《433余角和补角》导学
- 格式:doc
- 大小:79.00 KB
- 文档页数:2
4.3.3余角和补角【出示目标】1.了解两个角互余或互补的意义.2.掌握同角或等角的余角相等;同角或等角的补角相等.3.理解方位角的概念,会用角描述方向,解决实际问题.【预习导学】自学指导看书学习第137、138页的内容,知道什么是补角和余角,以及它们的性质.知识探究1.一般地,如果两个角的和等于90°(直角),就说这两个角互为余角.即其中每一个角都是另一个角的余角.几何语言表示为:如果∠1+∠2=90°,那么∠1与∠2互为余角.2.一般地,如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个是另一个角的补角.几何语言表示为:如果∠1+∠2=180°,那么∠1与∠2互为补角.3.性质:等角的余角相等,等角的补角相等.【自学反馈】1.判断题:(1)90度的角叫余角,180度的角叫补角.(×)(2)若∠1+∠2+∠3=90°则∠1,∠2,∠3互为余角.(×)(3)如果一个角有补角,那么这个角一定是钝角.(×)(4)互补的两个角不可能相等.(×)(5)钝角没有余角,但一定有补角.(√)(6)互余的两个角一定都是锐角,两个锐角一定互余.(×)(7)如果∠A=25°,∠B=75°,那么∠A与∠B互为余角.(×)(8)如果∠A=x°,∠B=(90-x)°,那么∠A与∠B互余.(√)2.已知一个角的补角是这个角的余角的3倍,求这个角的度数.解:45°.【出示目标】活动1:小组讨论1.如图,点A、O、B在同一直线上,OD平分∠AOB,∠COE =90°.回答下列问题:(1)写出图中所有的直角∠AOD,∠BOD,∠EOC;(2)写出图中与∠AOE相等的角∠3;(3)写出图中∠AOE所有的余角∠2,∠4;(4)写出图中∠COD的补角∠EOB;(5)写出图中∠DOE的补角∠AOC.2.如图,点O在直线AB上,OD平分∠COA,OE平分∠COB.①∠COB+∠AOC=180°,∠EOD=90°.②图中互余的角有 4 对,互补的角有 5 对.活动2:活学活用1.请认真观察下图,回答下列问题:(1)图中有几对互余的角?(2)图中哪几对角是相等的角(直角除外)?为什么?解:(1)6;(2)∠C=∠B,∠COD=∠BOE=∠A.2.用方位角描述下列方向.【课堂小结】1.余角、补角的概念:(1)和为90°的两个角互为余角;(2)和为180°的两个角互为补角.2.余角、补角的性质:(1)等角的余角相等;(2)等角的补角相等.【随堂训练】教学至此,敬请使用学案随堂训练部分.。
《余角和补角》导学案一、学习目标1、理解余角和补角的概念。
2、掌握余角和补角的性质,并能运用其解决简单的几何问题。
3、培养观察、分析和推理能力,体会数学在实际生活中的应用。
二、学习重点1、余角和补角的概念。
2、余角和补角的性质。
三、学习难点余角和补角性质的应用。
四、知识回顾1、角的度量单位:度、分、秒。
2、直角的度数为 90°。
五、新课导入在生活中,我们常常会遇到一些与角的数量关系有关的问题。
比如,在一幅三角板中,有两个角的度数之和等于 90°,而在一些图形中,两个角的度数之和等于180°。
那么,这些角之间有着怎样的特殊关系呢?今天我们就来学习余角和补角。
六、余角的概念如果两个角的和等于 90°(直角),就说这两个角互为余角,简称互余。
其中一个角是另一个角的余角。
例如,若∠1 +∠2 = 90°,则∠1 与∠2 互为余角,∠1 是∠2 的余角,∠2 也是∠1 的余角。
练习 1:已知∠A = 20°,则∠A 的余角为多少度?解:因为互为余角的两个角的和为 90°,所以∠A 的余角= 90° 20°= 70°七、补角的概念如果两个角的和等于 180°(平角),就说这两个角互为补角,简称互补。
其中一个角是另一个角的补角。
例如,若∠3 +∠4 = 180°,则∠3 与∠4 互为补角,∠3 是∠4 的补角,∠4 也是∠3 的补角。
练习 2:已知∠B = 110°,则∠B 的补角为多少度?解:因为互为补角的两个角的和为 180°,所以∠B 的补角= 180°110°= 70°八、余角和补角的性质1、同角(或等角)的余角相等。
2、同角(或等角)的补角相等。
证明性质 1:已知∠1 +∠2 = 90°,∠1 +∠3 = 90°则∠2 = 90°∠1,∠3 = 90°∠1所以∠2 =∠3证明性质 2:已知∠4 +∠5 = 180°,∠4 +∠6 = 180°则∠5 = 180°∠4,∠6 = 180°∠4所以∠5 =∠6练习 3:已知∠7 与∠8 互余,∠8 与∠9 互余,求证∠7 =∠9证明:因为∠7 与∠8 互余,所以∠7 +∠8 = 90°因为∠8 与∠9 互余,所以∠8 +∠9 = 90°所以∠7 = 90°∠8,∠9 = 90°∠8所以∠7 =∠9练习 4:已知∠10 与∠11 互补,∠11 与∠12 互补,求证∠10 =∠12证明:因为∠10 与∠11 互补,所以∠10 +∠11 = 180°因为∠11 与∠12 互补,所以∠11 +∠12 = 180°所以∠10 = 180°∠11,∠12 = 180°∠11所以∠10 =∠12九、余角和补角的应用1、在几何图形中,通过寻找余角和补角来求解角的度数。
80︒65︒46︒44︒25︒10︒170︒120︒100︒150︒80︒10︒30︒60︒21434.3.3余角和补角七年级一班二班 学习目标1、在具体的现实情境中,认识一个角的余角和补角,掌握余角和补角的性质。
认识理解方位角,能确定具体物体的方位。
2、进一步提高抽象概括能力,发展空间观念和知识运用能力,学会简单的逻辑推理,并能对问题的结论进行合理的猜想。
学习重点:认识角的互余、互补关系及其性质。
认识方位角,找准方位。
学习难点:归纳出余角、补角的性质,并能用规范的语言描述性质是难点。
探 究 案探究一:余角和补角1、结合教材理解互为余角的定义:如果两个角的和是 ( ),那么这两个角叫做互为余角,其中一个角是另一个角的余角。
几何语言表示为:如果∠1+∠2= ,那么∠1与∠2互为余角,即:∠1是∠2的余角或∠2是∠1的余角。
2、理解应用⑴:图中给出的各角,哪些互为余角?3、结合教材理解互为补角的定义:如果两个角的和是 ( ),那么这两个角叫做互为补角,其中一个角是另一个角的补角。
几何语言表示为:如果∠3+∠4= °,那么∠3与∠4互为补角,即:∠3是∠4的补角或∠4是∠3的补角 4、理解应用⑵:(1)图中给出的各角,哪些互为补角?(2)填下列表:2143西北西南东南东北北西南东东结论:同一个锐角的补角比它的余角大 (3)填空:①70°的余角是 ,补角是 。
②∠α(∠α <90°)的余角是 ,它的补角是 。
如何判断两个角是互余还是互补呢?5、探究补角(余角)的性质:如图∠1 与∠2互补,∠3 与∠4互补 ,如果∠1=∠3,那么∠2与∠4相等吗?为什么?归纳结论:答:∠2 与∠4相等。
∵∠1与∠2互余,∠3与∠4互余 ( )∴ ∠2 = 90°─∠1,∠4 = 90°─∠3 ( )∵ ∠1=∠3 ( )∴ ∠2 =∠4 ( ) 补角性质: 根据补角的性质你能否归纳出余角的性质?例1:若一个角的补角等于它的余角4倍,求这个角的度数。
精品“正版”资料系列,由本公司独创。
旨在将“人教版”、”苏教版“、”北师大版“、”华师大版“等涵盖几乎所有版本的教材教案、课件、导学案及同步练习和检测题分享给需要的朋友。
本资源创作于2020年8月,是当前最新版本的教材资源。
包含本课对应内容,是您备课、上课、课后练习以及寒暑假预习的最佳选择。
第 2学时内容:正数和负数(2)学习目标:1、会用正、负数表示具有相反意义的量.2、通过正、负数学习,培养学生应用数学知识的意识.3、通过探究,渗透对立统一的辨证思想学习重点:用正、负数表示具有相反意义的量学习难点:实际问题中的数量关系教学方法:讲练相结合教学过程一、.学前准备通过上节课的学习,我们知道在实际生产和生活中存在着两种不同意义的量,为了区分它们,我们用正数和负数来分别表示它们.问题1:“零”为什么即不是正数也不是负数呢?引导学生思考讨论,借助举例说明.参考例子:温度表示中的零上,零下和零度.二.探究理解解决问题先引导学生分析,再让学生独立完成例(1)一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;(2)2009年下列国家的商品进出口总额比上一年的变化情况是:美国减少6.4%, 德国增长1.3%,法国减少2.4%, 英国减少3.5%,意大利增长0.2%, 中国增长7.5%.写出这些国家2009年商品进出口总额的增长率.解:(1)这个月小明体重增长2kg,小华体重增长-1kg,小强体重增长0kg.(2)六个国家2009年商品进出口总额的增长率:美国-6.4%, 德国1.3%,法国-2.4%, 英国-3.5%,意大利0.2%, 中国7.5%.三、巩固练习从0表示一个也没有,是正数和负数的分界的角度引导学生理解.在学生的讨论中简单介绍分类的数学思想先不要给出有理数的概念.在例题中,让学生通过阅读题中的含义,找出具有相反意义的量,决定哪个用正数表示,哪个用负数表示.通过问题(2)提醒学生审题时要注意要求,题中求的是增长率,不是增长值.四、阅读思考问题:1.直径为30.032mm和直径为29.97的零件是否合格?2.你知道还有那些事件可以用正负数表示允许误差吗?请举例.五、小结1、本节课你有那些收获?2、还有没解决的问题吗?六、应用与拓展选做题1、甲冷库的温度是-12°C,乙冷库的温度比甲冷酷低5°C,则乙冷库的温度是.2、一种零件的内径尺寸在图纸上是9±0.05(单位:mm),表示这种零件的标准尺寸是9mm,加工要求最大不超过标准尺寸多少?最小不小于标准尺寸多少?3、吐鲁番的海拔是-155m,珠穆朗玛峰的海拔是8848m ,它们之间相差多少米?4、如果规定向东为正,那么从起点先走+40米,再走-60米到达终点,问终点在起点什么方向多少米?应怎样表示?一共走过的路程是多少米?5、10筐橘子,以每筐15㎏为标准,超过的千克数记作正数,不足的千克数记作负数。
《4.3.3 余角和补角》教案【教学目标】1.在具体情境中认识余角和补角,掌握余角和补角的性质;(重点)2.能利用余角和补角的性质进行计算和简单的推理.(重点)【教学过程】一、情境导入让学生观察意大利著名建筑比萨斜塔.比萨斜塔建于1173年,工程曾间断了两次很长的时间,历经约二百年才完工.设计为垂直建造,但是在工程开始后不久便由于地基不均匀和土层松软而倾斜.二、合作探究探究点一:余角和补角及其性质【类型一】余角和补角的概念如果α与β互为余角,则( )A.α+β=180° B.α-β=180°C.α-β=90° D.α+β=90°解析:如果α与β互为余角,则α+β=90°.故选D.方法总结:正确记忆互为余角的定义是解决问题的关键.【类型二】利用余角和补角计算求值已知∠A与∠B互余,且∠A的度数比∠B度数的3倍还多30°,求∠B 的度数.解析:根据∠A与∠B互余,得出∠A+∠B=90°,再由∠A的度数比∠B度数的3倍还多30°,从而得到∠A=3∠B+30°,再把两个算式联立即可求出∠2的值.解:∵∠A与∠B互余,∴∠A+∠B=90°,又∵∠A的度数比∠B度数的3倍还多30°,∴∠A=3∠B+30°,∴3∠B+30°+∠B=90°,解得∠B=15°.故∠B的度数为15°.方法总结:此题把角的关系结合方程问题一起解决,即把相等关系的问题转化为方程问题,利用方程组来解决.【类型三】余角、补角和角平分线的综合计算如图,已知∠AOB在∠AOC内部,∠BOC=90°,OM、ON分别是∠AOB,∠AOC的平分线,∠AOB与∠COM互补,求∠BON的度数.解析:根据补角的性质,可得∠AOB+∠COM=180°,根据角的和差,可得∠AOB+∠BOM=90°,根据角平分线的性质,可得∠BOM=12∠AOB,根据解方程,可得∠AOB的度数,根据角的和差,可得答案.解:由∠AOB与∠COM互补,得∠AOB+∠COM=180°.由角的和差,得∠AOB+∠BOM+∠COB=180°,∠AOB+∠BOM=90°.由OM是∠AOB的平分线,得∠BOM=12∠AOB,即∠AOB+12∠AOB=90°.解得∠AOB=60°.由角的和差,得∠AOC=∠BOC+∠AOB=90°+60°=150°.由ON平分∠AOC得∠AON=12∠AOC=12×150°=75°.由角的和差,得∠BON=∠AON-∠AOB=75°-60°=15°.方法总结:本题考查了余角与补角及角平分线的相关知识,利用了补角的性质,角的和差,角平分线的性质进行计算,解决问题一定要结合图形认真分析,做到数形结合.探究点二:方位角【类型一】利用方位角确定方向M地是海上观测站,从M地发现两艘船A、B的方位如图所示,下列说法中正确的是( )A.船A在M的南偏东30°方向B.船A在M的南偏西30°方向C.船B在M的北偏东40°方向D.船B在M的北偏东50°方向解析:船A在M的南偏西90°-30°=60°方向,故A、B选项错误;船B 在M的北偏东90°-50°=40°方向,故C正确,D错误.故选C.方法总结:用方位角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方位角时,一般先叙述北或南,再叙述偏东或偏西.【类型二】方位角的有关计算如图所示,甲、乙、丙三艘轮船从港口O出发,当分别行驶到A、B、C 处时,经测量得甲船位于港口的北偏东44°方向,乙船位于港口的北偏东76°方向,丙船位于港口的北偏西45°方向.(1)求∠BOC的度数;(2)求∠AOB的度数.解析:(1)根据方向角的表示方法,可得∠EOB,∠EOC的度数,根据角的和差,可得答案;(2)根据方向角的表示方法,可得∠EOB,∠EOA的度数,根据角的和差,可得答案.解:如图,(1)由乙船位于港口的北偏东76°方向,丙船位于港口的北偏西45°方向,得∠EOB=76°,∠EOC=45°.由角的和差,得∠BOC=∠EOB+∠EOC =76°+45°=121°;(2)由甲船位于港口的北偏东44°方向,乙船位于港口的北偏东76°方向,得∠EOB=76°,∠EOA=44°.由角的和差,得∠AOB=∠EOB-∠EOA=76°-44°=32°.方法总结:解决本题主要是理解方向角的表示方法,结合图形找到相应的角,然后进行计算.三、板书设计1.互余、互补(1)和为90°的两个角互余;(2)和为180°的两个角互补.2.方位角【教学反思】通过比萨斜塔这一学生熟知的著名建筑激发学生的学习兴趣,再运用现代化的教学手段,把图形的“静”变成“动”,在动态课件演示中引出概念,增强了趣味性,并且可以充分调动学生的学习兴趣,一下子把学生吸引到课堂上来.这样也把书本上原本呆板的概念激活了,使数学知识充满新鲜感,实现了书本知识和学生发现的一种沟通,增强学生对几何图形的敏感性.《4.3.3 余角和补角》同步练习能力提升1.如图,A,O,B三点在一条直线上,已知∠AOD=25°,∠COD=90°,则∠BOC的度数为()A.25°B.85°C.115°D.155°2.如果∠AOB+∠BOC=90°,∠BOC+∠COD=90°,那么∠AOB与∠COD的关系是()A.互余B.互补C.相等D.不能确定3.如图,点O在直线AB上,∠COB=∠DOE=90°,则图中相等的角的对数是()A.3B.4C.5D.74.如图,小明从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C处,此时需把方向调整到与出发时一致,则方向的调整应是 ()A.右转80°B.左转80°C.右转100°D.左转100°5.在直线AB上任取一点O,过点O作射线OC,OD,使∠COD=90°,当∠AOC=30°时,∠BOD的大小是()A.60°B.120°C.60°或90°D.60°或120°6.如图,将两块三角板的直角顶点重合后叠放在一起,若∠1=40°,则∠2= .7.如图,射线OP表示的方向是.8.如图,桌面上平放着一块三角板和一把直尺,小明将三角板的直角顶点紧靠直尺的边缘,他发现无论是将三角板绕直角顶点旋转,还是将三角板沿直尺平移,∠1与∠2的和总是保持不变,则∠1与∠2的和是度.9.学校、电影院、公园在平面图上的标点分别为A,B,C,如果电影院在学校的正东方向上,公园在学校的南偏西25°的方向上,那么平面图上的∠CAB= 度.10.互余的两个角的度数之比为3∶7,则这两个角的度数分别是多少?11.如图,一只蚂蚁从点O出发,沿北偏东45°的方向爬行2.5 cm,碰到障碍物(记作B)后折向北偏西60°的方向爬行3 cm(此时位置记作点C).(1)画出蚂蚁的爬行路线;(2)求出∠OBC的度数.注:如图,,∠1=∠2★12.如图所示,已知O是直线AB上一点,∠AOE=∠FOD=90°,OB平分∠COD,图中与∠DOE互余的角有哪些?与∠DOE互补的角有哪些?并说明理由.创新应用★13.按如图所示的方法折纸,然后回答问题:(1)∠2是多少度的角?为什么?(2)∠1与∠3有何关系?(3)∠1与∠AEC,∠3和∠BEF分别有何关系?★14.根据互余和互补的定义知,20°角的补角为160°,余角为70°,160°-70°=90°;25°角的补角为155°,余角为65°,155°-65°=90°;50°角的补角为130°,余角为40°,130°-40°=90°;75°角的补角为105°,余角为15°,105°-15°=90°……观察以上几组数据,你能得到什么结论?写出你的结论.参考答案能力提升1.C因为∠AOC=∠COD-∠AOD=90°-25°=65°,所以∠BOC=180°-∠AOC=180°-65°=115°.2.C3.C因为∠COB=90°,所以∠AOC=180°-∠BOC=180°-90°=90°,所以∠AOC=∠BOC=∠DOE;因为∠BOD+∠COD=∠EOC+∠COD=90°,所以∠EOC=∠BOD;因为∠AOE+∠EOC=∠COD+∠EOC=90°,所以∠AOE=∠COD,共5对.4.A如图,∠ECF=20°,∠FCD=60°,要从BC方向转向CD方向,需转过的角为∠ECD=∠ECF+∠FCD=20°+60°=80°,即右转80°.5.D根据题意画图为如图①和图②,在图①中∠BOD的度数是60°,在图②中∠BOD的度数是120°,所以∠BOD的度数是60°或120°.6.40°7.南偏西62°8.90由图形知∠1,∠2与直角三角板的直角形成一个平角,所以无论是将三角板绕直角顶点旋转,还是将三角板沿直尺平移,形成的始终是一个平角.所以∠1与∠2的和是90度.9.11510.解:设这两个角的度数分别为3x°,7x°,由题意,得3x°+7x°=90°,解得x°=9°,3x°=27°,7x°=63°.答:这两个角的度数分别是27°,63°.11.解:(1)如图.(2)∠OBC=90°-60°+90°-45°=75°.12.解:与∠DOE互余的角有∠EOF,∠BOD,∠BOC;与∠DOE互补的角有∠BOF,∠COE.理由:∠DOE+∠EOF=90°,∠DOE+∠BOD=∠BOE=180°-∠AOE=90°,∠DOE+∠BOC=∠DOE+∠BOD=90°,∠DOE+∠BOF=∠AOF+∠BOF=180°,∠DOE+∠COE=∠DOE+∠BOF=180°.创新应用13.解:(1)∠2=90°.因为折叠,则∠1与∠3的和与∠2相等,而这三个角加起来,正好是平角∠BEC,所以∠2=×180°=90°.(2)因为∠1与∠3组成的大角和∠2相等,且三个角加起来恰好是一个平角,所以∠1+∠3=90°.所以∠1与∠3互余.(3)因为∠1与∠AEC的和为180°,∠3与∠BEF的和为180°,所以∠1与∠AEC互补,∠3与∠BEF互补.14.解:设一个角的度数为x°,则补角为(180-x)°,它的余角为(90-x)°.因为180-x-(90-x)=90,所以一个角的补角比它的余角大90°.第四章几何图形初步4.2 直线、射线、线段《第1课时直线、射线、线段》导学案【学习目标】:1. 了解余角、补角的概念,掌握余角和补角的性质,并能利用余角、补角的知识解决相关问题.2. 了解方位角的概念,并能用方位角知识解决一些简单的实际问题.【重点】:了解余角、补角的概念及性质,了解方位角的概念和表达方式.【难点】:运用余角、补角和方位角的相关知识解题.【自主学习】一、知识链接如图①,在长方形中,∠1+∠2= °,∠3+∠4= °.二、新知预习1. 如果两个角的和等于90°(直角),就说这两个角互为______ (简称为两个角______ ).如图①,可以说∠1是∠2的余角,或∠2是∠1的余角,或∠1和∠2互余.2. 如果两个角的和等于180°(平角),就说这两个角互为______ (简称为两个角______).如图①,可以说∠3是∠4的补角,或∠4是∠3的补角,或∠3和∠4互补.三、自学自测1. 图中给出的各角,哪些互为余角?2. 图中给出的各角,哪些互为补角?四、我的疑惑_________________________________________________________________ _____________________________________________________________________ 【课堂探究】一、要点探究探究点1:有关余角和补角的计算例1 若一个角的补角等于它的余角的 4 倍,求这个角的度数.方法总结:余补角问题中,若角之间有比较明显的倍分关系,可尝试将较小的角设为未知数,列方程解答.例2 如图,已知O为AD上一点,∠AOC与∠AOB互补,OM,ON分别为∠AOC,∠AOB的平分线,若∠MON=40°,试求∠AOC与∠AOB的度数.观察与思考:∠α∠α的余角∠α的补角5°32°45°77°62°23′x°(0<x<90)观察可得结论:锐角的补角比它的余角大_____.针对训练1.如果∠a=36°,那么∠a的余角等于()A.54° B.64° C.144° D.134°2.如图,将一副直角三角板如图放置,若∠AOD=18°,则∠BOC的度数为_____.第2题图变式题图【变式题】一副三角板按如图方式摆放,且∠1的度数比∠2的度数大44°,则∠1=______.3.已知∠A与∠B互余,且∠A的度数比∠B度数的3倍还多30°,求∠B的度数.探究点2:余角和补角的性质思考:∠1 与∠2,∠3都互为补角,∠2 与∠3 的大小有什么关系?例3 如图,O为直线AB上一点,OD平分∠AOC,∠DOE=90°.(1)∠AOD的余角是_______________,∠COD的余角是_________________;(2 )OE是∠BOC的平分线吗?请说明理由.针对训练如图,已知∠AOB=90°,∠AOC=∠BOD,则与∠AOC互余的角有__________.探究点3:方位角八大方位正东:正南:正西:正北:西北方向:西南方向:东北方向:东南方向:例4 如图,货轮O在航行过程中,发现灯塔A在它南偏东60°的方向上. 同时,在它北偏东40°,南偏西10°,西北 (即北偏西45°)方向上又分别发现了客轮B,货轮C和海岛D. 仿照表示灯塔方位的方法画出表示客轮B,货轮C 和海岛D方向的射线.针对训练1. 如图,说出下列方位(1) 射线 OA 表示的方向为 .(2) 射线 OB 表示的方向为 .(3) 射线 OC 表示的方向为 . .(4) 射线 OD 表示的方向为 .2.费俊龙、聂海胜乘坐“神舟”六号遨游太空时,我国当时派出远望一号~四号船队,跟踪检测. 其中远望一、二号停在太平洋洋面上,某一时刻,分别测得神舟六号在北偏东60°和北偏东30°的方向,你能在下图中画出当时神舟六号所处的位置吗?二、课堂小结【当堂检测】1.一个角的余角是它的2倍,这个角的度数是()A.30°B.45°C.60°D.75°2.下列说法正确的是()A.一个角的补角一定大于它本身B.一个角的余角一定小于它本身C.一个钝角减去一个锐角的差一定是一个锐角D.一个角的余角一定小于其补角3.已知∠A与∠B互余,∠B与∠C互补,若∠A=60°,则∠C的度数是_______.4.∠1与∠2 互余,∠1 = (6x + 8)°,∠2 = (4x-8)°,则∠1= ,∠2= .5. 请认真观察下图,回答下列问题:(1)图中有哪几对互余的角?(2) 图中哪几对角是相等的角(直角除外)?为什么?6 垃圾打捞船A和B都停驻在湖边观测湖面,从A船发现它的北偏东60°方向有白色漂浮物,同时,从B船也发现该白色漂浮物在它的北偏西30°方向.(1) 试在图中确定白色漂浮物C的位置;(2) 点C在点A的北偏东60°的方向上,那么点A在点C的________方向上.A. 南偏东30°B. 南偏西30°C. 南偏东60°D. 南偏西60°。
课题:4.3.3余角和补角编号:第44号主备人:复备人:审核人:科研处审核:1.知道余角和补角的定义,能求一个角的余角和补角.2.明白“同角(等角)的余角相等,同角(等角)的补角相等”,并能应用余角、补角的性质进行简单的计算和说理.3.知道方位角的定义,会画方位角,能用方位角描述物体相对于某点的方向.4.重点:余角和补角的定义及性质,方位角的画法.【问题探究】阅读教材P137~138,回答下列问题.探究一:1.如果两个角的和等于就说这两个角互为余角,即其中一个角是另一个角的余角.2.如果两个角的和等于 ,就说这两个角互为补角,即其中一个角是另一个角的补角.【讨论】1.画出一个锐角的余角和补角,互补、互余的两角是否一定有公共顶点或公共边呢?2.如果∠1+∠2=90°,能否说∠1是余角,∠2是余角呢?为什么?∠1+∠2=180呢?【预习自测】已知∠α=35°,则∠α的余角是()A.35°B.55°C.65°D.145°探究二:1.(1)如果∠1与∠α互余,∠2与∠α互余,那么∠1与∠2相等吗?为什么?(2)如果∠1与∠α互余,∠2与∠β互余,∠α=∠β,那么∠1与∠2相等吗?为什么?2.(1)如果∠1与∠β互补,∠2与∠β互补,那么∠1与∠2相等吗?为什么?(2)如果∠1与∠α互补,∠2与∠β互补,∠α=∠β,那么∠1与∠2相等吗?为什么?【预习自测】如图,直线CD过点O,且OC平分∠AOB,说出∠AOD与∠BOD的大小关系和理由?【归纳】( )的余角相等, ( )的补角相等.探究三:请画出表示下列方向的射线.①南偏东25°;②北偏西60°;③西南方向(即南偏西45°).【归纳】1.方位角通常是以南、北方向为角的,另一边为角的.2.东北方向,即45°;东南方向,即45°;西北方向,即45°;西南方向,即45°.【预习自测】如图,点A位于点O的(B)A.南偏东35°B.北偏西65°C.南偏东65°D.南偏西65°互动探究1:25°的余角和补角分别是多少度?一个角的补角比它的余角大多少度?[变式训练]一个角的余角比它的补角的还多1°,求这个角.(方法指导:在解决几何问题时,常设未知数列方程求解,即将几何问题转化为代数问题.)互动探究2:如图,A、O、D三点在同一条直线上,∠AOB=∠COD,问其中哪几对角互为补角?[变式训练]OE平分∠AOC,OD平分∠COB,则∠EOD= ,∠2的余角为,∠2的补角为.互动探究3:如图,点O是直线AB上一点,OC平分∠AOB,∠DOE=90°,∠AOD和∠COE相等吗?为什么?[变式训练]除直角外,上题中还有哪些相等的角?请说明理由.【方法归纳交流】要说明两个角相等,只要说明这两个角是的余角(或补角)即可.互动探究4:在一幅学校的地图上,有教学楼、食堂、图书馆三地,但被墨迹污染,图书馆的具体位置看不清,只知道图书馆在教学楼的东北方向,在食堂的南偏西60°方向,你能确定图书馆的位置吗?。
§4.3.3余角和补角第一课时学案一、课标对本课时的具体要求:理解余角、补角的概念,探索并掌握同角(等角)的余角相等,同角(等角)的补角相等的性质。
二、本课时的知识网络三、本课时的重点、难点【重点】认识角的互余、互补关系及其性质,【难点】通过简单的推理,归纳出余角、补角的性质,并能用规范的语言描述性质是难点。
四、学习目标1、在具体的现实情境中,认识一个角的余角和补角,2、掌握余角和补角的性质。
五、学习过程(一)多媒体出示活动指导,在明确的活动要求和问题引领下引导学生积极参与探讨和自主学习。
(5分钟)(学生根据要求,自读课本,完成学案所给的问题,在明确的引领下引导学生积极参与探讨和学习)(二)展示交流 探究新知(10分钟) 探究活动1:如图,是一个放在直线上的直角三角板,它的两个锐角∠CAB 与∠CBA 之间有什么关系? ∠ABC 与∠CBD 有什么关系?答:两个锐角∠CAB 与∠CBA 的和等于 ,∠ABC 与∠CBD 的和等于 . 2.互为余角的定义:就说这两个角互为余角。
如图,若∠1=230,∠2=670,∠1与∠2互为 ;若∠AOB=900,∠3与∠4互为 。
3.互为补角的定义:如果两个角的和是180°(平角),那么这两个角叫做 ,其中一个角是另一个角的。
如图,若∠5=230,∠6=1570,∠5与∠6互为 ;若∠AOB=1800,∠7与∠8互为 。
练习:填下列表:【设计意图】根据学生的情况,我主要采取自主探究、小组交流的方式学习余角和补角的概念,引导学生通过直观计算,总结规律,从而化抽象的概念12 34A O B2143为简明的关系,帮助学生正确理解并掌握。
(三)探讨释疑,突破难点(10分钟)探究活动3:如图:已知∠AOC,利用三角板分别画它的余角和补角.(只要满足条件的角都可以) 问:从中发现了什么?结论: 。
结论: 。
再问:如果两个角相等,那么它们的余角和补角有什么关系?如图∠1 与∠2互余,∠3 与∠4互余 ,如果∠1=∠3,那么∠2与∠4相等吗?为什么?结论: 。
《余角与补角》导学案莱州市文峰中学徐冬梅〖学习目标〗1.在具体情境中了解补角、余角、等概念,掌握“同角或等角的余角相等”,“同角或等角的补角相等”的结论,并能解决一些实际问题。
2.经历观察、操作、推理、交流的过程,增强学好数学的信心。
3.建立空间观念,发展推理能力和有条理表达的能力。
4.通过解决生活中的实际问题,明确知识来源于生活又服务于生活,养成热爱科学的态度。
〖教学过程〗(一)创设情境,引出课题生活中处处可见道路、房屋、山川、桥梁。
在大自然的杰作和人类的创造物中,蕴含着无数的相交线和平行线。
在这一章里,我们将发现相交线和平行线的一些特征,并探索两条直线平行的条件。
我们还将利用圆规和没有刻度的直尺,尝试着作一些美丽的图案(二)探究新知动手试试:将纸按虚线折叠,然后展开由此产生了一些小角,如∠1、∠2、∠3、∠4,请同学们用所学的知识及量角器进行讨论:∠1﹢∠2=°∠2﹢∠3=°∠3﹢∠4=°∠1﹢∠4=°互余定义互补定义找一找,看谁找的准:1.图中给出的各角中,哪些互为余角?哪些互为补角?2.如图,点O为直线AB上一点,∠AOC=90°,OD是∠BOC内的一条射线。
图中哪些角互为余角?哪些角互为补角?比一比看谁算得快∠α∠α的余角∠α的补角想一想:1、钝角有余角吗?2、直角有余角吗?3、同一个角的补角比它的余角大多少度?我们一起来已知,一个角的补角加上20°后等于这个角余角的3倍,求这个角学以致用1.意大利首都罗马著名的比萨斜塔建于12世纪,由于地面下沉,它已经倾斜.而它以“斜而不倒”闻名于世。
已知斜塔与地面所成的角中,较小的角85°,较大的角是多少度?比萨斜塔已经倾斜了多少度?2.要测量两堵墙所成的∠AOB的度数,但人不能进入围墙,如何测量?思考探究(一)∠1和∠2互余,∠3和∠4互余,如果∠2=∠4,那么,∠1和∠3相等吗?为什么?思考探究(二)∠1和∠2互补,∠3和∠4互补,如果∠2=∠4,那么,∠1和∠3相等吗?为什么?思考探究(三)一、已知:∠AOC=90°, ∠DOE=90°1、图中有互余的角吗,请找出来2、∠1与∠3什么关系?二、如图,你知道∠1、∠2、∠3这三个角之间的关系吗?余角的性质补角的性质(三)性质应用•∠AOE是平角,∠AOC是直角,∠COD与∠COB互余,∠COD=28°35′•求∠AOB的度数学以致用:1.模拟实验2.你知道吗?打台球的游戏中,台球击到桌沿又反弹回来的路线,就象光的反射定律中入射光线与反射光线的路线是一样的。
第四章几何图形初步4.3 角学习目标:1. 了解余角、补角的概念,掌握余角和补角的性质,并能利用余角、补角的知识解决相关问题.2. 了解方位角的概念,并能用方位角知识解决一些简单的实际问题.重点:了解余角、补角的概念及性质,了解方位角的概念和表达方式.难点:运用余角、补角和方位角的相关知识解题.一、知识链接如图①,在长方形中,∠1+∠2= °,∠3+∠4= °.图①二、新知预习1. 如果两个角的和等于90°(直角),就说这两个角互为______ (简称为两个角______ ).如图①,可以说∠1是∠2的余角,或∠2是∠1的余角,或∠1和∠2互余.2. 如果两个角的和等于180°(平角),就说这两个角互为______ (简称为两个角______).如图①,可以说∠3是∠4的补角,或∠4是∠3的补角,或∠3和∠4互补.三、自学自测1. 图中给出的各角,哪些互为余角?自主学习教学备注学生在课前完成自主学习部分配套PPT讲授1.情境引入(见幻灯片3)2. 图中给出的各角,哪些互为补角?四、我的疑惑__________________________________________________________________________________________________________________________________________________________________一、要点探究探究点1:有关余角和补角的计算例1 若一个角的补角等于它的余角的4 倍,求这个角的度数.方法总结:余补角问题中,若角之间有比较明显的倍分关系,可尝试将较小的角设为未知数,列方程解答.例2如图,已知O为AD上一点,∠AOC与∠AOB互补,OM,ON分别为∠AOC,∠AOB的平分线,若∠MON=40°,试求∠AOC与∠AOB的度数.课堂探究教学备注配套PPT讲授2.探究点1新知讲授(见幻灯片4-12)观察与思考:∠α∠α的余角∠α的补角5°32°45°77°62°23′x°(0<x<90)观察可得结论:锐角的补角比它的余角大_____.针对训练1.如果∠a=36°,那么∠a的余角等于()A.54°B.64°C.144°D.134°2.如图,将一副直角三角板如图放置,若∠AOD=18°,则∠BOC的度数为_____.第2题图变式题图【变式题】一副三角板按如图方式摆放,且∠1的度数比∠2的度数大44°,则∠1=______.3.已知∠A与∠B互余,且∠A的度数比∠B度数的3倍还多30°,求∠B的度数.探究点2:余角和补角的性质思考:∠1 与∠2,∠3都互为补角,∠2 与∠3 的大小有什么关系?教学备注配套PPT讲授3.探究点2新知讲授(见幻灯片13-17)例3 如图,O为直线AB上一点,OD平分∠AOC,∠DOE=90°.(1)∠AOD的余角是_______________,∠COD的余角是_________________;(2 )OE是∠BOC的平分线吗?请说明理由.针对训练如图,已知∠AOB=90°,∠AOC=∠BOD,则与∠AOC互余的角有__________________.探究点3:方位角八大方位正东:正南:正西:正北:西北方向:西南方向:东北方向:东南方向:例4如图,货轮O在航行过程中,发现灯塔A在它南偏东60°的方向上. 同时,在它北偏东40°,南偏西10°,西北(即北偏西45°)方向上又分别发现了客轮B,货轮C和海岛D. 仿照表示灯塔方位的方法画出表示客轮B,货轮C和海岛D方向的射线.针对训练教学备注配套PPT讲授4.探究点3新知讲授(见幻灯片18-23)1. 如图,说出下列方位(1) 射线OA 表示的方向为.(2) 射线OB 表示的方向为.(3) 射线OC 表示的方向为. .(4) 射线OD 表示的方向为.2.费俊龙、聂海胜乘坐“神舟”六号遨游太空时,我国当时派出远望一号~四号船队,跟踪检测. 其中远望一、二号停在太平洋洋面上,某一时刻,分别测得神舟六号在北偏东60°和北偏东30°的方向,你能在下图中画出当时神舟六号所处的位置吗?二、课堂小结1.一个角的余角是它的2倍,这个角的度数是()A.30°B.45°C.60°D.75°当堂检测教学备注配套PPT讲授5.课堂小结2.下列说法正确的是()A.一个角的补角一定大于它本身B.一个角的余角一定小于它本身C.一个钝角减去一个锐角的差一定是一个锐角D.一个角的余角一定小于其补角3.已知∠A与∠B互余,∠B与∠C互补,若∠A=60°,则∠C的度数是_______.4.∠1与∠2 互余,∠1 = (6x + 8)°,∠2 = (4x-8)°,则∠1= ,∠2= .5. 请认真观察下图,回答下列问题:(1)图中有哪几对互余的角?(2) 图中哪几对角是相等的角(直角除外)?为什么?6 垃圾打捞船A和B都停驻在湖边观测湖面,从A船发现它的北偏东60°方向有白色漂浮物,同时,从B船也发现该白色漂浮物在它的北偏西30°方向.(1) 试在图中确定白色漂浮物C的位置;(2) 点C在点A的北偏东60°的方向上,那么点A在点C的________方向上.A. 南偏东30°B. 南偏西30°C. 南偏东60°D. 南偏西60°如有侵权请联系告知删除,感谢你们的配合!教学备注6.当堂检测(见幻灯片24-28)。
《余角与补角》导学提纲一、 明确目标在具体情境中了解余角、补角,知道同角或等角的余角相等、同角或等角的余角相等,并能解决一些实际问题。
二、 学以致用1、 角既有余角,又有补角。
2、如果一个锐角是x 度,那么它的余角是 ,它的补角是 。
3、若∠1,∠2互为余角,∠1=50°,则∠2= 。
4、若∠1,∠2互为补角,∠1=120°,则∠2= 。
三、思维迁移 探索(一)5、已知:∠1=30°∠AOC=∠BOD=90° 求:∠2和∠3的度数6、已知:∠1=∠2=30°OD ⊥AB求:∠3和∠4的度数探索(二)3ADC 21O ABOC DE123 47、已知:AB 、CD 相较于O ,∠1=110° 求:∠2和∠3的度数8、已知:O 在直线AB 上, ∠1=∠2=30°求:∠AOD 和∠BOC 的度数四、走进生活9、由于开学初的那场大风雪,使路边绿化带中的有些小树发生了倾斜。
老师发现了这样的一棵小树(如图),假如你是位园林工作者,你应该怎样做才能把小树扶正?(小树与地面形成的夹角是∠AOF=70 °,先利用已有的工具如三角板、量角器等把图画出来,再求出应该向什么方向转动多少度?)EOF A1 2 3ABCD OABC D12O10、已知:O 是直线EF 上的一点,∠BOF=∠BOE=∠AOC=90° 问题:(1)哪个角与∠AOF 互为余角? 哪个角与∠BOC 互为补角?(2)如果∠AOF=60 °,那么∠BOC 是多少度?六、自我检测11、已知:∠1=42°,∠1,∠2互为余角,则∠2= 。
12、已知:∠1+∠2=180°,∠1+∠3=180°,∠2=40°,则∠3= 。
13、打台球时,可以选择适当的方向用白球击打红球,反弹后红球直接入袋,此时∠1=∠2,如图CD ⊥EF ,你能找出∠1的余角和补角吗?EFAC OB七、课后拓展1、如果∠1=60°,则∠1的余角的补角是2、如果一个锐角是x 度,那么它的余角是 ,它的补角是 。
4.3.3 余角和补角一、导学学习目标1.在具体的现实情境中,认识一个角的余角和补角; 2.掌握余角和补角的性质;3.了解方位角,能确定具体物体的方位. 学习重点:掌握余角和补角的性质;学习难点:正确求出一个角的余角和补角. 自主学习,研读教材将一张长方形纸片,沿一个角折叠后,折痕与长方形的边形成了4个角. 如图.回答问题1.互为余角的定义:如果两个角的和等于90°,那么这两个角互为余角. 思考:2.互为补角的定义:如果两个角的和等于180°,那么这两个角互为补角. 问题1:以上定义中的“互为”是什么意思?3.练习题 巩固新知同角的余角相等;∵∠1与∠2互余,∠1与∠3互余,O60°30°BOCAD213∴∠2=90 °-∠1,∠3=90 °-∠1∴∠2=∠330°二.探究1243等角的余角相等。
理由:∵∠1与∠2互余∴∠2=90o -∠1∵∠3与∠4互余∴∠4=90o -∠3又∵∠1=∠3∴∠2=∠4解:∠2与∠4相等如图,∠1和∠2互余,∠3和∠4互余,若∠1=∠3,那么∠2与∠4相等吗?为什么?同理:同角或等角的补角相等 2. 你知道表示方向的一个成语吗?“四面”—东、南、西、北“八方”--东、南、西、北和东北、东南、西北、西南东西北南O正东:正南:正西:正北:西北方向:西南方向:东北方向:东南方向:射线OA ABCD45°EGFH45°八大方位45°45°射线OB 射线OC 射线OD射线OE 射线OF 射线OH 射线OG三.检测1.一个角是70°39′,求它的余角和补角。
2、∠A 的补角是它的3倍,∠A 是多少度?BAOC3、如图两堵墙围一个角∠AOB ,但人不能进入围墙,我们如何去测这个角的大小呢?四.拓展1、课堂小结2、强化训练(见课件题型)。
2022年七年级人教版数学433余角和补角导学案课题学习目标4.3.3余角和补角课时主备人1.认识一个角的余角和补角,掌握余角和补角的性质2.学会简单的逻辑推理,并能对问题的结论进行合理的猜想。
3.初步体会数学中推理的严谨性和结论的确定性学习过程一、探索新知:1、定义:自学指导一:自学课本141页,并填空(1)如果两个角的和是,那么这两个角叫做(2)如果两个角的和是,那么这两个角叫做反馈练习:填下列表:∠a5°32°45°77°62°23′某°∠a的余角∠a的补角注意:ⅰ)锐角∠的余角是(90°—∠)∠的补角是(180°—∠)ⅱ)互余和互补是两个角的数量关系,与它们的位置无关。
2、探究补角(余角)的性质:(1)∠1与∠2互余,∠3与∠4互余,如果∠1=∠3,那么∠2与∠4相等吗?结论:(2)如图∠1与∠2互补,∠3与∠4互补,如果∠1=∠3,那么∠2与∠4相等吗?结论:2413几何语言:∠1与∠2互余,∠3与∠4互余又∠1=∠3∠2=∠4北反馈练习:141页练习3、方位角OA的方向是OB的方向是OC的方向是OD的方向是反馈练习:144页12题二、尝试应用例1:一个角的补角是它的3倍,这个角是多少度西东南例2:若一个角的补角等于它的余角4倍,求这个角的度数。
三、归纳小结四、自我检测1、如果∠1与∠2互余,则∠1+∠2=2、如果∠1+∠2=90°,∠2+∠3=90°,则∠1∠3理由是3、若∠=40°,则它的余角是,补角是4、如果一个角的补角是120°,则这个角的余角是()A、150°B、90°C、60°D、30°5、如图∠AOB=∠COD=90°,∠AOD=,∠BOC=,则等于()A、180°B、120°C、90°D、不能确定6、如图,已知∠AOC=∠BOD=98°,∠BOC=62°,则∠AOD的度数为()A、137°B、134°C、133°D、132°7、如图,OC是∠BOD的平分线,OB是∠AOD的平分线,且∠COD=30°,则∠AOC的度数为()A、60°B、80°C、90°D、120°BCDABACDBADCO(5题图)(6题图)(7题图)8、甲看乙的方位是北偏东30°,则乙看甲的方向是()A、南偏西30°B、南偏东60°C、南偏东30°D、南偏西60°10、一个角的补角加上10°的和等于这个角余角的3倍,求这个角的余角和补角选作:1、如图所示,AOB80,OM是AOB内任意一条射线,若OC平分AOM,OD平分BOM,求COD的度数2、已知线段AB=10,点C为线段上任意一点,点M平分AC,点N平分BC,求线段MN的长度MCABD3、如图,将书页斜折过去,使A得顶点落到A处,BC为折痕,BD为ABE的平分线求CBD的度数ABCADE。
数学:4.3.3《余角和补角(1)》学案(人教版七年级上)【学习目标】在具体的现实情境中,认识一个角的余角和补角; 【重点难点】正确求出一个角的余角和补角。
【导学指导】 一、知识链接 思考:(1) 在一副三角板中同一块三角板的两个锐角和等于多少度? (2) 如图1,已知∠1=61°,∠2=29°,那么∠1+∠2= 。
(3) 如 图 2,已知点A 、O 、B 在一直线上 ,∠COD=90°,那么∠1+∠2= 。
二、自主探究1.互为余角的定义: 思考:(1) 如图3,已知∠1=62°,∠2=118°,那么 ∠1+∠2=(2) 如图4,A 、O 、B 在同一直线上,∠1+∠2=2.互为补角的定义:2图 190°12图 212A O B图 412图 3 CODOEDCBA问题1:以上定义中的“互为”是什么意思?问题2:若 ∠1+∠2 +∠3 =180° ,那么∠1、∠2、∠3互为补角吗? 3.新知应用:例1:若一个角的补角等于它的余角4倍,求这个角的度数。
例2:如图,∠AOC =∠COB =90°,∠DOE =90°,A 、O 、B 三点在一直线上 (1)写出∠COE 的余角,∠AOE 的补角; (2)找出图中一对相等的角,并说明理由;【课堂练习】:课本141页练习1、2、3;【要点归纳】:【拓展训练】:1、一个角的余角比它的补角的31还少︒20,求这个角的度数。
2、若α∠和β∠互余,且α∠:β∠=7:2,求α∠、β∠的度数。
【总结反思】:2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.如图,若延长线段AB 到点C ,使BC=AB ,D 为AC 的中点,DC=5cm ,则线段AB 的长度是( )A.10cmB.8cmC.6cmD.4cm2.若∠β=25°31',则∠β的余角等于( ) A.64°29'B.64°69'C.154°29'D.154°69'3.如图,两块直角三角板的直顶角O 重合在一起,若∠BOC=15∠AOD ,则∠BOC 的度数为( )A .30° B. 45° C.54° D.60° 4.下列解方程去分母正确的是( ) A.由,得2x ﹣1=3﹣3x B.由,得2x ﹣2﹣x =﹣4 C.由,得2y-15=3yD.由,得3(y+1)=2y+65.甲、乙两工程队开挖一条水渠各需10天、15天,两队合作2天后,甲有其他任务,剩下的工作由乙队单独做,还需多少天能完成任务?设还需x 天,可得方程( )A.11()21101515x+⨯+= B.11015x x+= C.2211015x ++= D.2211015x ++= 6.中国古代问题:有甲、乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊数就是你的羊数的2倍”.乙回答说:“最好还是把你的羊给我一只,我们羊数就一样了”.若设甲有x 只羊,则下列方程正确的是( ) A.x+1=2(x ﹣2) B.x+3=2(x ﹣1) C.x+1=2(x ﹣3)D.1112x x +-=+ 7.已知一个多项式与3x 2+9x 的和等于3x 2+4x ﹣1,则这个多项式是( ) A .﹣5x ﹣1B .5x+1C .﹣13x ﹣1D .13x+18.定义一种正整数n “F ”的运算:①当n 是奇数时,()31F n n =+;②当n 是偶数时,()2kn F n =(其中k 是使得2k n为奇数的正整数......,)两种运算交替重复运行.例如,取24n =,则: 243105F F F −−−→−−−→−−−→⋅⋅⋅⋅⋅⋅第一次第二次第三次②①②,若13n =,则第2019次“F ”运算的结果是( ) A.1B.4C.2019D.201949.下列判断正确的是( ) A .-a 不一定是负数 B .|a|是一个正数C .若|a|=a ,则a >0;若|a|=-a ,则a <0D .只有负数的绝对值是它的相反数10.现有五种说法:①-a 表示负数;②绝对值最小的有理数是0;③3×102x 2y 是5次单项式;④5x y-是多项式.其中正确的是( ) A.①③B.②④C.②③D.①④11.如果水位升高1米记为+1米,那么水位下降2米应记为( ) A.﹣1米B.+1米C.﹣2米D.+2米12.已知a ,b ,c 是有理数,且a+b+c=0,abc (乘积)是负数,则||||||b c a c a b a b c +++++的值是( )A.3B.﹣3C.1D.﹣1二、填空题13.如果∠A 的余角是26°,那么∠A 的补角为_______°.14.如图,在灯塔O 处观测到轮船A 位于北偏西54°的方向,同时轮船B 在南偏东15°的方向,那么∠AOB=_______°.15.关于x 的方程ax ﹣2x ﹣5=0(a≠2)的解是_____. 16.已知关于x 的一元一次方程2019x +5=2019x+m 的解为x =2018,那么关于y 的一元一次方程52019y-﹣5=2019(5﹣y )﹣m 的解为_____.17.如图所示,若三角形纸片内有100个点,连同三角形的顶点共103个点,其中任意三点都不共线.现以这些点为顶点作三角形,并把纸片剪成小三角形,这样的小三角形的个数是______.18.观察下列图形,它是把一个三角形分别连接这个三角形三边的中点,构成4个小三角形,挖去中间的一个小三角形(如图1);对剩下的三个小三角形再分别重复以上做法,…将这种做法继续下去(如图2,图3…),则图5中挖去三角形的个数为______19.若a,b 是整数,且ab =12,|a|<|b|,则a+b=________ . 20.与原点的距离为 2 个单位的点所表示的有理数是________. 三、解答题21.如图,长方形ABCD 中,AB =4cm ,BC =8cm .点P 从点A 出发,沿AB 匀速运动;点Q 从点C 出发,沿C→B→A→D→C 的路径匀速运动.两点同时出发,在B 点处首次相遇后,点P 的运动速度每秒提高了3cm ,并沿B→C→D→A 的路径匀速运动;点Q 保持速度不变,继续沿原路径匀速运动,3s 后两点在长方形ABCD 某一边上的E 点处第二次相遇后停止运动.设点P 原来的速度为xcm/s . (1)点Q 的速度为 cm/s (用含x 的代数式表示); (2)求点P 原来的速度.(3)判断E 点的位置并求线段DE 的长.22.已知,O 是直线AB 上的一点,COD ∠是直角,OE 平分BOC ∠.()1如图1,若AOC 30∠=,求DOE ∠的度数;()2在图1中,若AOC a ∠=,直接写出DOE ∠的度数(用含a 的代数式表示); ()3将图1中的DOC ∠绕顶点O 顺时针旋转至图2的位置.①探究AOC ∠和DOE ∠的度数之间的关系,写出你的结论,并说明理由;②在AOC ∠的内部有一条射线OF ,满足:AOC 4AOF 2BOE AOF ∠∠∠∠-=+,试确定AOF ∠与DOE ∠的度数之间的关系,说明理由.23.如图所示,一幅地图上有A ,B ,C 三地,地图被墨迹污染,C 地具体位置看不清楚了,但知道C 地在A 地的北偏东30°方向,在B 地的南偏东45°方向,你能确定C 地位置吗?24.先化简,再求值:22113122323x x y x y ⎛⎫⎛⎫--+-+ ⎪ ⎪⎝⎭⎝⎭,其中x=-1,y=23. 25.先化简,再求值:-2x 2•4x 4+(x 4)2÷x 2-(-3x 3)2,其中x 3=12. 26.现从小欣作业中摘抄了下面一道题的解题过程:计算:24÷(13-18-16); 解:24÷(13-18-16)=24÷13-24÷18-24÷16=72-192-144 =-264;观察以上解答过程,请问是否正确?若不正确,请写出正确的解答. 27.观察下列等式: 第一个等式:122211a 132222121==-+⨯+⨯++ 第二个等式:2222223211a 1322(2)2121==-+⨯+⨯++第三个等式:3333234211a 1322(2)2121==-+⨯+⨯++ 第四个等式:4444245211a 1322(2)2121==-+⨯+⨯++按上述规律,回答下列问题:()1请写出第六个等式:6a =______=______;()2用含n 的代数式表示第n 个等式:n a =______=______; ()1234563a a a a a a +++++=______(得出最简结果); ()4计算:12n a a a ++⋯+.28.学校准备添置一批课桌椅,原计划订购60套,每套100元,店方表示:如果多购,可以优惠.结果校方实际订购了72套,每套减价3元,但商店获得了同样多的利润.(1)求每套课桌椅的成本;(2)求商店获得的利润.【参考答案】***一、选择题1.B2.A3.A4.D5.A6.C7.A8.B9.A10.B11.C12.D二、填空题13.116°14.14115. SKIPIF 1 < 0解析:52 a-16.2023 17.201 18.121 19.7,8,13 20.±2三、解答题21.(1)2x;(2)点P原来的速度为53cm/s.(3)此时点E在AD边上,且DE=2.22.(1)15°;(2)12α;(3)①∠AOC=2∠DOE;②4∠DOE-5∠AOF=180°.23.画图见解析.24.-3x+y2,31 925.-4.26.错误,正确的解法见解析. 27.(1)()6266213222+⨯+⨯,6121+-7121+;(2)()2213222nn n +⨯+⨯,121n +-1121n ++;(3)1443;(4)()1122321n n ++-+.28.(1)每套课桌椅的成本为82元.(2)商店获得的利润为1080元.2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.如图,点A 、B 在线段EF 上,点M 、N 分别是线段EA 、BF 的中点,EA :AB :BF =1:2:3,若MN =8cm ,则线段EF 的长是( )A.10 cmB.11 cmC.12 cmD.13 cm2.如果一个角α的度数为13°14',那么关于x 的方程21803x x α-=︒-的解为( ) A.76°46'B.76°86'C.86°56'D.166°46'3.如图,直线l 是一条河,P ,Q 是两个村庄。
课题:4.24.3.3余角和补角(第1课时)编号:第 44号
主备人:石小丹复备人:审核人:科研处审核:学习目标:
1.理解互为余角、互为补角的定义.
2.掌握有关补角和余角的性质.
3.应用以上知识点解决有关计算和简单推理问题.
4.重点:互为余角、互为补角的概念及有关余角、补角的性质.
【问题探究】阅读教材P137~138,回答下列问题.
探究一:
1.如果两个角的和等于,就说这两个角互为余角, 即其中一个角是另一个角的余角.
2.如果两个角的和等于,就说这两个角互为补角,即
其中一个角是另一个角的补角.
【讨论】
1、.如果∠1+∠2=90°,能否说∠1是余角,∠2是余角呢?为什么?∠1+∠2=180呢?
2、互补、互余的两角是否一定有公共顶点或公共边呢?
【预习自测】
1、若∠1与∠2互补,则∠1+∠2,若∠1与∠2
互余,则∠1+∠2。
2、30°角的余角为,补角为,70°39′
的余角为,补角为。
3、如图:O是直线AB上一点,OC是∠AOB的平分线,
①AOD的的补角是
②∠AOD的的余角是
③∠AOD的的补角是
探究二
1.(1)如果∠1与∠α互余,∠2与∠α互余,那么∠1与∠2相等吗?为什么?
(2)如果∠1与∠α互余,∠2与∠β互余,∠α=∠β,那么∠1与∠2相等吗?为什么?
2.(1)如果∠1与∠β互补,∠2与∠β互补,那么∠1与∠2相等吗?为什么?
(2)如果∠1与∠α互补,∠2与∠β互补,∠α=∠β,那么∠1与∠2相等吗?为什么?
互动探究1:一个角的余角比它的补角的还多1°,求这个角.
互动探究2:如图,A、O、D三点在同一条直线上,∠AOB=∠COD,问其中哪几对角互为补角?。