一个由125个小正方体组成的大正方体(图A).从这个大正方体中抽出若干个小正方体,把大正方体中相对的两面打通.图B 中的阴影部分是抽空的状态.请问图B 中的正方体中还剩多少个小正方体?图A图B问题9贤治、太郎、一郎就三个人的年龄分别说了以下的话,但是三人的三种说法中有一个说法是错误的.请有四个不同的三位数,它们的百位数字相同.这四个整数的和恰好可以分别被其中的三个三位数整除,求不能除尽的那个三位数.2001年第10届日本算术奥林匹克竞赛决赛问题1把各写有1至30号码的30张卡片按从小到大的顺序码成一摞.然后按下述方法操作: (方法1)把这摞卡片分成上、下两部分,上半摞15张称作A,下半摞15张称作B(如图).(方法2)把B 中从上数第一张卡片拿出,放在桌子上;然后是A 中从上数第一张卡片,B 中从上数第二张卡片,A 中从上数第二张卡片……B 中最下面的卡片,A 中最下面的卡片,按这样的顺序码成一摞.按方法1、方法2进行后,即完成一轮操作.求:第九轮操作结束时摞在最上面的卡片上的数. 问题2某年的算术奥林匹克决赛所有参加者的分数都是整数,合计是8640分.80分以上的高分者只有三人,分别是92分、85分和81分,最低分是25分.在这次决赛中得相同分数的只有三人.那么在这次决赛中包括高分的三人在内得60分以上的至少有几人?问题3有1、A 、B 、C 四个整数,满足A+B+C =2001,而且1<A<B<C.这四个整数俩俩求和得到六个和,把这6个数按从大到小排列起来,恰好构成一个等差数列.请问:A 、B 、C 分别是多少? 问题4如图所示,在长方形ABCD 的外侧取点E,将各顶点用直线连接,AD 和EB 的交点是F.当三角形EAF 是182cm ;四边形FBCD 是502cm ;三角形EDC 是82cm时,求三角形EFD 的面积.请写出答案及思考过程. 问题5如图所示,有黑和白两张正方形的纸.已知黑色正方形的边长是白色正方形边长的0.75倍.黑色正方形的面积数值是一个三位数(单位:2cm ),白色正方形从黑纸下露出部分的面积数值也是一个三位数(单位:2cm ),只是组成这两个三位数的数字相同而排列顺序不同(例:234和324).求白色正方形的面积是多少?问题6有5cm×5cm的方格网,在其上面沿方格网的线放10张2cm×2cm的透明薄板.薄板不能超过5cm ×5cm方格网的线,.请你根据题意在空白的方格内画上“○”或“×”.问题7表中第一行是把1到100的整数一次全部排列出来,然后从第二行起是根据规律一直排到最后的第100行.问题8一个31位的整数,如果把这个整数的每相邻的两个数码组成的整数作为两位数来考虑的话,任何一个这样的两位数都可以被17或23整除.另外,这个31位的整数的数码中只有一个7.请求出这个31位数的所有数码之和并写出思考过程.。
日本奥赛计算周长(2010年第2届日本算术奥林匹克预赛初小组试题)如图所示,用边长为1厘米的正方形拼成图形。
第1排摆1个,第2排摆2个,第3排摆3个,……,第2010排摆2010个。
请问:此图形的周长是多少厘米?(实线部分代表的是图形的周长)第一天组合算式在每辆车的位置填入同一个数字,使算式成立。
这个数字是几?日历(2009年第1届日本算术奥林匹克预赛初小组试题)某月,日历上的第一个星期日和最后一个星期日的日期相加等于33。
(问1)这个月第一个星期一和最后一个星期一的日期相加等于多少?(问2)这个月的1号是星期几?E等于多少?(2012年第四届日本算术奥林匹克预赛低小组试题)在下面的加法算式中,每个日文假名和英文字母都表示1~9之间的一个一位数,相同的文字表示相同的数,不同的文字表示不同的数。
请问E表示的数是多少?我不知道有5张分别写有1、2、3、4、5的卡片。
老师把这5张卡片洗均匀后,发给彼得和玛丽各1张,并进行如下对话:老师:“彼得,你知道你的卡片上的数字比玛丽的卡片上的数字是大还是小吗?”彼得:“不知道。
”老师:“玛丽,你知道你的卡片上的数字比彼得的卡片上的数字是大还是小吗?”玛丽:“不知道。
”(问1)请答出彼得手中卡片上所有可能的数。
(问2)请答出玛丽手中卡片上所有可能的数。
彩色骰子(2011年第3届日本算术奥林匹克预赛初小组试题)有4个相同的骰子,每个骰子的各面分别涂有红色、蓝色、绿色、黄色、褐色、粉色。
六种颜色的排列方式如图所示:把这4个相同的骰子按照下图排在一起,相邻的骰子互相接触的面颜色不同。
请问:①和②两个面分别是什么颜色?十全时(2009年第1届日本算术奥林匹克决赛初小组试题)某一天某个时刻,用下面的方法表示。
2月用02月,早晨5时用05时,类似地,一位数的十位数字补0。
午后7时用19时,午后用12时到23时表示。
这样,有一些时刻用0到9的每个数字一次,例如其中一个是06月25日19时47分38秒。
知识要点幻方与数表一、 如果一个n n ⨯的方阵中,每一横行、每一竖列以及两条对角线上数的和都相等,那么这个方阵称为n 阶幻方。
二、 在n 阶幻方中,其每一行、每一列、两条对角线上的数字之和都相等,这个和称为幻和。
对于n 行或者n 列,其和为幻和乘以n ,也等于所有2n 个数的和;所以,幻和2n S n=个数。
用1、2、……、2n 这2n 个数构造n 阶幻方,其幻和为2212(1)2n n n n ++++=……; 用1、2、3、4、5、6、7、8、9这9个数构造3阶幻方, 其幻和为21234567893(13)1532++++++++⨯+==。
三、 对于n 阶幻方,当n 分别为奇数或偶数时,幻方有一个明显的不同,即奇数阶幻方有一个中心方格,而偶数阶幻方则没有;奇数阶幻方这个中心方格上的数称为中心数。
中心数等于幻方中所有2n 个数的平均数,也等于任意一行、一列、一条对角线中n 个数的平均数,也等于任意两个关于中心对称的空格中的数的平均数;中心数22n S n =个数n=幻和。
用1、2、……、2n 这2n 个数构造n 阶幻方,其中心数为212n +。
用1、2、3、4、5、6、7、8、9这9个数构造3阶幻方,其中心数为21352+=。
四、在3阶幻方中,2222a i b h c g d f e ++++====,2f h a +=、2d h c +=、2b f g +=、2b di +=。
ihgf e d c b a幻方【例1】 请将2009、2010、2011、2012、2013、2014、2015、2016、2017这9个自然数填入图中的空格内,使每行、每列、两条对角线上的3个数之和相等。
(只要构造出一种)【例2】 请构造出一个3阶幻方,使其幻和为2010。
(只要构造出一种)五、 若一个n n ⨯的方阵1111n n nn a a a a KM OM K 是n 阶幻方,则方阵1111n n nn a b c a b ca b c a b c⨯+⨯+⨯+⨯+KM O M K 也是n 阶幻方。
全等三角形的提高拓展训练知识点睛全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等. 寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边. (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角. (3)有公共边的,公共边常是对应边. (4)有公共角的,公共角常是对应角. (5)有对顶角的,对顶角常是对应角.(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角).要想正确地表示两个三角形全等,找出对应的元素是关键. 全等三角形的判定方法:(1) 边角边定理(SAS ):两边和它们的夹角对应相等的两个三角形全等. (2) 角边角定理(ASA ):两角和它们的夹边对应相等的两个三角形全等. (3) 边边边定理(SSS ):三边对应相等的两个三角形全等.(4) 角角边定理(AAS ):两个角和其中一个角的对边对应相等的两个三角形全等. (5) 斜边、直角边定理(HL ):斜边和一条直角边对应相等的两个直角三角形全等.全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线. 拓展关键点:能通过判定两个三角形全等进而证明两条线段间的位置关系和大小关系.而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础.例题精讲板块一、截长补短【例1】 (06年北京中考题)已知ABC ∆中,60A ∠=o ,BD 、CE 分别平分ABC ∠和.ACB ∠,BD 、CE 交于点O ,试判断BE 、CD 、BC 的数量关系,并加以证明.【例2】 如图,点M 为正三角形ABD 的边AB 所在直线上的任意一点(点B 除外),作60DMN ∠=︒,射线MN 与DBA ∠外角的平分线交于点N ,DM 与MN 有怎样的数量关系DO ECB ANEBMAD【变式拓展训练】如图,点M 为正方形ABCD 的边AB 上任意一点,MN DM ⊥且与ABC ∠外角的平分线交于点N ,MD 与MN 有怎样的数量关系【例3】 已知:如图,ABCD 是正方形,∠FAD =∠FAE . 求证:BE +DF =AE .【例4】 以ABC ∆的AB 、AC 为边向三角形外作等边ABD ∆、ACE ∆,连结CD 、BE 相交于点O .求证:OA 平分DOE ∠.NC D EBM A F E DCBA OED CB A【例5】(北京市、天津市数学竞赛试题)如图所示,ABC∆是边长为1的正三角形,BDC∆是顶角为120︒的等腰三角形,以D为顶点作一个60︒的MDN∠,点M、N分别在AB、AC上,求AMN∆的周长.【例6】五边形ABCDE中,AB=AE,BC+DE=CD,∠ABC+∠AED=180°,求证:AD平分∠CDE板块二、全等与角度【例7】如图,在ABC∆中,60BAC∠=︒,AD是BAC∠的平分线,且AC AB BD=+,求ABC∠的度数.【例8】在等腰ABC∆中,AB AC=,顶角20A∠=︒,在边AB上取点D,使AD BC=,求BDC∠.D CB ANMD CBACE DBADCBA【例9】(“勤奋杯”数学邀请赛试题) 如图所示,在ABC ∆中,AC BC =,20C ∠=︒,又M 在AC 上,N 在BC 上,且满足50BAN ∠=︒,60ABM ∠=︒,求NMB ∠.【例10】 在四边形ABCD 中,已知AB AC =,60ABD ︒∠=,76ADB ︒∠=,28BDC ︒∠=,求DBC ∠的度数.【例11】 (日本算术奥林匹克试题) 如图所示,在四边形ABCD 中,12DAC ︒∠=,36CAB ︒∠=,48ABD ︒∠=,24DBC ︒∠=,求ACD ∠的度数.【例12】 (河南省数学竞赛试题) 在正ABC ∆内取一点D ,使DA DB =,在ABC ∆外取一点E ,使DBE DBC ∠=∠,且BE BA =,求BED ∠.CDBA DCBA DECB ANM CBA【例13】 (北京市数学竞赛试题) 如图所示,在ABC ∆中,44BAC BCA ︒∠=∠=,M 为ABC∆内一点,使得30MCA ︒∠=,16MAC ︒∠=,求BMC ∠的度数.全等三角形证明经典20题(含答案)1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求ADADBCM CAB延长AD 到E,使DE=AD,则三角形ADC 全等于三角形EBD即BE=AC=2 在三角形ABE 中,AB-BE<AE<AB+BE 即:10-2<2AD<10+2 4<AD<6 又AD 是整数,则AD=5已知:∠1=∠2,CD=DE ,EF如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。
抽屉原理知识要点最不利原则所谓“最不利原则”是指完成某一项工作先从最不利的情况下考虑,然后研究任意情况下可能的结果。
由此得到充分可靠的结论。
抽屉原理又称鸽巢原理或Dirichlet原理如果把1n+个苹果任意放入n个抽屉,那么必定有一个抽屉里至少有两个苹果。
这个现象就是我们所说的抽屉原理。
抽屉原理在国外又称为鸽巢原理。
(“如果有五个鸽子笼,养鸽人养了6只鸽子,那么当鸽子飞回笼中后,至少有一个笼子中装有2只鸽子”)。
它是由德国数学家狄利克雷(G.Lejeune Dirichlet,18051859~)首先明确的提出来并用以证明一些数论中的问题,因此,也称为狄利克雷原理。
它是组合数学中一个重要的原理。
抽屉原理1:如果把多于n件物品任意放到n个抽屉中,那么必有1个抽屉至少有2件物品。
抽屉原理2:如果把多于m nm+件物品。
⨯件物品任意放到n个抽屉中,那么必有1个抽屉至少有1抽屉原理3:如果把无穷多件物品任意放到n个抽屉中,那么必有1个抽屉至少有无穷多件物品。
最不利原则【例 1】一副扑克牌共54张,其中有2张王牌,还有黑桃、红心、草花和方块4种花色的牌各13张。
那么至少从中摸出多少张牌,才能保证在摸出的牌中有黑桃?【分析】由最不利原则,先摸出2张王牌、13张红心、13张草花、13张方块,然后无论模出哪一张必是黑桃;所以至少从中摸出2131313142++++=张牌,才能保证在摸出的牌中有黑桃。
【例 2】一副扑克牌共54张,其中有2张王牌,还有黑桃、红心、草花和方块4种花色的牌各13张。
那么至少从中摸出多少张牌,才能保证至少有3张牌是红桃?【分析】由最不利原则,先摸出2张王牌、13张黑桃、13张草花、13张方块,然后无论模出哪三张必是红桃;所以至少从中摸出2131313344++++=张牌,才能保证至少有3张牌是红桃。
【例 3】一副扑克牌共54张,其中有2张王牌,还有黑桃、红心、草花和方块4种花色的牌各13张。
第五届日本算术奥林匹克竞赛预赛试题Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998第五届日本算术奥林匹克竞赛预赛试题一、雨哗哗地不停地下着。
如在雨地里放一个如图1那样的长方体的容器,雨水将它注满要用1小时。
有下列A—E不同的容器(图2),雨水注满这些容器各需多长时间二、将一正方形的纸对折2次后,还是正方形(见图1)。
用同样的方法,可把某形状的纸对折3次后,成为图2那样的三角形。
已知可把4种形状的纸对折3次后,折成那样的三角形,请画出这4种形状。
三、有6个1克重的球,1个2克重的球,1个3克重的球,共有8个球。
把这8个球从①到⑧编上号,放到天平上称,就成为图中所示状态。
问:(1)2克重的球是几号球(2)3克重的球是几号球四、有193个人坐成一横排。
首先,正中间的一个人站起来,然后,按下述方法大家都或坐或站。
①邻座的人站起来,1秒钟后,自己也站起来。
②站起1秒钟后坐下。
③如果左右邻座的人同时是站着的话,即使过了1秒钟,自己仍然坐着。
问:(1)最初的那个人站起8秒钟后,有几个人站着(2)96秒钟后,有几个人站着五、有一个如图那样的方块网格,每1个小方块里有1个人,在这些人中间,有人戴着帽子,有人没戴。
每一个人都只能看见自己前方,后方和斜方的人的头,如图1所示,A方块里的人能看见8个人的头,B方块里的人能看见5个人的头,C方块里的人能看见3个人的头,自己看不见自己的头。
在图2的方格中,写着不同方块里的人能看见的帽子的数量,那么,请在图2中找出有戴帽子的人的方块,并把它涂成黑色。
六、某俱乐部有11个成员,他们的名字分别是A~K。
这些人分为两派,一派人总说实话,另一派人总说谎话。
某日,老师问:“11个人里面,总说谎话的有几个人”那天,J和K休息,余下的9个人这样回答:A说:“有10个人。
”B说:“有7个人。
”C说:“有11个人。
”D说:“有3个人。
”E说:“有6个人。
”F说:“有10个人。
”G说:“有5个人。
”H说:“有6个人。
”I说:“有4个人。
”那么,这个俱乐部的11个成员中,总说谎话的有几个人七、有50张卡片,每一张都分别写着从1到50的数字(见图)。
卡片的两面一面是红色,一面是蓝色,两面都写着相同的数字。
有一个班正好有50名学生,老师把这50张卡片都将蓝色朝上地摆在桌上,对同学们说:“请你们按学号的顺序逐个到前面来翻卡片,规则是:只要卡片上的数字是你自己学号的倍数,你就把它们都翻过来,蓝的就翻成红的,红的就翻成蓝的。
”那么,到最后,学号是50的学生按老师的要求翻完以后,红色朝上的卡片有多少张八、如图所示,把边长为6cm的等边三角形剪成4部分,从三角形顶点往下1cm处,呈30°角下剪刀,使中间部分形成一个小的等边三角形。
问:所有斜线部分的面积是中间小等边三角形的面积的几倍九、有同样大小的立方体27个,把它们竖3个,横3个,高3个,紧密地没有缝隙地搭成一个大的立方体(见九题图)。
如果用1根很直的细铁丝扎进这个大立方体,最多可以穿透几个小立方体附:第五届日本算术奥林匹克竞赛预赛试题解析一、解题中“雨哗哗地不停地下着”这一条件,也可以理解为雨均匀地下。
(这与日常生活中的降雨略有不同,生活中降雨可能会时大时小,并不均匀。
)雨水从敞口部分垂直落入到容器内,我们就可以把“敞开面”(即图中所示的阴影面)叫做“接雨面”。
图中所示的长方体容器,“接雨面”与底面大小相同,雨水将它下满需要1小时,也就是说1小时后该容器内雨水的深度是10cm。
如果容器的高度不止10cm,而是无限的,那么2小时后容器内雨水的深度将会是2cm,以后每过1小时雨水的深度就会增加10cm;如果在长方体容器中垂直放入一个很薄的挡板(其厚度忽略不计),将大容器分成两个小容器(如图所示)。
小容器的“接雨面”变小了,但每个小容器的“接雨面”与底面大小仍然相同。
那么1小时后,每个小容器内雨水的深度还是10cm。
(因为忽略了挡板的厚度,它不占原来长方体容器的容积。
)通过上述分析与假设,我们可得出如下结论:只要容器的“接雨面”与底面大小相同,1小时后容器内雨水的深度就是10cm。
根据结论,观察图2所示的五种容器。
其中A、B、E三种容器的“接雨面”与底面大小相同。
A容器高10cm,雨水下满该容器需要1小时;B容器高30cm,雨水下满该容器需要3小时;E容器高20cm,雨水下满该容器需要2小时。
剩下C、D两种容器,它们的“接雨面”与底面大小不同,可先将其转化为“接雨面”与底面大小相同的容器(如图所示)。
此时,C容器的高变为30cm,雨水下满需3小时;D容器的高变为15cm,雨水下满需小时。
二、解(见下图)三、解由图1可知:①+②+③<④+⑤+⑥+⑦(一式)由图2可知:②+⑥+⑧>①+③+④+⑤(二式)由图3可知:①+③+⑧<②+④+⑤(三式)观察三式可得出如下结论:①、③、⑧中不可能有克重的球,②、④、⑤中必有重量超过1克的球。
观察二式可得结论:④、⑤两球重量均为1克,(因为如果其中有重2克的,则②、⑥、⑧重量之和最多与①、③、④、⑤重量之和相等,图2将不成立,与已知矛盾。
)观察一式可得结论:①、②、③中没有重3克的球。
(否则图1所示状态将不成立)综合上述3条结论可知:②号球重2克,①、③、⑧、④、⑤的重量均为1克。
再次观察二式可知:⑥号球重3克。
四、解(找规律)(用△表示站,○表示坐)上表第1个方框内的2表示第1秒后有2人站着;第2个方框内有两个数,上面2表示第2秒后有2人站着,下面的4表示第3秒后有4人站着。
三角内的两个数为所求,即:第8秒后有2人站着,第96秒后有4人站着。
五、解答案如下图所示。
分析①站在第一行第五列的人能看见1顶帽子,说明他周围的3人有2人没戴帽子。
②站在第二行第四列的人能看见7顶帽子,说明他周围的8人中只有1人没戴帽子,综合结论①可知他本人没有戴帽子。
③站在第二行第五列的人能看到4顶帽子,且他周围的5人中已有1人没戴帽子,说明其余4人均戴帽子,根据结论①可知他本人没戴帽子。
④利用上下对称原理可以分析出:站在第四行、第五行后三列的6个人中,只有第四行第四列、第五列两人没戴帽子,其他人均戴帽子。
⑤站在第四行第二列的人能看到7顶帽子,说明他周围的8人中只有1人没戴帽子。
⑥站在第三行第1列的人能看见1顶帽子,说明他周围的5人中只有1人戴帽子。
综合结论⑤可知:这1人不可能是第二行第一二列的人,也不可能是第四行第二列的人。
所以只能是站在第三行第二列的人或第四行第一列的人。
⑦站在第五行第一列的人能看到2顶帽子,说明结论⑥所说戴帽子的人站在第四行第一列。
⑧站在第二行第二列的人能看到6顶帽子,说明站在第一行第一、二列的2人都戴帽子。
综合上述分析,可以看到“思考的顺序”是解答本题的关键。
六、解因为9个人回答出了7种不同的人数,而且回答相同的最多是两个人。
所以说谎话的不少于7人。
若说谎话的有7人,则除B外,其它回答问题的8人均说了谎话,与假设出现矛盾;若说谎话的有8人,则回答问题的9人均说了谎话,出现矛盾;若说谎话的有10人,则只能1人说实话,而A和F都说了实话,出现了矛盾;若说谎话的有11人,则没有说实话的,而C说了实话,出现矛盾;显然说谎话的有9人,回答问题的9人均说谎话,休息的两人说实话。
七、解每张卡片,所写数字有几个约数就被翻过几次。
被翻了奇数次的卡片红色面朝上,而只有完全平方数才能有奇数个约数,所以本题也就是求写有完全平方数的卡片有几张,所以红色朝上的卡片共有7张。
八、解将大三角形分成边长1cm的小等边三角形即可求解。
大三角形中包含36个小等边三角形,空白三角形包含3个小等边三角形。
所以九、解首先从简单的想起,研究铁丝穿透1个小立方体时,应从哪面穿入,哪面穿出。
然后考虑铁丝扎进8个小立方体搭成的较大立方体,最多可以穿透几个小立方体。
最后再考虑扎进27个小立方体搭成的大立方体时,最多可以穿透几个小立方体。
(1)铁丝穿透1个小立方体可有三种不同情况。
(如图1所示)其中A、B 两种是穿过相对两面,A种平行于棱的方向穿过,B种斜着穿过;C种则是穿过相邻两面。
再进一步分析,若增加7个小立方体,搭成较大立方体时,这个小立方体相对两面中只能有一个面与其它小立方体相邻,也就是说只能考虑铁丝在一个方向上继续穿透其它小立方体。
而这个小立方体相邻的两面可以分别与其它小立方体相邻,铁丝可以沿两个方向继续穿透其它小立方体。
因此,C种情况是我们解答本题需要深入考虑的。
(为了便于分析,将这个小立方体编为①号。
)(2)考虑铁丝扎进较大立方体时最多可以穿透几个小立方体。
如图2所示,铁丝沿斜上方向可继续穿透②号小立方体,沿斜下方向可继续穿透③号、④号小立方体。
因此,共可穿透4个小立方体。
(3)考虑铁丝扎进27个小立方体搭成的大立方体时,最多可以穿透几个小立方体。
如图3所示,铁丝沿斜上方向可继续穿透⑤号立方体,沿斜下方向可以继续穿透⑥号、⑦号小立方体。
因此,最多可以穿透7个小立方体。
[说明与探讨]本题意在考察空间观念和画图能力。
若直接考虑,难度比较大。
所以应采取从简单处人手,逐步深入分析的方法来解答。
通过上述分析,不难发现这样一条规律(如下表所示):以前,我们研究过与此题分析方法基本相同的平面图形问题。
如:大正方形是由25个同样大小的小正方形拼接而成的。
在大正方形上画一条直线,这条直线最多可以穿过几个小正方形。