433余角和补角 (2)
- 格式:ppt
- 大小:619.50 KB
- 文档页数:49
感受数学与生活的密切联系,丰富数学学习的成功体验,激发学生继续学习的好奇心,培养学生与他人合作交流的意识。
一起看看人教版数学九年级下册教案!欢迎查阅!人教版数学九年级下册教案1一、教学目标1. 通过观察、猜想、比较、具体操作等数学活动,学会用计算器求一个锐角的三角函数值。
2.经历利用三角函数知识解决实际问题的过程,促进观察、分析、归纳、交流等能力的发展。
3.感受数学与生活的密切联系,丰富数学学习的成功体验,激发学生继续学习的好奇心,培养学生与他人合作交流的意识。
二、教材分析在生活中,我们会经常遇到这样的问题,如测量建筑物的高度、测量江河的宽度、船舶的定位等,要解决这样的问题,往往要应用到三角函数知识。
在上节课中已经学习了30°,45°,60°角的三角函数值,可以进行一些特定情况下的计算,但是生活中的问题,仅仅依靠这三个特殊角度的三角函数值来解决是不可能的。
本节课让学生使用计算器求三角函数值,让他们从繁重的计算中解脱出来,体验发现并提出问题、分析问题、探究解决方法直至最终解决问题的过程。
三、学校及学生状况分析九年级的学生年龄一般在15岁左右,在这个阶段,学生以抽象逻辑思维为主要发展趋势,但在很大程度上,学生仍然要依靠具体的经验材料和操作活动来理解抽象的逻辑关系。
另外,计算器的使用可以极大减轻学生的负担。
因此,依据教材中提供的背景材料,辅以计算器的使用,可以使学生更好地解决问题。
学生自小学起就开始使用计算器,对计算器的操作比较熟悉。
同时,在前面的课程中学生已经学习了锐角三角函数的定义,30°,45°,60°角的三角函数值以及与它们相关的简单计算,具备了学习本节课的知识和技能。
四、教学设计(一)复习提问1.梯子靠在墙上,如果梯子与地面的夹角为60°,梯子的长度为3米,那么梯子底端到墙的距离有几米?学生活动:根据题意,求出数值。
2.在生活中,梯子与地面的夹角总是60°吗?不是,可以出现各种角度,60°只是一种特殊现象。
4.3.3 余角和补角Ⅰ学法导引1.学习余角、补角时,要注意它们是指两个角大小之间的关系,只与它们的和有关,而与其位置无关,同时也要学会列方程(组)的方法来解决几何问题.2.在表示方向时,要先在观测点画出方位图,然后测量出角度表示出来.注意表示时要先写出南、北,再写偏东或偏西,偏多少度.Ⅱ思维整合解析重点本节的重点是互为补角、互为余角的概念及性质.(1) 概念:如果两个角的和是一个平角,这两个角叫做互为补角,也就是说其中一个角是另一个角的补角,如图3-4-20中,∠α与∠β互为补角.如果两个角的和是一个直角,那么这两个角叫做互为余角,也就是说其中一个角是另一个角的余角,如果3-4-21中,∠1与∠2互为余角.注意:两个角互为补角、互为余角是指它们大小之间的关系,只与这两个角的和有关,与它们的位置无关.用法:∵∠α+∠β=180°,∴∠α与∠β互为补角,或∵∠α与∠β互补,∴∠α+∠β=180°.∵∠1与∠2互余,∴∠1+∠2=90°或∵∠1+∠2=90°,∴∠1与∠2互为余角.2.性质:同角(或等角)的余角相等.同角(或等角)的补角相等.用法:∵∠1+∠2=90°,∠1+∠3=90°,∴∠2=∠3.或∵∠1+∠2=90°,∠3+∠4=90°,且∠1=∠3,∴∠2=∠4.【例1】一个角的补角加上10°,等于这个角的余角的3倍,求这个角.解析可设这个角为x,则其余角为(90°-x),其补角为(180°-x),也可设这个角的余角为y,则这个角的补角为(90°+y ),两种设未知数的方法,根据题意,均可列出方程求解.解方法一:设这个角为x,则其余角为(90°-x),其补角为(180°-x),根据题意,得180°-x+10°=(90°-x)×3,解得x=40°.方法二:设这个角的余角为y,则其补角为(90°+y),根据题意得:90°+y+10°=3y,解得y=50°,则这个角为90°-50°=40°.点拨有关余角和补角的计算题目,常设未知数,根据题意列方程(组)去解,所设未知数不同,所得到的方程也不同.设一个未知数,要列一个方程;设两个未知数,要列方程组来解,总之设几个未知数,常列几个方程.剖析难点本节难点是方向的表示方法.在表示方向时,要先在观测点画出方位图,然后测量出角度表示出来.注意表示时要先写是北还是南,再写偏东或偏西,偏多少度.如图3-4-22,OA是表示北偏东30°的一条射线,OB是表示南偏西50°的一条射线;特别地,射线OC表示北偏西45°可写成西北方向,OD表示东南方向.【例2】在飞机飞行时,飞行方向是用飞行路线与实际的南或北方向线之间的夹角大小来表示的.如图3-4-23用AN(南北线)与飞行线之间顺时针方向的夹角作为飞行方向角.从A 到B的飞行方向角为35°,从A到C的飞行方向角为60°,从A到D的飞行方向角为145°.试求AB与AC之间夹角为多少度?AD与AC之间夹角为多少度?并画出从A飞出且方向角为105°的飞行线.解析先由实际问题转化成图中具体角的大小,再进行角之间的计算.解由题意得,∠NAB=35°,∠NAC=60°,∠NAD=145°.∴∠BAC=∠NAC-∠NAB=60°-35°=25°.∠CAD=∠NAD-∠NAC=145°-60°=85°.∴AB与AC之间的夹角是25°,AD与AC之间的夹角是85°.图中虚线AE即为从A飞出且方向角为105°的飞行线.点拨先确定正南、正北方向,再找飞机飞行的方向角.。