炭化室结焦过程(1)
- 格式:ppt
- 大小:611.00 KB
- 文档页数:9
第二章室式炼焦过程与配煤原理1、炭化室内结焦过程基本特点:⑴单向供热,成层结焦⑵结焦过程中传热性能随炉料状态和温度而变化。
2、结焦终了时炭化室中心温度可作为整个炭化室焦炭成熟的标志,该温度称炼焦最终温度,按装炉煤性质和对焦炭质量要求的不同,高温炼焦的终温为950——1050℃。
3、炭化室内焦炭裂纹的形成——根本原因:半焦的热分解和热缩聚产生的不均匀收缩,引起的内应力超过焦炭多孔体强度时,导致裂纹形成。
4、影响炭化室结焦程的因素:①炉堆煤密度②炉煤水分③炼焦速度④炼焦终温⑤闷炉时间5、焦炭质量主要取决于装炉煤性质。
6、⑴配合煤质量指标:大体分两类:①化学性质,如灰分、硫分、矿物质组成②工艺性质,如煤化度、粘结性、细度、膨胀压力⑵细度,指配合煤中小于3mm粒级占全部配合煤的质量百分率第三章炼焦煤料预处理1、预处理包括来煤接受、储运、倒运、粉碎、配合和混匀等工作。
2、配煤槽由卸煤装置、槽体和锥体等部分组成。
3、粉碎工艺:①先配后粉工艺②先粉后配工艺③部分硬质煤预粉碎工艺④分组粉碎工艺⑤选择粉碎工艺4、捣固炼焦:将配合煤在入炉前用捣固机捣实成体积略小于炭化室的煤饼后,推入炭化室内炼焦成为捣固炼焦。
第四章炼焦炉及其设备1、蓄热室焦炉由炭化室、燃烧室、蓄热室、斜道区和炉顶区所组成。
2、蓄热室:⑴蓄热室位于焦炉炉体下部,其上经斜道同燃烧室相连,其下经废气盘分别同分烟道、贫煤气管和大气相通。
蓄热室用来回收焦炉燃烧废气的热量并预热贫煤气和空气。
⑵蓄热室自下而上分小烟道、箅子砖、格子砖、和顶部空间,相同气流蓄热室之间的隔墙称为单墙,异向气流蓄热室隔墙称主墙。
⑶小烟道和废气盘相连,向蓄热室交替导入冷煤气、空气或排出热废气,出于交替变换的冷、热气流温差较大,为承受温度的急变,并防止气体对墙面的腐蚀,小烟道内砌有黏土衬砖。
⑷箅子砖:使蓄热室内气流沿长向均匀分布。
⑸箅子砖上架设格子砖,下降气流时,用来吸收废热气的热量,上升气流时,将蓄热量传给贫煤气或空气,采用薄壁异型格子砖可以增大传热面积,安装时上下各层格子砖孔应对准,以降低蓄热室阻力,格子砖温度变化大,故采用黏土砖。
第二章室式炼焦过程与配煤原理煤结焦过程的一般规律如《煤化学》所述,本章以室式炼焦工艺为对象,阐述炭化室内结焦过程的特点,进而讨论配合煤质量指标、配煤原理与焦炭质量预测。
第一节,尽化室内结焦过程特点炭化室内结焦过程的基本特点有二:一是单向供热、成层结焦;二是结焦过程中的传热性能随炉料状态和温度而变化。
基于此,炭化室内各部位焦炭质量与特征有所差异。
一、温度变化与炉料状态1.成层结焦过程- 炭化室内煤料热分解、形成塑性体、转化为半焦和焦炭所需的热量,由两侧炉墙提供,由于煤和塑性体的导热性很差,使从炉墙到炭化室的各个平行面之间温度差较大。
因此,在同一时间,离炭化室墙面不同距离的各层炉料因温度不同而处于结焦过程的不同阶段(图2-1右),焦炭总是在靠近炉墙处首先形成,而后逐渐向炭化室中心推移,这就是“成层结焦”,当炭化室中心面上最终成焦并达到相应温度时,炭化室结焦才终了,因此结焦终了时炭化室中心温度可作为整个炭化室焦炭成熟的标志,该温度称炼焦最终温度,按装炉煤性质和对焦炭质量要求的不同,该温度为950~1050。
2.炭化室炉料的温度分布√在同一结焦时刻内处于不同结焦阶段的各层炉料,由于热物理性质(比热、热导率、相变热等)和化学变化(包括反应热) 的不同,传热量和吸热量也不同,因此炭化室内的温度场是不均匀的。
图2—1左给出的等时线,标志着同一结焦时刻从炉墙初炭化室中心的温度分布;图2—1的等时线也可改绘制成以离炭化室墙的距离x和结焦时刻τ为坐标的等温(t)线(图2—2) 或以t-τ为坐标的等距线。
在图2—2中,两条等温线的温度图2一l 不同结焦时刻炭化室内各层炉料的状态和温度(等时线).图2-2 炭化室内炉料等温线差为Δt,两条等温线间的水平距离为时间差Δτ,垂直距离为距离差Δx。
Δt/Δτ表示升温速度,Δt/Δx表示温度梯度。
综合图2-1和2-2可以说明如下几点:1)任一温度区间,各层的升温速度和温度梯度均不相同。
第二章室式炼焦过程与配煤工艺第一节煤在焦炉炭化室内的结焦过程一、炭化室内炉料的动态变化焦炉的炭化室是一个带锥度的窄长空间,煤料受两侧炉墙传递的热量加热,下面我们分析炼焦过程及其特点,并由此分析炭化室内各部位焦炭质量与特征。
1、成层结焦与温度变化在煤化学中我们知道,粘结性煤加热过程中,经历了干燥、热分解、形成塑性体、转化为半焦和焦炭的过程。
过程所需要的热量,由两侧炉墙提供。
绘出图(表明两侧加热),因煤和塑性层导热系数低,因此在整个成焦过程的大部分时间内,炭化室内与炉墙垂直方向上炉料的温度梯度较大(图2-1左)。
这样在结焦过程的大部分时间内,离炭化室墙面不同距离的各层炉料因所受到的温度不同而处于热解过程的不同阶段,整个炭化室内炉料的状态随时间而变化(图2-1右)。
靠近炉墙附近的煤先结成焦炭,而后焦炭层逐渐向炭化室中心推移,这就是常指的“成层结焦”。
炭化室中心面上的炉料温度始终最低,因此以结焦末期炭化室中心面的温度(焦饼中心温度)作为焦饼成熟度的标志,称为炼焦最终温度。
如图2-2所示,由于各层炉料距炉墙的距离不同,传热条件也就各不相同,最靠近炉墙的煤料升温速度最快,约5℃/min 以上,而位于炭化室中心部位的炉料升温速度最慢,约2℃/min以下,这种温度变化的差别必然导致焦炭质量的差异。
常规炼焦采用湿煤装炉,结焦过程中湿煤层被夹在两个塑性层之间,这样湿煤层内的水汽不易透过塑性层向两层外流出,致使大部水汽窜入内层湿煤中,并因内层温度低而冷凝下来,这样内层湿煤水分增加,加之煤的导热系数小,使得炭化室内中心煤料升温速度缓慢,长时间停留在水的蒸发温度以下,煤料水分愈多,结焦时间就愈长,炼焦的耗热量也就愈大。
2、炭化室内膨胀压力焦炉炭化室内产生膨胀压力的原因是成层结焦的结果,两个大体上平行于两侧炉墙面的塑性层从两侧向炭化室中心移动,炭化室底面温度和顶部温度也很高,在炭化室内煤料的上层和下层同样也形成塑性层,围绕中心煤料形成的塑性层如同一个膜袋(见图2-3),膜袋内的煤热解产生气体由于塑性层的不透气性使得膜袋产生膨胀的趋势,塑性层又通过外侧的半焦层和焦炭层将压力施加于炭化室的炉墙,这种压力称之为膨胀压力。
备煤炼焦所用精煤,一方面由外部购入,另一方面由原煤经洗煤后所得,洗精煤由皮带机送入精煤场。
精煤经受煤坑下的电子自动配料称将四种煤按相应的比例送到带式输送机上除铁后,进入可逆反击锤式粉碎机粉碎后(小于3mm占90%以上),经带式输送机送至焦炉煤塔内供炼焦用。
炼焦装煤推焦车在煤塔下取煤,捣固成煤饼后,按作业计划从机侧推入炭化室内。
煤饼在炭化室内经过一个结焦周期的高温干馏,炼成焦炭并产生荒煤气。
炭化室内的煤饼结焦成熟后,由装煤推焦机推出并通过拦焦机的导焦栅送入熄焦车内。
熄焦车由电机牵引至熄焦塔熄焦。
熄焦后的焦炭卸至凉焦台,冷却后送往筛焦楼进行筛分和外运。
煤在干馏过程中产生的荒煤气汇集到炭化室的顶部空间,经上升管、桥管进入集气管。
700℃的荒煤气在桥管内经过氨水喷洒后温度降至85℃左右,煤气和冷凝下来的焦油氨水一起经吸煤气管道送入煤气回收车间进行煤气净化及焦油回收。
焦炉加热燃用的净化煤气经预热器预热至45℃左右进入地下室,通过下喷管把煤气送入燃烧室立火道,燃烧后的废气经烟道、烟囱排入大气。
冷鼓由焦炉送来的80-83℃的荒煤气,沿吸煤气管道入气液分离器。
经气液分离后,煤气进入初冷器进行两段间接冷却;上段用32℃循环水冷却煤气,下段用16-18℃低温水冷却煤气,使煤气冷却至22℃,然后经捕雾器入电捕焦油器除去悬浮的焦油雾后进入鼓风机,煤气由鼓风机加压送至脱硫工段。
在初冷器下段用含有一定量焦油、氨水的混合液进行喷洒,以防止初冷器冷却水管外壁积萘,提高煤气冷却效果。
由气液分离器分离出的焦油氨水混合液自流入机械化氨水澄清槽,进行氨水、焦油和焦油渣的分离。
分离后的氨水自流入循环氨水中间槽,用泵送到焦炉集气管喷洒冷却荒煤气,多余的氨水(即剩余氨水)送入剩余氨水槽,焦油自流入焦油中间槽,然后用泵将焦油送至焦油贮槽,静置脱水后外售,分离出的焦油渣定期用车送至煤场掺入精煤中炼焦。
脱硫来自冷鼓工段的粗煤气进入脱硫塔下部与塔顶喷淋下来的脱硫液逆流接触洗涤后,煤气经捕雾段除去雾滴后全部送至硫铵工段。
—、煤的热解及分类煤的热解也称为煤的干馏或热分解,是将煤在隔绝空气的条件下加热,煤在不同温度下发生一系列的物理变化和化学反应,生成气体(煤气)、液体(焦油)和固体(半焦或焦炭)等产物的过程。
煤的热解按照不同的方法有多种分类。
按照热解温度可分为低温热解(500~700℃)、中温热解(700~1000℃)和高温热解(1000~1200℃)。
按照加热速度可分为慢速热解(<1K/s)、中速热解(5~100K∕s)和闪速热解(500〜106K∕s)。
按照热解气氛可分为惰性热解(不加催化剂)、加氢热解和催化加氢热解。
按照固体颗粒与气体在床内的相对运动状态分为固定床热解、气流床热解和流化床热解等。
按照加热方式可分为内热式、外热式和内外热并用式热解。
按照热载体方式可分为固体热载体、气体热载体和气‐固热载体热解。
按照反应器内的压力可分为常压热解和加压热解。
二、煤的焦化煤的焦化又称煤炭高温干馏,是以煤为原料,在隔绝空气条件下,加热到950℃左右,经高温干馏生产焦炭,同时获得煤气、煤焦油并回收其他化工产品的一种煤转化工艺。
煤经焦化后的产品有焦炭、煤焦油、煤气和化学产品四类。
1、炼焦用煤及其结焦特性炼焦用煤主要有气煤、肥煤、焦煤、瘦煤,它们的煤化程度依次增大,挥发分依次减小,因此半焦收缩度依次减小,收缩裂纹依次减少,块度依次增加。
以上各种煤的结焦特性如下:(1)气煤气煤的煤化程度较小,挥发性大,煤的分子结构中侧链多且长,含氧量高。
在热解过程中,不仅侧链从缩合芳环上断裂,而且侧链本身又在氧键处断裂,所以生成了较多的胶质体,但黏度小,流动性大,其热稳定性差,容易分解。
在生成半焦时,分解出大量的挥发性气体,能够固化的部分较少。
当半焦转化成焦炭时,收缩性大,所以,成焦后裂纹最多、最宽、最长,大部分为纵裂纹,所以焦炭细长易碎。
配煤炼焦时加人适当的气煤,可以增加焦炭的收缩性,便于推焦和保护炉体,同时可以得到较多的化学产品。
我国气煤储存量大,在炼焦时应尽量多配气煤,以合理利用炼焦煤资源。
煤的成焦率和什么因素有关?1 产品生成1.1煤的成焦过程炼焦煤在隔绝空气下加热,其有机质随温度的升高而发生一系列变化,形成气态(煤气)、液态(煤焦油)和固态(半焦或焦炭)产物。
煤的成焦过程可分为三个阶段:第一阶段(常温至300℃)是煤的干燥脱气阶段,释放出水分并析出CH4、CO和N2。
第二阶段(300℃~600℃)以解聚和分解反应为主,煤粘结成半焦。
通常烟煤在300℃后开始软化,伴随有煤气和煤焦油析出;中等煤化度的烟煤在此期间的一定温度范围内生成气、液、固三相共存的质体。
第三阶段(600℃~1000℃)是半焦变成焦炭的阶段,此阶段以缩聚反应为主,产生大量煤气(以H2为主),半焦经收缩形成有裂纹的焦炭。
1.2炭化室内结焦过程装炉煤结焦需要的热量是通过两侧炉墙提供的,热量从两侧炉墙传向炭化室中心。
因此,结焦过程是从两侧炭化室墙面处开始,逐渐移向炭化室中心的层状结焦过程。
当炭化室中心的焦饼温度达到950℃~1050℃时焦饼成熟。
结焦速度反映炭化室内的平均升温速度。
结焦速度过快,将使焦炭裂纹增多、块度变小。
当炭化室墙面附近的煤料形成塑性层时,炭化室顶部和底部的煤料也受热形成了塑性层,同时,煤料分解的气态产物不断产生,由于四面的塑性层均不易透过气体,炭化室内压力不断升高,塑性层膨胀,并通过半焦和焦炭层将膨胀压力传递给炭化室墙。
当塑性层在炭化室中心面汇合时,炭化室膨胀压力达到最大值。
通常所说的膨胀压力就是指这一最大值。
膨胀压力取决于装炉煤的特性、炉料散密度及结焦速度,提高膨胀压力有助于煤料颗粒的粘合、融熔,改善焦炭的物理性,但是膨胀压力过高,将对炭化室墙体造成损坏。
1.3炭化室内气体析出动态炭化室内的装炉煤在结焦过程中产生的气体产物(含液体产物的蒸汽)一部分通过两侧塑性层之间的煤层流向炭化室顶部空间,称为“里行气”,约占全部气态产物的10%~25%。
另外约占75%~90%的气态产物,通过半焦层和焦炭层以及焦炭与炭化室墙之间的缝隙流向炭化室顶部空间,称为“外行气”。