日本高速铁路安全设计技术
- 格式:pdf
- 大小:166.90 KB
- 文档页数:4
7通信技术日本新干线的通信技术经历了30多年的发展,如今新建的新干线与20世纪60年代初东海道新干线刚开通时相比,已大大改变了面貌,不可同日而语。
20世纪60年代初,光纤通信还没问世,计算机网络还在初期阶段,半导体集成电路尚在室内试验研究,漏泄同轴电缆也没有实用化。
所以可以说,新干线通信技术的发展,就是一般通信技术发展的体现,就是通信技术、计算机技术、电子技术发展的综合。
新干线通信网是日本铁路通信网的一部分,是在原有铁路通信网的基础上发展的,两者互相渗透,互为补充。
以下首先介绍日本铁路通信技术发展概况,而后介绍新干线通信的特殊技术。
同时,以北陆新干线为例,全面整体地介绍新干线的最新技术状况。
7.1 日本铁道通信技术概况日本铁道通信技术的发展大体可分为3个时期:20世纪60年代,建设干线通信网、实施电话电报的现代化;20世纪70年代,开发和发展数据通信,计算机系统;20世纪80年代,各种业务实施计算机联网,各种信息传输向数字化发展。
日本铁道的长途通信网由3级构成,即总检局、统制局和端局(或从局)。
总检局全国有8处:东京、大阪、广岛、门司、名古屋、仙台、新泻和札幌。
1961年完成了微波通信网的建设,1974年山阳新干线的迂回线开通,1979年东北、上越新干线迂回线开通。
载波通信设备包括平衡电缆上的120路设备、不同轴电缆上的300路、960路设备以及PEF绝缘、0.9mm对称电缆上开通的简易载波设备。
地区通信用的交换机经历了步进制、纵横制、布线逻辑全电子以及程控数字交换机的发展过程,1981年6月程控电子交换机实行了标准化,1985年3月开始试验程控数字交换机,1986年12月在盛冈开通了大型程控数字交换机。
无线通信分为固定无线和移动无线两部分。
固定无线是总公司至各管理局间以及各铁路局互相间十分经济的通信方式,采用微波(SHF)、特高频(UHP)和甚高频(VHF),分别开通960路、240路(120路)及近距离的独立回线。
1总则1.0.1为统一高速铁路设计技术标准,使高速铁路设计符合安全适用、技术先进、经济合理的要求,制定本规范。
1.0.2本规范适用于旅客列车设计行车速度250~350km/h的高速铁路,近期兼顾货运的高速铁路还应执行相关规范。
1.0.3高速铁路设计应遵循以下原则:(1)贯彻“以人为本、服务运输、强本简末、系统优化、着眼发展”的建设理念;(2)采用先进、成熟、经济、实用、可靠的技术;(3)体现高速度、高密度、高安全、高舒适的技术要求;(4)符合数字化铁路的需求。
1.0.4高速铁路设计速度应按高速车、跨线车匹配原则进行选择,并应考虑不同速度共线运行的兼容性。
1.0.5高速铁路设计年度宜分近、远两期。
近期为交付运营后第十年;远期为交付运营后第二十年。
对铁路基础设施及不易改、扩建的建筑物和设备,应按远期运量和运输性质设计,并适应长远发展要求。
易改、扩建的建筑物和设备,可按近期运量和运输性质设计,并预留远期发展条件。
随运输需求变化而增减的运营设备,可按交付运营后第五年运量进行设计。
1.0.6高速铁路建筑限界轮廓及基本尺寸应符合图1.0.6的规定,曲线地段限界加宽应根据计算确定。
27250550040002440170017501250650③①②④⑤1700251250①轨面②区间及站内正线(无站台)建筑限界③有站台时建筑限界④轨面以上最大高度⑤线路中心线至站台边缘的距离(正线不适用)图1.0.6高速铁路建筑限界轮廓及基本尺寸(单位:mm)1.0.7高速铁路列车设计活载应采用ZK活载。
ZK活载为列车竖向静活载,ZK标准活载如图1.0.7-1所示,ZK特种活载如图1.0.7-2所示。
图1.0.7-1ZK标准活载图式图1.0.7-2ZK特种活载图式31.0.8高速铁路应按全封闭、全立交设计。
1.0.9高速铁路设计应执行国家节约能源、节约用水、节约材料、节省用地、保护环境等有关法律、法规。
1.0.10高速铁路结构物的抗震设计应符合《铁路工程抗震设计规范》(GB50111)及国家现行有关规定。
中国与日本高速铁路桥梁工程主要技术标准对比分析韩文雷【摘要】为完善铁路工程建设技术标准,加快实施中国铁路"走出去"战略,对比分析我国高速铁路与日本新干线桥梁工程设计标准,主要是设计计算理论、设计荷载及其组合、动力系数、桥梁横纵向刚度、梁体竖向自振频率等技术标准,结合以上标准的对比分析,对我国高速铁路桥梁标准的制定提出了一点个人建议.【期刊名称】《铁道标准设计》【年(卷),期】2011(000)004【总页数】5页(P65-69)【关键词】高速铁路;桥梁工程;技术标准;对比分析【作者】韩文雷【作者单位】中铁工程设计咨询集团有限公司桥梁工程设计研究院,北京,100055【正文语种】中文【中图分类】U238;U442.5+1高速铁路代表了当今世界铁路发展的方向,也是时代发展的潮流[1]。
随着我国综合国力的增强,大规模、高标准铁路建设的不断推进,我国铁路“走出去”的时机已经成熟,形势更加迫切。
铁路工程建设标准国际化是铁路“走出去”战略的最高形式,研究和部署我国高速铁路技术标准与国外铁路先进标准对比分析工作,对进一步完善高速铁路技术标准体系,展示我国铁路发展最新成果,加快实施中国铁路“走出去”战略等十分必要且意义重大。
1 概述1.1 中国标准我国铁路工程建设标准体系由综合标准和技术标准两部分构成。
综合标准是涉及质量、安全、卫生、环保和公众利益等方面的目标要求或为达到这些目标而必需满足的技术要求及管理要求,是完全强制性的标准;技术标准由共用标准和专业标准两大部分组成,其中共用标准包括与速度无关的基础标准、通用标准、专用标准3个层次;专业标准包括与速度有关的高速铁路、时速250 km以下铁路的通用标准和专用标准2个层次[2]。
我国现行的与铁路桥梁工程设计有关的标准主要有:《高速铁路设计规范(试行)》(TB10621—2009)、《新建时速200~250 km客运专线铁路设计暂行规定》(铁建设[2005]140号)、《铁路工程抗震设计规范》(GB50111—2006)、《铁路桥涵设计基本规范》(TB10002.1—2005)、《铁路桥梁钢结构设计规范》(TB10002.2—2005)、《铁路桥涵钢筋混凝土和预应力混凝土结构设计规范》(TB10002.3—2005)、《铁路桥涵混凝土和砌体结构设计规范》(TB10002.4—2005)、《铁路桥涵地基和基础设计规范》(TB10002.5—2005)、《铁路结合梁设计规定》(TBJ24—89)等。
德国高速铁路防灾安全监控系统简介德国高速铁路属客、货混运型,且隧道约占线路长度的1/3。
因此,隧道内的行车安全成为德国高速铁路安全保障的重点。
德铁制定了非常严格有效的防范措施。
例如:禁止无加固和防护措施的货物列车或装有危险货物的列车驶入隧道;尽可能减少客、贷列车在隧道内交会,并要求限速运行;专门制造了两列隧道救援列车,随车带有医疗卫生救助设备,并同地方政府共同组织消防、救援队,当出现意外事故时,能及时进行抢救。
此外,在高速新线上也采用了新型防灾报警系统MAS90,除可监督线路装备的运用状况外,还可识别和及时报告环境对行车安全的影响,以及移动设备发生破损的情况。
该警报系统在全线南、北、中段设有中央控制单元(SZE),相互连通;每个SZE又连接若干设在沿线总站信号楼内的各种报警和记录单元(MRE),并与之进行信息和命令交换。
MRE接受安装在沿线的探测报警仪器采集的信息。
这些探测报警仪器主要有:HOA903型热轴探测器;LSMA隧道气流报警器(在长度大于1.5km的隧道内安装);WMA风测量仪(在所有桥梁上安装);BMA火灾报警仪;沿线设置防护开关;隧道口坍方报警信号装置(EMA);隧道两端及隧道内每1000m(早期600m)设置应急电话(NR),仅需扳动手柄就可打开电话箱,紧急呼叫的信息具有绝对优先权。
德国的计算机辅助列车监控(或称行车调度LZB)系统,可起到安全调度功能。
图为德国新建高速铁路防灾报警系统配置示意图。
图德国新建高速铁路防灾报警系统配置图探测设备:HOA—热轴探测设备;WMA—风力测量报警设备;LSMA—气流报警设备;BMA—火灾报警设备;EMA—塌方报警设备;Whz—道岔加热设备。
处理设备:ZSE—集中控制单元;MRE—报警显示和记录装置。
BFA、BFB、BFC:车站A、B、C。
法国高速铁路防灾安全监控系统简介法国高速铁路创造了当前世界上轮轨系交通的最高试验速度515.3km/h,运营最高速度达到300~320km/h。
1 总则1、0、1 为统一高速铁路设计技术标准,使高速铁路设计符合安全适用、技术先进、经济合理得要求,制定本规范。
1、0、2 本规范适用于旅客列车设计行车速度250~350km/h 得高速铁路,近期兼顾货运得高速铁路还应执行相关规范。
1、0、3 高速铁路设计应遵循以下原则:(1)贯彻“以人为本、服务运输、强本简末、系统优化、着眼发展”得建设理念;(2)采用先进、成熟、经济、实用、可靠得技术;(3)体现高速度、高密度、高安全、高舒适得技术要求;(4)符合数字化铁路得需求。
1、0、4 高速铁路设计速度应按高速车、跨线车匹配原则进行选择,并应考虑不同速度共线运行得兼容性。
1、0、5 高速铁路设计年度宜分近、远两期。
近期为交付运营后第十年;远期为交付运营后第二十年。
对铁路基础设施及不易改、扩建得建筑物与设备,应按远期运量与运输性质设计,并适应长远发展要求。
易改、扩建得建筑物与设备,可按近期运量与运输性质设计,并预留远期发展条件。
随运输需求变化而增减得运营设备,可按交付运营后第五年运量进行设计。
1、0、6 高速铁路建筑限界轮廓及基本尺寸应符合图1、0、6 得规定,曲线地段限界加宽应根据计算确定。
7250550040002440170017501250650③①②④⑤1700251250①轨面②区间及站内正线(无站台)建筑限界③有站台时建筑限界④轨面以上最大高度⑤线路中心线至站台边缘得距离(正线不适用)图1、0、6 高速铁路建筑限界轮廓及基本尺寸(单位:mm)1、0、7 高速铁路列车设计活载应采用ZK 活载。
ZK 活载为列车竖向静活载,ZK 标准活载如图1、0、7-1 所示,ZK 特种活载如图1、0、7-2 所示。
图1、0、7-1 ZK 标准活载图式图1、0、7-2 ZK 特种活载图式1、0、8 高速铁路应按全封闭、全立交设计。
1、0、9 高速铁路设计应执行国家节约能源、节约用水、节约材料、节省用地、保护环境等有关法律、法规。
高速铁路的主要技术特征1.高速列车设计与制造技术:高速列车采用轻量化、强度高、空气动力学优良的车体设计,以减小空气阻力,并提高运行速度和安全性能。
在车体材料方面,使用高强度钢、铝合金和复合材料等先进材料,以提高列车的稳定性和安全性。
2.高速线路规划与设计技术:高速铁路线路采用直线段和大半径曲线段的设计,以减小列车运行时的横向力和纵向加速度,提高列车的稳定性和乘坐舒适性。
此外,高速铁路的线路坡度和升降曲线也需要进行科学的设计,以提高列车的运行效率和安全性。
3.高速供电与牵引技术:高速铁路采用电力牵引方式,通过架空线或第三轨供电,以实现列车的高速运行。
此外,采用了直流传动、交流传动、多系统传动等多种牵引方式,以适应不同地区和国家的电力系统标准。
4.高速信号与通信技术:高速铁路使用先进的信号与通信系统,确保列车能够实时接收到来自控制中心的指令,并能够及时与其他列车和地面设备进行通信。
这些系统包括列车自动控制系统(ATP)、列车运行控制系统(ATO)、列车通信系统以及车站和信号设备等。
5.高速轨道和道岔技术:高速铁路采用了平直轨道和道岔的设计,以减小列车在道岔处的摇晃和减速,提高列车的运行速度和安全性能。
此外,高速铁路的轨道也具备一定的自清雪能力,以保证列车的正常运行。
6.高速安全与监控技术:高速铁路配备了先进的安全和监控系统,实时监测列车的运行状态和安全指标,并通过中央控制中心进行监控和分析。
同时,还配备了紧急制动和救援设备,以应对突发情况和降低事故风险。
总的来说,高速铁路的主要技术特征体现在列车设计、线路规划、供电与牵引、信号与通信、轨道和道岔以及安全与监控等方面。
这些技术特征的应用和发展,为高速铁路的运行速度、安全性和乘坐舒适性提供了重要保障。