高考数学复习点拨 归纳推理与类比推理异同点比较
- 格式:doc
- 大小:62.00 KB
- 文档页数:3
高考数学推理与证明疑难知识点辨析一、基础知识总结与归纳1.推理一般包括合情推理和演绎推理。
2.。
合情推理:根据已有的事实和正确的结论(包括定义、公理、定理等)、实验和实践的结果,以及个人的经验和直觉等推测某些结果的推理过程。
归纳、类比是合情推理常用的思维方法。
3.。
归纳推理:根据一类事物的部分对象具有某种性质,推出这类事物的所有对象都具有这种性质的推理。
4.。
归纳推理的一般步骤:⑴通过观察个别情况发现某些相同性质;⑵从已知的相同性质中推出一个明确表达的一般性命题(猜想)。
5.类比推理:根据两类不同事物之间具有某些类似性,推出其中一类事物具有另一类事物类似的性质的推理。
6.类比推理的一般步骤:⑴找出两类事物之间的相似性或一致性;⑵从一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想)。
7.演绎推理:根据一般性的真命题导出特殊性命题为真的推理。
8.分析法:从原因推导到结果的思维方法。
9.综合法:从结果追溯到产生这一结果的原因的思维方法。
与当今“教师”一称最接近的“老师”概念,最早也要追溯至宋元时期。
金代元好问《示侄孙伯安》诗云:“伯安入小学,颖悟非凡貌,属句有夙性,说字惊老师。
”于是看,宋元时期小学教师被称为“老师”有案可稽。
清代称主考官也为“老师”,而一般学堂里的先生则称为“教师”或“教习”。
可见,“教师”一说是比较晚的事了。
如今体会,“教师”的含义比之“老师”一说,具有资历和学识程度上较低一些的差别。
辛亥革命后,教师与其他官员一样依法令任命,故又称“教师”为“教员”。
10.反证法:判定非q为假,推出q为真的方法。
教师范读的是阅读教学中不可缺少的部分,我常采用范读,让幼儿学习、模仿。
如领读,我读一句,让幼儿读一句,边读边记;第二通读,我大声读,我大声读,幼儿小声读,边学边仿;第三赏读,我借用录好配朗读磁带,一边放录音,一边幼儿反复倾听,在反复倾听中体验、品味。
应用反证法证明命题的一般步骤:⑴分清命题的条件和结论;⑵做出与命题结论相矛盾的假定;⑶由假定出发,应用正确的推理方法,推出矛盾的结果;⑷间接证明命题为真。
归纳推理、类比推理第三周归纳推理、类比推理一、归纳推理(一)归纳推理:以个别或特殊性知识为前提,推出一般性结论的推理。
它包括完全归纳和不完全归纳,两者的区别在于前者考察了一类中的每一个对象,而后者只考察了一类中的部分对象。
其逻辑结构:S1是(不是)P S1是(或不是)PS2是(不是)P S2是(或不是)PS3是(不是)P S3是(或不是)P…………Sn是(不是)P Sn是(或不是)PS1、S2、S3……Sn是S类的全部对象S1、S2、S3……Sn是S类的部分对象所以,所有的S是(不是)P 所以,所有的S都是(或不是)P根据前提中是否考察了事物对象与其属性之间的内在联系,不完全归纳推理分为简单枚举法和科学归纳法。
1.简单枚举归纳推理又叫做简单枚举法,它是根据一类事物对象中部分对象具有(或不具有)某种属性,推出该类对象全体都具有(或不具有)这种属性的推理。
其逻辑形式是:S1是(不是)PS2是(不是)PS3是(不是)P……Sn是(不是)P(S1、S2、S3……Sn是S类的部分对象,并且没有出现反例)———————————————————————————所以,所有的S是(不是)P2.科学归纳法科学归纳推理又叫做科学归纳法,它是根据一类对象中的部分对象与其属性之间的联系具有必然性,推出该类对象的全部都具有这种属性的推理逻辑结构式S1是PS2是PS3是P……Sn是P(S1、S2、S3……Sn是S类的部分对象,并且S与p之间有必然联系)——————————————————所以,所有的S是P(二)因果联系:事物之间引起和被引起的关系。
因果联系的特征有:不能颠倒的先因后果、一个原因可以引起多个结果、一个结果也可以由不同原因引起。
求因果方法:五种基本方法。
1.求同法,即寻求被研究的事物现象出现在若干不同场合,是否具有某种共同原因的方法,其特点是异中求同。
形式结构:场合先行情况被研究现象(1) A、B、C a(2) A、D、E a(3) A、F、G a………………………————————————————所以,A与a有因果联系。
归纳推理与类比推理异同点比较合情推理是数学的基本思维过程,也是人们学习和生活中经常使用的思维方式.在解决问题的过程中,合情推理具有猜侧和发表结论,探索和提供思路的作用.有利于创新意识的培养.在能力高考的要求下,推理方法就显得更加重要.在复习中要把推理方法形成自己的解决问题的意识,使得问题的解决有章有法,得心应手.合情推理包括归纳推理和类比推理.一.归纳推理和类比推理的联系:归纳推理与类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理.由这两种推理得到的结论都不一定正确,其正确性有待进一步证明.二.归纳推理和类比推理的区别:(一) 归纳推理1.归纳推理定义: 由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理(简称归纳).简言之,归纳推理是由部分到整体、由个别到一般的推理.说明:归纳推理的思维过程大致如下:2.归纳推理的特点:(1)归纳推理的前提是几个已知的特殊现象,归纳所得的结论是尚属未知的一般现象,该结论超越了前提所包容的范围.(2)由归纳推理得到的结论具有猜测的性质,结论是否真实,还需经过逻辑证明和实践检验.因此,它不能作为数学证明的工具.(3)归纳推理是一种具有创造性的推理.通过归纳推理得到的猜想,可以作为进一步研究的起点,帮助人们发现问题和提出问题.归纳推理是从个别事实中概括出一般原理的一种推理模型,归纳推理包括不完全归纳法和完全归纳法.3.归纳推理的一般步骤:①通过观察个别情况发现某些相同本质;②从已知的相同性质中推出一个明确表达的一般性命题.说明:归纳推理基于观察和实验,像“瑞雪兆丰年”等农谚一样,是人们根据长期的实践经验进行归纳的结果.物理学中的波义耳—马略特定律、化学中的门捷列夫元素周期表、天文学中开普勒行星运动定律等,也都是在实验和观察的基础上,通过归纳发现的.(二).类比推理(以下简称类比)1.类比推理定义:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比).简言之,类比推理是由特殊到特殊的推理.2. 类比推理的一般步骤:①找出两类事物之间的相似性或一致性;②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).3.说明:类比推理的思维过程大致如下图所示:类比推理是在两类不同的事物之间进行对比,找出若干相同或相似点之后,推测在其他方面也可以存在相同或相似之处的一种推理模式.类比推理不象归纳推理那样局限于同类事物, 同时,类比推理比归纳推理更富于想像,因而也就更具有创造性. 人类在科学研究中建立的不少假说和教学中许多重要的定理,公式都是通过类比提出来的,工程技术中许多创造和发明也是在类比推理的启迪下而获得的.因此,类比推理已成为人类发现发明的重要工具.例1. 如图,①,②,③,…是由花盆摆成的图案,根据图中花盆摆放的规律,第n个图形中的花盆数a n=.【答案】a n=3n2-3n+1.【解析】仔细观察发现:图案①的花盆数为:1个, a1=1; 图案②的花盆中间数为3,上下两行都是2个, a2=2+3+2; 图案③的花盆中间数为5,上面两行由下到上分别递减1个,而且关于中间行上下对称, a3=3+4+5+4+3;……;可以猜想:第n个图形中的花盆中间数为2n-1,上面每行由下到上分别递减1个,最上面有n个,而且关于中间行上下对称,因此a n=n+(n+1)+…+(2n-1)+…+(n+1) + n=3n2-3n+1.【评析】上例是利用归纳推理解决问题的.归纳推理分为完全归纳和不完全归纳,由归纳推理所得的结论虽然未必是可靠的,但它由特殊到一般,由具体到抽象的认识功能,对科学的发现是十分有用的.观察、实验,对有限的资料作归纳整理,提出带有规律性的说法,乃是科学研究的最基本的方法之一.例2.如图,过四面体V-ABC的底面上任一点O分别作OA1∥VA,OB1∥VB,OC1∥VC,A1,B1,C1分别是所作直线与侧面交点.求证:++为定值.分析考虑平面上的类似命题:“过△ABC(底)边 AB上任一点O分别作OA1∥AC,OB1∥BC,分别交BC、AC于A1、B1,求证+为定值”.这一命题利用相似三角形性质很容易推出其为定值1.另外,过A、O分别作BC垂线,过B、O 分别作AC垂线,则用面积法也不难证明定值为1.于是类比到空间围形,也可用两种方法证明其定值为1.证明:如图,设平面OA1VA∩BC=M,平面OB1VB∩AC=N,平面OC1VC∩AB=L,则有△MOA1∽△MAV,△NOB1∽△NBV,△LOC1∽△ LCV.得++=++。
演绎推理,归纳推理,类比推理的联系和区别古今中外,推理一直是重要的智力活动,可以从多个角度分析事物本质,并做出合理的判断。
演绎推理、归纳推理、类比推理是三种最常用的推理方法,它们之间有着内在的关联,也存在着明显的区别。
首先,演绎推理和归纳推理是比较对立的两种推理方式。
演绎推理是从一般性原理出发,推断出特殊性结果的推理方法,它是比较常用的推理,比如,根据生物学原理推断出某种特定的生物性状。
另一方面,归纳推理是从特定的事例中吸取普遍的结论,即将特定的事例概括为一般的原理的推理方法。
比如,尝试的推测出一般的动物特征。
其次,类比推理是从两个不同的事例中找出相似之处,然后把它们之间的相似之处用于推理的方法。
类比推理的特点是,不仅要根据已有的知识,还要融合思维,引出一些新的结论。
比如,从一个犯罪事件中,类比出另一个犯罪事件,从而发现新的犯罪行为。
最后,演绎推理、归纳推理、类比推理之间存在着明显的关联。
演绎推理是从一般性原理出发,推断出特殊性结果;归纳推理是从特定的事例中提炼出一般的原则;类比推理是从两个不同的事例中发现相似之处,进行推理。
三种推理方法子间关系密切,演绎推理是归纳推理的前提,归纳推理在类比推理中也发挥重要作用。
总之,演绎推理、归纳推理、类比推理是推理中最重要的三种方法,它们不仅有着内在的关联,更有着一定的差异性。
在做出判断时,需要根据事实,选择不同的推理方式,以解决实际问题。
- 1 -。
高考数学推理与证明疑难知识点辨析
一、基础知识总结与归纳
1.推理一般包括合情推理和演绎推理。
2.。
合情推理:根据已有的事实和正确的结论(包括定义、公理、定理等)、实验和实践的结果,以及个人的经验和直觉等推测某些结果的推理过程。
归纳、类比是合情推理常用的思维方法。
3.。
归纳推理:根据一类事物的部分对象具有某种性质,推出这类事物的所有对象都具有这种性质的推理。
4.。
归纳推理的一般步骤:⑴通过观察个别情况发现某些相同性质;⑵从已知的相同性质中推出一个明确表达的一般性命题(猜想)。
5.类比推理:根据两类不同事物之间具有某些类似性,推出其中一类事物具有另一类事物类似的性质的推理。
6.类比推理的一般步骤:⑴找出两类事物之间的相似性或一致性;⑵从一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想)。
7.演绎推理:根据一般性的真命题导出特殊性命题为真的推理。
8.分析法:从原因推导到结果的思维方法。
9.综合法:从结果追溯到产生这一结果的原因的思维方法。
10.反证法:判定非q为假,推出q为真的方法。
应用反证法证明命题的一般步骤:⑴分清命题的条件和结论;⑵做出与命题结论相矛盾的假定;⑶由假定出发,应用正确的推理方法,推出矛盾的结果;⑷间接证明命题为真。
3.1.2类比推理学习目标1.理解类比推理的意义;了解类比推理的特点;2.掌握运用类比推理的一般步骤。
会进行简单的类比推理。
3.了解归纳推理与类比推理的异同;4.理解合情推理的含义,了解所得结果不一定正确;5.了解合情推理在科学实验和创造中的价值,增强在数学学习中自觉运用合情推理的意识。
提高归纳、类比联想的能力。
重难点剖析重点:掌握类比推理的特点与步骤;难点:在类比推理的运用中发现两类对象间相似性质潜在的关联性;学习过程一.问题情境从一个传说说起:春秋时代鲁国的公输班(后人称鲁班,被认为是木匠业的祖师)一次去林中砍树时被一株齿形的茅草割破了手,这桩倒霉事却使他发明了锯子.他的思路是这样的:茅草是齿形的;茅草能割破手. 我需要一种能割断木头的工具;它也可以是齿形的.这个推理过程是归纳推理吗?二.数学活动我们再看几个类似的推理实例。
例1、试根据等式的性质猜想不等式的性质。
等式的性质:猜想不等式的性质:(1) a=b⇒a+c=b+c; (1) a>b⇒a+c>b+c;(2) a=b⇒ ac=bc; (2) a>b⇒ ac>bc;(3) a=b⇒a2=b2;等等。
(3) a>b⇒a2>b2;等等。
问:这样猜想出的结论是否一定正确?例2、试将平面上的圆与空间的球进行类比.圆的定义:平面内到一个定点的距离等于定长的点的集合.球的定义:到一个定点的距离等于定长的点的集合.圆 球 弦←→截面圆 直径←→大圆 周长←→表面积 面积←→体积☆上述两个例子均是这种由两个(两类)对象之间在某些方面的相似或相同,推演出他们在其他方面也相似或相同;或其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比).简言之,类比推理是由特殊到特殊的推理. 类比推理的一般步骤:⑴ 找出两类对象之间可以确切表述的相似特征;⑵ 用一类对象的已知特征去推测另一类对象的特征,从而得出一个猜想; ⑶ 检验猜想,即例3如图,已知点O 是ABC ∆内任意一点,连结,,,CO BO AO 并延长交对边于111,,C B A ,则1111111=++CC OC BB OB AA OA (Ⅰ)类比猜想,对于空间四面体BCD V -,存在什么类似的结论 (Ⅱ)?并用证明(Ⅰ)时类似的方法给出证明。
归纳推理与类比推理异同点比较
合情推理是数学的基本思维过程,也是人们学习和生活中经常使用的思维方式.在解决问题的过程中,合情推理具有猜侧和发表结论,探索和提供思路的作用.有利于创新意识的培养.在能力高考的要求下,推理方法就显得更加重要.在复习中要把推理方法形成自己的解决问题的意识,使得问题的解决有章有法,得心应手.合情推理包括归纳推理和类比推理.
一.归纳推理和类比推理的联系:
归纳推理与类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理.由这两种推理得到的结论都不一定正确,其正确性有待进一步证明.
二.归纳推理和类比推理的区别:
(一) 归纳推理
1.归纳推理定义: 由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理(简称归纳).简言之,归纳推理是由部分到整体、由个别到一般的推理.
说明:归纳推理的思维过程大致如下:
2.归纳推理的特点:
(1)归纳推理的前提是几个已知的特殊现象,归纳所得的结论是尚属未知的一般现象,该结论超越了前提所包容的范围.
(2)由归纳推理得到的结论具有猜测的性质,结论是否真实,还需经过逻辑证明和实践检验.因此,它不能作为数学证明的工具.
(3)归纳推理是一种具有创造性的推理.通过归纳推理得到的猜想,可以作为进一步研究的起点,帮助人们发现问题和提出问题.
归纳推理是从个别事实中概括出一般原理的一种推理模型,归纳推理包括不完全归纳法和完全归纳法.
3.归纳推理的一般步骤:
①通过观察个别情况发现某些相同本质;
②从已知的相同性质中推出一个明确表达的一般性命题.
说明:归纳推理基于观察和实验,像“瑞雪兆丰年”等农谚一样,是人们根据长期的实践经验进行归纳的结果.物理学中的波义耳—马略特定律、化学中的门捷列夫元素周期表、天文学中开普勒行星运动定律等,也都是在实验和观察的基础上,通过归纳发现的.
(二).类比推理(以下简称类比)
1.类比推理定义:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比).简言之,类比推理是由特殊到特殊的推理.
2. 类比推理的一般步骤:
①找出两类事物之间的相似性或一致性;
②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).
3.说明:类比推理的思维过程大致如下图所示:
类比推理是在两类不同的事物之间进行对比,找出若干相同或相似点之后,推测在其他方面也可以存在相同或相似之处的一种推理模式.类比推理不象归纳推理那样局限于同类事物, 同时,类比推理比归纳推理更富于想像,因而也就更具有创造性. 人类在科学研究中建立的不少假说和教学中许多重要的定理,公式都是通过类比提出来的,工程技术中许多创造和发明也是在类比推理的启迪下而获得的.因此,类比推理已成为人类发现发明的重要工具.
例 1. 如图,①,②,③,…是由花盆摆成的图案,根据图中花盆摆放的规律,第n 个图形中的花盆数a n= .
【答案】 a n=3n2-3n+1.
【解析】仔细观察发现:图案①的花盆数为:1个, a1=1; 图案②的花盆中间数为3,上下两行都是2个, a2=2+3+2; 图案③的花盆中间数为5,上面两行由下到上分别递减1个,而且关于中间行上下对称, a3=3+4+5+4+3;……;可以猜想: 第n个图形中的花盆中间数为2n-1,上面每行由下到上分别递减1个,最上面有n个,而且关于中间行上下对称,因此a n=n+(n+1)+…+(2n-1)+…+(n+1) + n=3n2-3n+1.
【评析】上例是利用归纳推理解决问题的.归纳推理分为完全归纳和不完全归纳,由归纳推理所得的结论虽然未必是可靠的,但它由特殊到一般,由具体到抽象的认识功能,对科学的发现是十分有用的.观察、实验,对有限的资料作归纳整理,提出带有规律性的说法,乃是科学研究的最基本的方法之一.
例2.如图,过四面体V-ABC的底面上任一点O分别作OA1∥VA,OB1∥VB,OC1∥VC,A1,
B1,C1分别是所作直线与侧面交点.求证:++为定值.
分析考虑平面上的类似命题:“过△ABC(底)边 AB上任一点O分别作
OA1∥AC,OB1∥BC,分别交BC、AC于A1、B1,求证+为定值”.这一
命题利用相似三角形性质很容易推出其为定值1.另外,过A、O分别作BC垂线,过B、O 分别作AC垂线,则用面积法也不难证明定值为1.于是类比到空间围形,也可用两种方法证明其定值为1.
证明:如图,设平面OA1VA∩BC=M,平面OB1VB∩AC=N,平面OC1VC∩AB=L,
则有△MOA1∽△MAV,△NOB1∽△NBV,△LOC1∽△ LCV.得
++=++。
在底面△ABC中,由于AM、BN、CL交于一点O,用面积法易证得:
++=1。
∴++=1。
【知识小结】类比推理是根据两个对象有一部分属性类似,推出这两个对象的其他属性亦类似的一种推理方法,例如我们拿分式同分数来类比,平面几何与立体几何中的某些对象类比等等.我们必须清楚类比并不是论证,它可以帮助我们发现真理.
通俗地说,合情推理是指“合乎情理”的推理.数学研究中,得到一个新结论之前,合情推理常常能帮助我们猜测和发现结论;证明一个数学结论之前,合情推理常常能为我们提供证明的思路和方向.。