华农概率论习题解答关于
- 格式:doc
- 大小:460.50 KB
- 文档页数:11
华中农业大学本科课程考试参考答案与评分标准考试课程:概率论与数理统计 学年学期: 试卷类型:B 考试日期:一、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其字母代号写在该题【 】内。
答案错选或未选者,该题不得分。
每小题2分,共10分。
)1. 设随机变量X 的概率密度)1(1)(2x x p +=π,则X Y 2=的分布密度为 . 【 b 】 (a))41(12x +π; (b) )4(22x +π; (c) )1(12x +π; (d) x arctan 1π.2. 设随机变量序列x 1, x 2,…, x n …相互独立,并且都服从参数为1/2的指数分布,则当n 充分大时,随机变量Y n =∑=ni i x n 11的概率分布近似服从 . 【 b 】(a) N(2,4) (b) N(2,4/n) (c) N(1/2,1/4n) (d) N(2n,4n) 3. 设总体X 服从正态分布),(N 2σμ,其中μ已知,2σ未知,321X ,X ,X 是总体X 的一个 简单随机样本,则下列表达式中不是统计量的是 . 【 C 】(a )321X X X ++; (b ))X ,X ,X min(321; (c )∑=σ31i 22i X ; (d )μ+2X .4.在假设检验问题中,检验水平α意义是 . 【 a 】 (a )原假设H 0成立,经检验被拒绝的概率; (b )原假设H 0成立,经检验不能拒绝的概率; (c )原假设H 0不成立,经检验被拒绝的概率; (d )原假设H 0不成立,经检验不能拒绝的概率.5.在线性回归分析中,以下命题中,错误的是 . 【 d 】(a )SSR 越大,SSE 越小; (b )SSE 越小,回归效果越好; (c )r 越大,回归效果越好; (d )r 越小,SSR 越大.二、填空题(将答案写在该题横线上。
答案错选或未选者,该题不得分。
每小题2分,共10分。
3《概率论与数理统计》期末考试试题答案A卷华中农业⼤学本科课程考试参考答案与评分标准考试课程:概率论与数理统计学年学期:试卷类型:A 卷考试时间:⼀、单项选择题(从下列各题四个备选答案中选出⼀个正确答案,并将其字母代号写在该题【】内。
答案错选或未选者,该题不得分。
每⼩题2分,共10分。
)1. 设A 、B 满⾜1)(=A B P ,则.【 d 】(a )A 是必然事件;(b )0)(=A B P ;(c )B A ?;(d ))()(B P A P ≤.2. 设X ~N (µ,σ2),则概率P (X ≤1+µ)=()【 d 】 A )随µ的增⼤⽽增⼤; B )随µ的增加⽽减⼩; C )随σ的增加⽽增加; D )随σ的增加⽽减⼩.3. 设总体X 服从正态分布),(N 2σµ,其中µ已知,2σ未知,321X ,X ,X 是总体X 的⼀个简单随机样本,则下列表达式中不是统计量的是.【 c 】(a )321X X X ++;(b ))X ,X ,X m in(321;(c )∑=σ31i 22i X ;(d )µ+2X .4. 在假设检验中, 0H 表⽰原假设, 1H 表⽰备择假设, 则成为犯第⼆类错误的是.【 c 】(a )1H 不真, 接受1H ;(b )0H 不真, 接受1H ;(c )0H 不真, 接受0H ;(d )0H 为真, 接受1H .5.设n 21X ,,X ,X 为来⾃于正态总体),(N ~X 2σµ的简单随机样本,X 是样本均值,记2n1i i21)X X(1n 1S --=∑=,2n1i i22)X X(n1S -=∑= ,2n1i i23)X(1n 1S µ--=∑=,2n1i i24)X(n1S µ-=∑=,则服从⾃由度为1-n 的t 分布的随机变量是 . 【 b 】(a )1n S X T 1-µ-=;(b )1n S X T 2-µ-=;(c )nS X T 3µ-=;(d )nS X T 4µ-=.⼆、填空题(将答案写在该题横线上。
2009-2010 学年第1学期 概率论(A 卷)考试类型:(闭卷) 考试时间: 120 分钟学号 姓名 年级专业一、填空题(每空3分,共24分) 1.设两事件,A B 满足条件()()P A B P A B =,且()(01P A p p =<<,则()P B =________________.2.设1(),F x 2(),F x 3()F x 分别是随机变量1,X 2,X 3X 的分布函数,为使123()()()()F x a Fx b F xc F x=++是某一随机变量的分布函数,则a+b+c= . 3.设随机变量X服从泊松分布()P λ,且{1}{2P X P X ===,则λ=___________;{3}P X == .4. 设(0,1),21,X N Y X =+ 则{|1|2}P Y -<=______________.5. 若随机变量ξ在[1,6]上服从均匀分布,则方程210X X ξ++=有实根的概率为_______. 6. 设随机变量,X Y 相互独立,其中X 在[2,4]-上服从均匀分布,Y 服从参数为13的指数分布,则(2)E X Y -=_______________; (2)D X Y -=_______________.二、选择题(每小题3分,本题共15分)1. 对两事件A 和B ,下列命题成立的是( ). A 、如果A 、B 相容,则A B 、也相容; B 、如果P(AB)=0,则A 、B 不相容;C 、如果A 、B 相互独立,则()()P B A P B =成立;D 、如果A 、B 对立,则事件A 、B 相互独立.2. 设连续型随机变量X 的密度函数为()f x ,且()(),,f x f x x R -=∈又设X 的分布函数为()F x ,则对任意正实数,()a F a -等于( ).(A) 01();af x dx -⎰(B) 01();2a f x dx -⎰ (C) ();F a (D) 2() 1.F a -3. 当随机变量X 的可能值充满区间 时,则函数()cos()F x x =才可以成为随机变量X 的分布函数.( ) (A)0,2π⎡⎤⎢⎥⎣⎦; (B),2ππ⎡⎤⎢⎥⎣⎦; (C)[]0,π; (D)3,22ππ⎡⎤⎢⎥⎣⎦. 4. 设随机变量X 与Y 相互独立,其概率分布分别为10.30.7X P10.30.7YP则有( ).(A )()0;P X Y == (B )()0.5;P X Y == (C )()0.58;P X Y == (D )() 1.P X Y == 5. 随机变量X 的概率密度函数为21(),(1)X f x x R x π=∈+,则Y=3X 的密度函数为( )A 、21,(1)y R y π∈+; B 、23,(9)y R y π∈+; C 、21,(1)9y R yπ∈+; D 、21,.(19)y R y π∈+ 三、解答题(15分)设随机变量X 与Y 相互独立,它们的密度函数分别为:1,02()20,X x f x ⎧≤≤⎪=⎨⎪⎩其他; 44,0()0,0y Y e y f y y -⎧>=⎨≤⎩.试求:(1) (X,Y)的联合密度函数;(4分) (2) (2)P Y X <;(5分) (3) ()2D X Y -.(6分)四、简答题(10分)某人考公务员接连参加同一课程的笔试和口试,笔试及格的概率为p ,若笔试及格则口试及格的概率也为p ,若笔试不及格则口试及格的概率为2p . (1)如果笔试和口试中至少有一个及格,则他能取得某种资格,求他能取得该资格的概率.(5分)(2)如果已知他口试已经及格,求他笔试及格的概率.(5分)五、解答题(15分)设平面区域为{}2(,)01,D x y x x y x =≤≤≤≤,二维随机变量(X,Y)在该区域上服从均匀分布;(1) 求(X,Y)的联合密度函数;(4分)(2) 求关于X 和关于Y 的边缘密度函数(),()X Y f x f y ,并问X 、Y 是否独立?(7分) (3) 求1().3P X ≤(4分)六、简答题(10分)某仪器装有三支独立工作的同型号电子元件,其寿命X (单位为小时)都服从同一指数分布,概率密度为6001,0()6000,0xe xf x x -⎧>⎪=⎨⎪≤⎩, 求:(1){200}P X <;(4分)(2)在仪器使用的最初200小时内,至少有一支电子元件损坏的概率.(6分)七、简答题(11分)一台设备由三大部件构成,在设备运转中各部件需要调整的概率分别为0.1,0.2,0.3。
概率论(华南农业大学)华南农业大学智慧树知到答案2024年第一章测试1.设样本空间Ω={1,2,10},事件A={2,3,4},B={3,4,5},C={5,6,7},则事件=( )。
A:{1,2,5,6,7,9,10} B:{1,2,3,5,6,7,8,9,10} C:{1,2,5,6,7,8,9,10}D:{1,2,4,5,6,7,8,9,10}答案:C2.同时掷3枚均匀的硬币,恰好有两枚正面向上的概率为( )。
A:0.375 B:0.25 C:0.325 D:0.125答案:A3.假设任意的随机事件A与B,则下列一定有()。
A: B: C: D:答案:B4.设A,B为任意两个事件,则下式成立的为( ) 。
A: B: C: D:答案:A5.设则=()。
A:0.24 B:0.48 C:0.30 D:0.32答案:C6.设A与B互不相容,则结论肯定正确的是 ( )。
A: B:与互不相容 C: D:答案:C7.已知随机事件A, B满足条件,且,则()。
A:0.3 B:0.4 C:0.7 D:0.6答案:C8.若事件相互独立,且,则( )。
A:0.775 B:0.875 C:0.95 D:0.665答案:A9.A:B: C: D:答案:D10.不可能事件的概率一定为0。
()A:错 B:对答案:B11.A:错 B:对答案:A12.贝叶斯公式计算的是非条件概率。
()A:错 B:对答案:A第二章测试1.下列各函数中可以作为某个随机变量X的分布函数的是( )。
A: B: C:D:答案:C2.设随机变量,随机变量, 则 ( )。
A: B: C: D:答案:C3.设随机变量X服从参数为的泊松分布,则的值为()。
A: B: C: D:答案:C4.设随机变量X的概率密度函数为,则常数()。
A: B: C:5 D:2答案:C5.如果随机变量X的密度函数为,则()。
A:0.875 B: C: D:答案:D6.A:对任意实数,有 B:只对部分实数,有。
华南农业大学期末考试试卷(A 卷)2008-2009学年第 2学期 考试科目: 概率论 考试类型:(闭卷/开卷)考试 考试时间: 120 分钟学号 姓名 年级专业一、(15分)填空题(每空3分,共15分)1. 设A 、B 为两个事件,已知5.0)(=A P ,4.0)(=B P ,3.0)(=-B A P ,则7.0)(=B A P2. 某人连续射击3次,记i A 为“第i 次射击命中目标”,i =1,2,3, 又设此人命中率为0.7, 各次射击互不影响, 则他恰好只在第三次命中的概率为 0.063 。
3. 设随机变量X 服从[2,4]上的均匀分布,随机变量X Y 23-=,则方差=)(Y D34。
4.已知随机变量2~(2,),(24)0.3X N P X σ<<=, 则(0)P X >= 0.8 。
5. 设随机变量X 与Y 相互独立,且)1,0(~N X ,)6,3(~N Y ,令Y X Z 32-=,则139)(2=Z E二、(12分,每小题6分,)发报台分别以概率6.0和4.0发出信号“0”和“1”,由于通讯系统受到干扰,当发出“0”时,收报台分别以概率8.0和2.0收到“0”和“1”;当发出“1”时,收报台分别以概率9.0和1.0收到“1”和“0”。
试求: (1) 收报台收到“1”的概率;(2) 当收到“1”时,发报台确实发出“1”的概率.解:设发出信号“0”为事件A, 发出信号“1”为事件A ,接收到信号“0”为事件B ,接收到信号“1”为事件B 。
由题意有 2.0)|(,8.0)|(,4.0)(,6.0)(====A B P A B P A P A P1.0)|(,9.0)|(==A B P A B P(1) 求概率)(B P 。
由全概率公式48.04.09.06.02.0)()|()()|()(=⨯+⨯=+=A P A B P A P A B P B P(2)求概率)|(B B P 。
习 题 二 解 答1. 五张卡片上分别写有号码1,2,3,4,5。
随即抽取其中三张,设随机变量X 表示取出三张卡片上的最大号码。
(1) 写出X 的所有可能取值;(2)求X 的分布率。
解:(1)显然是:3,4,5。
(2) X 的分布律 2. 下面表中列出的是否时。
某个随机变量的分布律(1) (2) $答:(1)是(2)不是3.一批产品共有N 件,其中M 件次品。
从中任意抽取n(n<=M)件产品,求这n 件产品中次品数X 的分布律。
(此分布律为超几何分布)解:抽取n 件产品的抽法有nNC 种,抽取到次品的抽法有k n MN k C --M C种,所以所求概率为:P ()k X ==n Nk n MNk M C C C --,k=0,1,2,3……..n―――――――――――――――――――――――――――――――――――――――4.设随机变量X 的分布律为P ={X=k}=15k ,k=1,2,3,4,5. 求:(1)P{X=1或X=2};(2)P{2521<<X };(3)P{21≤≤X }.解:(1)P{X=1或X=2}=P{X=1}+ P{X=2}=152151+=51。
(2)P{2521<<X }=P{21≤≤X }=P{X=1}+ P{X=2}=152151+=51。
^(3)P{21≤≤X }=P{X=1}+ P{X=2}=152151+=51。
―――――――――――――――――――――――――――――――――――――――5.一批产品共10件,其中7件正品,3件次品。
从该批产品中每次任取一件,在下列两种情况下,分别求直至取得正品为止所需次数X 的分布律。
(1)每次取后不放回; (2)每次取后放回。
解:(1),30791073)2(,107)1(=⨯⨯====X P X P,12078910723)3(=⨯⨯⨯⨯==X P"(2){}1103107-⎪⎭⎫⎝⎛==k k X P (k =1,2,…)―――――――――――――――――――――――――――――――――――――――6.某射手每发子弹命中目标概率为,现相互独立地射击5发子弹, 求:(1)命中目标弹数地分布律; (2)命中目标的概率。
2012学年第一学期概率论与数理统计试题解答参考一、1.B ;2. A ;3. C ; 4. B ;5. B ;6.B ;7. C 二、1. 1 ; 2. 0,0.5;3.37;4. 0.4; 5. 0.6; 6. 22,X X αα-⎛⎫ ⎪⎝⎭; 7. 2(,)10N σμ三、1.解:解:,1,)1(lim )(1=∴=-=+∞=-∞→A A e A F x xP{1≤X ≤3} =F(3)-F(1)=e -1-e -3,2.解: X 的概率密度为)()(x F x f '=⎪⎩⎪⎨⎧<≥=,a x a x x a ,0,,343⎰⎰∞+∞+∞-==adx xa dx x xf X E 333)()( 23a=3.解:解:设事件12,A A 分别为任取一件产品,产品是甲、乙厂生产的,事件B 为任取的一件产品为次品,则由已知条件可知1()0.6P A = ,2()0.4P A =,1(|)0.01P B A =,2(|)0.02P B A =由贝叶斯公式可得10.60.013(|)0.60.010.40.027P A B ⨯==⨯+⨯,20.40.024(|)0.60.010.40.027P A B ⨯==⨯+⨯,由上两式知,任取一件为次品,该产品是乙厂生产的可能性较大。
4.解:解: 由题设可知(,)X Y 的概率密度为 ()2,01,01,0,y x x f x y ≤≤-≤≤⎧=⎨⎩其他于是关于X 的边缘分布密度为()()()10221,01,0,x X dy x x f x f x y dy -+∞-∞⎧=-≤≤⎪==⎨⎪⎩⎰⎰其他关于Y 的边缘分布密度为()()()10221,01,0,y Y dx y y f y f x y dx -+∞-∞⎧=-≤≤⎪==⎨⎪⎩⎰⎰其他5.解:由于总体差已知,因此用U 检验法,设0:53H μ= ,1:53H μ≠由已知条件可知,51.3x =,3σ=,|| 1.7 1.96U ==< , 所以在05.0=α不能拒绝0H 。
华南农业大学期末考试试卷(A 卷)2012-2013学年第 1 学期 考试科目: 概率论考试类型:(闭卷)考试 考试时间: 120 分钟 学号 姓名 年级专业题号 一二三总分得分 评阅人一、选择题(本大题共 5 小题,每小题 3 分,共 15 分) 1、设A 与B 互斥(互不相容),则下列结论肯定正确的是( D )。
(A) A 与B 不相容 (B) A 与B 必相容 (C) ()()()P AB P A P B = (D) ()()P A B P A -=2、设随机变量X 与Y 相互独立,其概率分布如下,则有( C )成立。
010.20.8XP 010.20.8Y P(A) ()0P X Y == (B) ()0.4P X Y == (C) ()0.68P X Y == (D) ()1P X Y == 3、设随机变量的概率密度为()x ϕ,=12,则的概率密度为( A )。
(A)1122y ϕ-⎛⎫ ⎪⎝⎭; (B) 112y ϕ-⎛⎫- ⎪⎝⎭; (C) 12y ϕ-⎛⎫- ⎪⎝⎭; (D)2(12)y ϕ- 得分4、设随机变量ξ服从2λ=的泊松分布,则随机变量2ηξ=的方差为( A )。
(A) 8; (B) 4; (C) 2; (D) 16.5、设2~(0,1),~(,)N N a ξησ,则η与ξ之间的关系是( B )。
(A)a ξησ-=; (B) a ησξ=+; (C)2aξησ-= ; (D)2a ησξ=+.二、填空题(本大题共 8 小题,每小题 3 分,共 24 分) 1、设样本空间Ω={1,2,10},事件A={2,3,4},B={3,4,5},C={5,6,7},则事件()A BC =__{1,2,5,6,7,8,9,10} ________。
2、抛一枚硬币三次,和分别表示出现正面的次数和出现反面的次数,则{}P ξη>=__12_______。
3、3、设随机变量X 的分布函数0,0.2,()0.9,1,F x ⎧⎪⎪=⎨⎪⎪⎩ 111122x x x x <--≤<≤<≥,则{03}P X ≤≤=_0.8_。
华南农业大学2008(1)概率论与数理统计A 试卷参考答案一、填空题('63⨯=18分)1. 0.9762. 0.3753. 21e --4. 175. 16. 8二.选择题('63⨯=18分)1. D2.B3.A4.D5.D6.A 三.(5分)解:X 的概率分布为3323()()()0,1,2,3.55k k kP X k C k -===即01232754368125125125125X P26355EX =⨯=……………1分 231835525DX =⨯⨯=四、(10分)解 设B ={此人出事故},A1,A2分别表示此人来自第一类人和第二类人 由已知,有1()0.3P A =,2()0.7P A =,1()0.05P B A =,2()0.01P B A =,(1)由全概率公式有1122()()()()()0.30.050.70.010.022P B P A P B A P A P B A =+=⨯+⨯=(2)由贝叶斯公式有111()()0.30.0515()0.682.()0.02222P A P B A P A B P B ⨯===≈答:从两类人中任意抽取一人,此人一年内出事故的概率为0.022; 若已知此人出事故,此人来自第一类人的概率约为0.682. 五、(10分) 解:(1)222001()(1)()222a f x dx ax dx x x a +∞-∞==+=+=+⎰⎰ 12a ∴=-(2)X 的分布函数为200,0,0,0,()()(1),02,,02,241,2.1, 2.x xx x x u F x f u du du x x x x x -∞≤⎧≤⎧⎪⎪⎪⎪==-<≤=-<≤⎨⎨⎪⎪>>⎪⎪⎩⎩⎰⎰(3)32111(13)()(1)24x P x f x dx dx <<==-=⎰⎰六、(14分)解:区域D 的面积2211ln 2e e D S dx x === 1,(,),(,)20,x y D f x y ⎧∈⎪=⎨⎪⎩其它.(1)122011,1,,1,()(,)220,.0,.x X x e dy x e f x f x y dy x +∞-∞⎧⎧≤≤≤≤⎪⎪===⎨⎨⎪⎪⎩⎩⎰⎰其它其它22221122111(1),1,1,22111,1,1,()(,)2220,0,e y Y e y e dx y e e y dx e yf y f x y dx y --+∞---∞⎧⎧-≤≤≤≤⎪⎪⎪⎪⎪⎪-<≤<≤===⎨⎨⎪⎪⎪⎪⎪⎪⎩⎩⎰⎰⎰其它其它(2)因(,)()()X Y f x y f x f y ≠⋅,所以,X Y 不独立. (3)2(2)1(2)1(,)x y P X Y P X Y f x y dxdy +<+≥=-+<=-⎰⎰22112xdx dy -=⎰⎰1113110.752244=-⨯=-==七、(10分)解: 矩估计:()11()E X xf x dx dx +∞-∞===⎰⎰由()X E X ==得,矩估计量为2X ()1Xθ=- 极大似然函数为 111211(,,,;)nnn i i L x x x xθ====∏两边同时取对数,得1ln 1)ln nii L n x ==∑令ln ln 02nix d L n d θθ==∑ 故极大似然估计量为21()ln nii nxθ=-=∑八、(10分)解:(1)μ的置信度为1α-下的置信区间为/2/2(((X t n X t n αα--+- 其中,X 表示样本均值,S 表示样本标准差,n 表示样本容量,又0.05125, 2.71,7,0.1,(6) 1.943X S n t α=====所以μ的置信度为90%的置信区间为(123,127) (2)本问题是在0.10α=下检验假设 01:124,:124,H H μμ=≠ 由于正态总体的方差2σ未知,所以选择统计量X T =,由题意知,在0H 成立的条件下,此问题的拒绝域为2||0.976(1)T t n α==>-这里显然0.050.976 1.943(71)t <=-,说明没有落在拒绝域中,从而接受零假设0H ,即在显著性水平0.10下,可认为这块土地的平均面积μ显著为124平方米。
华南农业大学2007第一期概率统计试卷参考答案一. 选择题('53⨯=15分) 1. D 2.B 3. B 4. C 5.A 二. 填空题('53⨯=15分)1.243e -或0.1804; 2.2(1)1Φ-或0.7;3/2(1)n α-; 4.2(10)n χ; 5.3.0202; 三. (10分)解 设B ={此人感染此病},A 1,A 2,A 3分别表示此人选自甲、乙、丙三个地区 由已知,有1()0.2P A =,2()0.5P A =,3()0.3P A =,1()0.06P B A =,2()0.04P B A =,3()0.03P B A =(1)由全概率公式有112233()()()()()()()0.20.060.50.040.30.030.041P B P A P B A P A P B A P A P B A =++=⨯+⨯+⨯=(2)由贝叶斯公式有 112()()0.20.0612()0.2927.()0.04141P A P B A P A B P B ⨯===≈答:从三个地区任意抽取一人,感染此流行病的概率为0.041;若已知此人染病,此人来自乙地区的概率约为0.2927. ………………… 四.(12分)解 (1) 11-22p X ⎛⎫<< ⎪⎝⎭=1201212121arcsin 3x ππ-==⎰(2)当x <-1时 ()00xF X dx -∞==⎰当11x -≤<时1111()0arcsin arcsin 12xxF x dx xx ππ--∞-=+==+-⎰⎰当x 1≥时11111111()00arcsin 122xF x dx dxdx xπ--∞--=+==+=⎰⎰⎰故X 分布函数为0,111()arcsin ,1121,1x F x x x x π<-⎧⎪⎪=+-≤<⎨⎪≤⎪⎩五(16分) 解 (1)()(,)X f x f x y dy +∞-∞=⎰当0x <时,(,)0f x y =,从而()X f x =0.当0x ≥时3434300()(,)0123()3x y x y x X f x f x y dy dy e dy e e e +∞+∞----+∞--∞-∞==+=-=⎰⎰⎰33,0()0,0x X e x f x x -⎧≥=⎨<⎩ 同理44,0()0,0y Y e y f y y -⎧≥=⎨<⎩(2)由(1)求出的两个边缘密度函数表达式可知,对于一切x ,y ,有(,)()()X Y f x y f x f y =则可证明X 与Y 相互独立. (3)21(01,02)(,)P X Y f x y dxdy<≤<≤=⎰⎰210()()Y X f y dy f x dx=⋅⎰⎰21430214383432.x x x x e dy e dxeee e ------=⋅=--=--⎰⎰六.(10分)解 令X 表示取到正品之前已经取出的废品的数,则X 的可能取值为0,1,2,X 的分布律为8{0}10P X ==,288{1}10945P X ==⋅=,2181{2}109845P X ==⋅⋅=,所以88120121045459EX =⨯+⨯+⨯=, 2222881401210454515EX =⨯+⨯+⨯=224488().1581405DX EX EX =-=-=七.(10分) 解 设该次考试的考生成绩为X ,则2(,)XN μσ,把从X 中抽取的容量为n =26的样本均值记为X ,样本标准差为S .本题是在显著水平0.05α=下检验假设 01:70,:70.H H μμ=≠ 由于2σ未知,用t 检验法. 当H 0为真时,统计量/2(1)T t n α=≥-,由0.02526,66.5,15,(25) 2.060n X S t ====算得 1.19 2.060T =<,所以统计量T 未落入拒绝域中,从而接受H 0,即在显著水平0.05下,可以认为这次考试全体考生的平均成绩为70分. 八.(12分) 解 ()101(1)2E X x x dx ββββ+=+=+⎰ 由()12X E X ββ+==+知矩估计量为1ˆ21Xβ=-- ()1(1),010,nn i i i x x L βββ=⎧+<<⎪=⎨⎪⎩∏其它 ()1ln ln(1)ln ni i L n x βββ==++∑令()1ln ln 01ni i L nx βββ=∂=+=∂+∑ 故极大似然估计量为 11ln nii nxβ=-=-∑。
习 题 三 解 答1:设二维随变量(X ,Y )只能取下列数组中的值:(0,0),(-1,1),(-1,1/3),(2,0),且取这几组值的概率依次为1/6,1/3,1/12,5/12。
求此二维随机变量(X ,Y )的分布列。
解:此二维随机变量(X ,Y )的分布列是: Y X 0 1/3 1 -1 0 1/12 1/30 1/6 0 0 25/12―――――――――――――――――――――――――――――――――――――――2.一袋中有四个球,它们依次标有数字1,2,2,3。
从这袋中任取一球后,不放回袋中,再从袋中任取球,设每次取球时,袋中每个球被取到的可能性相同。
以X ,Y 分别记第一、二次取得的球上标有的数字,求(X ,Y )的概率分布。
解:由题意得:(X ,Y )的可能取值为:(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2)。
则由概率的乘法公式得:P{X=1,Y=2}=(1/4)×(2/3)=1/6 P{X=1,Y=3}=(1/4)×(1/3)=1/12 P{X=2,Y=1}=(2/4)×(1/3)=1/6 P{X=2,Y=2}=(2/4)×(1/3)=1/6 P{X=2,Y=3}=(2/4)×(1/3)=1/6P{X=3,Y=1}=(1/4×(1/3)=1/12 P{X=3,Y=2}=(1/4)×(2/3)=1/6而事件(1,1),(3,3)为不可能事件,所以P{X=1,Y=1}=0,P{X=3,Y=3}=0。
则(X ,Y )的联合分布列为:―――――――――――――――――――――――――――――――――――――――3在一个箱子里装有12只开关,其中2只是次品,在其中随机地取两次,每次取一只,考虑两种试验,(1)有放回抽样,(2)无放回抽样,我们定义随机变量X ,Y 如下Y X 1 2 3 1 0 1/6 1/12 2 1/6 1/6 1/6 3 1/12 1/6 0⎩⎨⎧=品表示第一次取出的是次品表示第一次取出的是正10X⎩⎨⎧=品表示第二次取出的是次品表示第二次取出的是正1Y解:(1)所求联合概率分布为:X 0 10 25/365/36 15/361/36(2)所求联合概率分布为: X 010 45/6610/66 110/661/66―――――――――――――――――――――――――――――――――――――――4.设二维随机变量(X ,Y )的概率密度为),(y x f =⎩⎨⎧>>+-其他,00,0,)43(y x ke y x(1)确定常数k ;(2)求(X ,Y )的分布函数;(3)求P{0<X ≤1,0<Y ≤2}。
解:(1)由概率密度函数的性质知d x d yke dxdy y x f y x ⎰⎰⎰⎰+∞+∞+-+∞∞-+∞∞-=00)43(),( =dy e dx ek y x⎰⎰+∞-+∞-0403=k *4131*=1 即 k=12.(2)由定义,有d u d vv u f y x F yx⎰⎰∞-∞-=),(),( 当00x y <<或时Y X Y X(,)(,)0yx yxF x y f u v d u d vd u d v-∞-∞-∞-∞===⎰⎰⎰⎰当0,0x y >>时()()(34)00034(,)1234121111||34x yu v x yx y F x y du e dvu v e e e e -+--=⎛⎫⎛⎫-- ⎪⎪= ⎪⎪⎝⎭⎝⎭=--⎰⎰-- 于是34(1)(1)0,0(,)0x y e e y x F x y --⎧-->>=⎨⎩其它(3){}21(34)001,0212x y P X Y dy e dx -+〈≤〈≤=⎰⎰ =)1)(1(83----e e―――――――――――――――――――――――――――――――――――――――5.随机变量(X ,Y )的分布密度为22222222(),(,)0,C R x y x y R f x y x y R ⎧-++≤⎪=⎨+>⎪⎩(1)求系数C ;(2)求随机变量(X ,Y )落在)(222R r r y x <≤+内的概率。
解:(1)由(,)1f x y dxdy +∞+∞-∞-∞=⎰⎰(利用极坐标运算)得()232222032313RR R d C R rrdr CR d Cd CR πππθθθπ⎛⎫-=- ⎪⎝⎭==⎰⎰⎰⎰于是 33C R π=(2)利用极坐标运算得:=233r R(1-R r 32) ―――――――――――――――――――――――――――――――――――――――6.求出在D 上服从均匀分布的随机变量(X,Y)的分布密度及分布函数,其中D 为x 轴,y 轴及直线y=2x+1围成的三角形区域.解:由于面积S=1/4,所以(X,Y )的联合密度函数为⎩⎨⎧∈=其它0),(4),(Dy x y x f 分布函数分区域讨论(1) 当1x y 0, f(x,y)=0 2≤-≤或从而 yx y x----F (x ,y )=f (x ,y )d x d y =0d x d y =0∞∞∞∞⎰⎰⎰⎰ (2) 当1<x 0,y 21,2x ≤≤+-或0< yxy x2y-1--02F(x,y)=f(x,y)dxdy=4dx=4xy+2y-y dy ∞∞⎰⎰⎰⎰(3) 当10,212x x y -<≤+< ()()y xx 2x+1211---022F(x,y)=f(x,y)dxdy=4dy=8x+421xdx dx x ∞∞-=+⎰⎰⎰⎰⎰(4) 当0,01x y <<≤()y xy 02y-1--02F(x,y)=f(x,y)dxdy=4dx=1-1-y dy ∞∞⎰⎰⎰⎰(5) 当0,1x y << yx 02x +11---02F (x ,y )=f (x ,y )d x d y =4d y =1dx ∞∞⎰⎰⎰⎰ 综上可得:()()22210021420,0212(,)1210,212110,0110,1x y xy y y x y x F x y x x x y y x y x y ⎧≤-≤⎪⎪⎪-+-<≤<≤+⎪⎪=⎨+-<≤+<⎪⎪⎪--<<≤⎪<<⎪⎩或7. 设随机变量(X,Y )的概率密度为2,01,02(,)30,xyx x y f x y ⎧+≤≤≤≤⎪=⎨⎪⎩其他求P {X+Y 1≥}.解:P {X+Y ≥1}=1–P {X+Y<1}=1–11200()3x xydx x dy -+⎰⎰=72658:设二维随机变量(X ,Y )要区域D 上服从均匀分布,其中D 是曲线y=2x 和 y=x 所围成,试求(X ,Y )的分布密度及边缘分布密度。
解:面积()21120116xd Dx S dxdy dx dy x x dx ===-=⎰⎰⎰⎰⎰ 则 6(,)(,)0x y Df x y ∈⎧=⎨⎩其他(a )关于X 的边缘概率密度 当01x ≤≤时,()22()(,)66xX x f x f x y d y d y x x+∞-∞===-⎰⎰当01x x <>或时()0X f x = 所以()2601()0X x x x f x ⎧-≤≤⎪=⎨⎪⎩其他(b )关于Y 的边缘概率密度当01y ≤≤时,()()(,)66yY yf y f x y d xd x y y+∞-∞===-⎰⎰当01y y <>或时()0Y f y = 所以()601()0Y y y y f y ⎧-≤≤⎪=⎨⎪⎩其他 9.(1)第1题中的随机变量X 和Y 是否相互独立(提示:考虑事件{X=-1,y=1})? (2)第6题中的随机变量X 与Y 是否相互独立(提示:考虑事件⎭⎬⎫⎩⎨⎧>-<21,41Y X )?解:(1){}1151012312P X =-=++=,{}15100312P Y ==++= 而 {}11,13P X Y =-== {}{}{}1,111P X Y P X P Y ∴=-=≠=-=根据定义得:X 与Y 不相互独立。
(2)10.已知二维随机变量(X ,Y )的概率密度为:6(2),0x 1,0y 1(,)0,xy x y f x y --≤≤≤≤⎧=⎨⎩其它求边缘概率密度()X f x 与()Y f y ;64,(,)(,)0,11{,}04211111{}44242411111{}4224241111{,}{}{}4242Y x y D f x y P X Y P X P Y P X Y P X P Y X ∈⎧=⎨⎩<->=<-=⨯⨯⨯=>=⨯⨯⨯=∴<->≠<->∴由第题得,其他而与不相互独立(1) )|(|y x f Y X ,)|(|x y f X Y (2) 问X 和Y 是否相互独立? 解:(1)⎰+∞∞-=dy y x f x f X ),()(当0≤x ≤1时,()1206(2)43X f x xy x y dy x x =--=-⎰其它, ,0),(=y x f 所以()0X f x =所以关于X 的概率密度为243,0x 1()0,X x x f x ⎧-≤≤=⎨⎩其它类似地,()(,)Y f y f x y dx +∞-∞=⎰当0≤y ≤1,()1206(2)43Y f y xy x y dx y y =--=-⎰其它, 0),(=y x f()0Y f y = 所以()243,0y 10,Y y y f y ⎧-≤≤=⎨⎩其它 (3) 故由条件概率密度的定义可知,==)(),()|(|y f y x f y x f Y Y X ⎪⎩⎪⎨⎧≤≤≤≤---其它,01y 0,1x 0,34)2(6y y x x ==)(),()|(|x f y x f x y f X X Y ⎪⎩⎪⎨⎧≤≤≤≤---其它,01y 0,1x 0,34)2(6xy x x (3)x=1,y=1时,)(x f X ×)(y f Y =(4y-32y )(4x-32x )=1(,)0f x y =此时()()(,)X Y f x f y f x y ⨯≠所以X 和Y 不相互独立。
――――――――――――――――――――――――――――――――――――――― 11.(1)如果(X ,Y )在以原点为中心,边长为2的正方形内服从均匀分布,问X 和Y 是否相互独立?(2)如果(X ,Y )在以原点为中心,R 为半径的圆内服从均匀分布,问X 和Y 是否相互独立? 解:(1)因为(X ,Y )服从均匀分布,故⎪⎩⎪⎨⎧≤≤-≤≤-=其它11,1141),(y x y x f当x<-1或x>1时,f(x,y)=0所以⎰+∞∞-==00)(dy x f X当11≤≤-x 时,2141),()(11===⎰⎰-+∞∞-dy dy y x f x f X 于是得关于X 的概率密度为⎪⎩⎪⎨⎧≤≤-=其它1121)(x x f X同理可得关于Y 得概率密度为⎪⎩⎪⎨⎧≤≤-=其它1121)(y y f Y()()(,)X Y f x f y f x y ⨯=,故X 和Y 是相互独立。