日本高速铁路(新干线)的发展
- 格式:pdf
- 大小:415.68 KB
- 文档页数:5
小议日本新干线刘盼盼商务日语商日081班08933115仝艳丽【摘要】新干线是第一条连结东京与新大阪之间的东海道新干线,于1964年10月开始通车营运。
它缓解了交通压力,对东京奥运会和大阪世博会的成功举办做出了贡献,同时也为日本经济的持续高速增长和国民生活水平的提高奠定了基础。
目前,我国经济持续高速增长,运输需求剧增,同时也是我国迈向全面小康社会的重要阶段,修建高速铁路迫在眉睫。
日本的一些经验颇值得借鉴。
【要旨】新幹線は東京と新大阪を結ぶ第一の東海道新幹線で、1964年10月に運営し始めた。
それは交通の圧力を減り、東京オリンピックと大阪万国博覧会の開催に貢献した。
同時に、日本経済の高度成長と国民生活の向上に基礎を打ち立てた。
現在、我が国では経済が素早く発展させ、運輸需要が激しく増えている。
同時に、全面的に小康社会を目指して発展する重要な階段である。
それで、高速道路を建設するのは迫っている。
日本の新幹線の建設経験の中には習いえるところがある。
【关键词】新干线经济借鉴正文1964年日本第一条新干线高速铁路的开通,是全世界第一条载客营运高速铁路系统。
通车多年从未发生过因人为因素导致有人死亡的事故,因此号称为全球最安全的高速铁路之一,也是世界上行驶过程最平稳的列车之一。
一、新干线高速铁路的建设1、迎奥运,建东海道新干线战后初期整个交通系统几乎处于瘫痪状态,航空和海运遭受战火的破坏,运输能力已经无法在短期内得以恢复,因此当时的运输主要依靠铁路。
直到1954年铁路运输仍占客运总量约80%以上,占货运总量的60%左右。
而同期,欧美发达国家的铁路早已进入夕阳状态。
这一时期,日本铁路运输需求量比战前增加了10倍,而铁路运输能力仅仅是战前的四分之一。
1955年以后,日本经济进入高速增长阶段,铁路运输的紧张状况更加突出。
特别是连接东京、名古屋和大阪三大经济圈的东海道线路的运输能力几近极限。
50年代虽然对铁路进行了一些电气化和内燃机化等技术改良,但仍然是杯水车薪,远远不能满足日益增长的铁路运输需求。
日本新干线高速铁路网的建设,从第一条东海道新干线于1964年10月1日建成通车,已经走过了30多年的历史。
除已建成的4条高速新干线铁路外,还包括正在建的、准备建的、及未来规划建的,将构成一个完整的日本新干线高速铁路网,如图1一3所示。
1、已建的4条新干线高速铁路(1)东海道新干线高速铁路(东京——新大阪)该线于1959年4月5日动工,于1964年7月竣工,并于同年10月1日通车营业。
该线线路全长552.6km (1995年列车时刻表里程),修建耗资3300亿日元。
(2)山阳新干线高速铁路(新大阪——博多)该线全长623.3km(现在时刻表里程),其中第一段新大阪——冈山间180.3km,于1967年3月动工,1972年3月建成通车营业,修建耗资2200亿日元;第二段冈山——博多间443.Okm,于1970年2月动工,1974年8月竣工,1975年3月通车营业,修建耗资6900亿日元。
(3)东北新干线高速铁路(东京——盛冈)该线是一条向北海道方向延伸的新干线高速铁路。
其中第一阶段为由大宫——盛冈间505km(1995年列车时刻表里程),于1971年11月动工,1982年6月建成通车营业;第二段由大宫——上野26.7km(1995年列车时刻表里程),于1985年建成通车营业;第三段由上野——东京3.6km(1995年列车时刻表里程),于1991年6月建成通车营业。
至此,东京——盛冈间535.3km的东北新干线高速铁路全线建成通车营业。
(4)上越新干线高速铁路(大宫——新泻)该线于1975年11月动工,1982年11月建成通车营业,全线303.6km(1995年列车时刻表里程)。
上述4条新干线高速铁路,为日本正在运行营业的高速铁路。
该4条新干线高速铁路1995年列车时刻表营业里程为2014.8km,其中东海道新干线为552.6km、山阳新干线为623.3km、东北新干线(东京——盛冈)535.3km、上越新干线(大宫——新泻)303.6km。
日本新干线的主要技术进步和经济效益田野返回新干线的主要技术进步日本的新干线诞生于35年前,其后随着信息技术和电气技术的整体进步,为实现大运量高密度运行、提高安全性能及减少维护费用基本目的,新干线先后做过7次大的设计变更,应用了大批新技术,从技术整体来看与35年前相比有了“质的”飞跃。
1 提高了行车速度通过采取最佳气动特性车型设计、改进车辆倾斜方法、提高曲线通过速度、及应用数字自动列车控制装置(ATC)、列车集中控制装置(CTC)、交通管理计算机系统(COMTRAC)等实现了速度控制最优化运行,使得新干线行驶速度从开业时的200公里/小时提高到现在的300公里/小时。
2 应用了强电半导体技术及“交流感应电机”随着强电半导体技术的进步,新干线的驱动系统从当初的主变压器抽头切换+电阻控制直流串激电机方式改为GTO及IGBTVVVF控制+小型三相交流感应电机方式。
通过这项核心技术的进步,大大提高了新干线运行的可靠性,电机部分基本无需维护,降低了车辆维护费用,减少了车体重量。
同时,由于直接使用交流电,升压快,提速时间缩短。
3 采用了新车体材料及设计降低了车体重量及轴重新干线500系列以后的车辆使用了铝合金材质“钎焊蜂窝+挤压成型”技术,使得新干线车体重量从“O系列”的10吨降至6吨,而抗穿越隧道时压强变化能力提高了近3倍;轴重也从“0系列”的16吨降至11吨。
通过轴重的降低,减轻了路基的震动,抑制了轨道劣化,节约加减速的动能,并减少了隧道截面,从而降低了整体成本。
4 采用了电力再生制动方式降低了能耗新干线300系列以后由VVVF方式控制的列车都采用了电力回收刹车,使得大部分制动能随时返回电网,节约了能源。
在同样以220公里/小时行驶时,现在的新干线电力消耗只有开业时的66%。
同时由于列车制动主要靠电力制动,减少了机械制动带来的维修问题,提高了可靠性。
5 完善了MARS票务系统MARS票务系统是支撑新干线得以赢利的最重要系统之一,现在通过这套系统已可在全国任何地点的有人或无人售票点发售预定车票并随时了解整个列车的票务及经济状态。
高速铁路列车发展史
高速铁路列车发展史,可以追溯到20世纪初的德国。
当时,德国生产的蒸汽火车列车最快时速已达到了200公里/小时。
但随着时间的推移,这种速度已经难以满足人们越来越高的出行需求。
20世纪60年代,日本开始研制高速列车。
1964年,日本的“新干线”高速列车首次投入运营,最高时速达到了210公里/小时,成为当时世界上最快的列车。
随后,法国、西班牙、中国等国家也相继建设了高速铁路,发展了自己的高速列车。
法国的TGV列车在1981年投入使用,最高时速达到了380公里/小时;西班牙的AVE列车在1992年首次运营,最高时速达到了310公里/小时;中国的高速铁路则在21世纪初迎来了快速发展,目前中国的高速列车已经达到了时速350公里以上。
高速铁路列车的发展离不开科技的进步。
磁浮技术、轻量化材料、数字化控制系统等新技术的应用,使得高速列车的运行更加安全、舒适和高效。
高速铁路列车的发展不仅改变了人们的出行方式,也带动了经济的发展。
高速铁路的建设和运营,带动了铁路、城市规划、旅游等领域的发展,成为现代化城市建设的重要组成部分。
未来,高速列车将继续发挥着重要作用,为人们的出行和生活带来更多的便利和舒适。
- 1 -。
日本高铁发展史内容提要:作为世界上第一条载客运营的高速铁路系统,日本东海道新干线已经安全行驶了近半个世纪。
半个世纪来,新干线极大地改变了日本人的生活模式和城市发展模式,其自身也成为外国人赴日旅行的必到之地,被称为日本的“名片”。
作为世界上第一条载客运营的高速铁路系统,日本东海道新干线已经安全行驶了近半个世纪。
1964年10月1日东京奥运会举办前夕,这条凝聚着一代日本铁路工作者心血的高速铁路正式通车,并在运营的第二年达到了令世人艳羡的210公里时速。
东海道新干线把京滨、中京、阪神城市群结成一个“4小时经济圈”,创造了沿线城市经济快速增长的奇迹。
半个世纪来,新干线极大地改变了日本人的生活模式和城市发展模式,其自身也成为外国人赴日旅行的必到之地,被称为日本的“名片”。
然而,任何一种新鲜事物诞生之初皆会遭受误解。
作为耗资巨大的国家基建工程,东海道新干线从筹备、建设到通车,一直饱受来自民间与官方的双重质疑。
打开尘封的历史,半个世纪前围绕新干线展开的那场争议,对于现代的启示依旧深远。
落后国的追击日本的铁路网初建于明治时代,由于历史局限性,其轨道比国际通行的标准轨略窄。
此后数十年,在战争的影响下,修建较宽轨道的计划一再被搁置。
列车在窄轨上的运行速度严重受限,直到上世纪50年代,日本的铁路列车运行时速仍被限制在100公里以下。
而欧美国家普遍的火车时速已超过120公里,其中英国伦敦-爱丁堡间运行的特急列车“飞翔的苏格兰人”用蒸汽机车牵引,以160公里/小时以上的最高速度运行;德国国铁列车以150公里/小时以上的最高速度运行;美国铁路甚至达到了180公里/小时的高速。
第二次世界大战后,日本经济迅速恢复。
特别是京滨、中京、阪神地区,成为带动整个日本经济发展的火车头。
连接这些地区的东海道铁路线虽只占日本铁路总长的3%,却承担着全国客运总量的24%和货运总量的23%。
1957年,日本运输省设立了由专家学者组成的“日本国有铁路干线调查会”,就如何增强东海道铁路线运输能力问题进行探讨。
新干线0系电联车引言:新干线是日本著名的高速列车系统,为了提供更快、更舒适的交通选择,新干线0系电联车应运而生。
本文将详细介绍新干线0系电联车的发展历程、设计特点以及对日本交通系统的影响。
一、发展历程新干线0系电联车首次亮相于1964年,是日本第一种运行速度达到210公里/小时的新干线列车。
而0系的二次型号则在1974年投入运营,这些改进车型的速度最高可达到220公里/小时。
二、设计特点1. 外观设计新干线0系电联车以其创新的外观设计而闻名。
列车车头采用弯曲流线型设计,以减少空气阻力,提高速度。
车身涂装鲜艳独特,通常是白色为主,车头则装饰有深蓝色和金色,使其显得更加美观。
2. 内部布局0系电联车拥有宽敞的座位空间,座椅舒适度高,为乘客提供良好的旅行体验。
车厢内设有清洁的洗手间和饮水设施,方便乘客使用。
车厢内还配备了最新的信息系统,以提供实时的列车运行信息和旅行指南。
3. 技术先进新干线0系电联车采用了许多先进的技术,以确保其高速、高效的运行。
例如,它配备了自动防病风系统,可保持列车的稳定性,减少空气阻力。
车辆配备了最新的辅助制动系统,可在紧急情况下迅速停车,确保乘客的安全。
三、对日本交通系统的影响1. 提高了交通效率新干线0系电联车的推出使得日本各主要城市之间的交通更加便捷和高效。
通过缩短旅行时间,提高准点率和舒适度,0系电联车大大促进了经济和人员流动。
2. 拓展了旅游市场新干线0系电联车通过较短的旅行时间和高质量的服务,吸引了大量的国内外游客。
这些游客在旅行过程中可以更方便地游览日本著名的旅游景点,从而促进了旅游产业的发展。
3. 推动了技术创新新干线0系电联车的诞生促进了日本在铁路交通领域的技术创新。
它不仅展示了日本制造业在列车设计和制造方面的技术实力,也为其他国家的高速铁路系统提供了参考和借鉴。
结论:新干线0系电联车是一项在日本交通系统中具有重要地位的技术创新。
通过其高速、高效和舒适的特点,它为日本的经济发展、旅游业和科技创新做出了重要贡献。