华农-2016-17-1华南农业大学概率论试卷
- 格式:doc
- 大小:210.00 KB
- 文档页数:6
华中农业大学本科课程考试参考答案与评分标准考试课程:概率论与数理统计 学年学期: 试卷类型:B 考试日期:一、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其字母代号写在该题【 】内。
答案错选或未选者,该题不得分。
每小题2分,共10分。
)1. 设随机变量X 的概率密度)1(1)(2x x p +=π,则X Y 2=的分布密度为 . 【 b 】 (a))41(12x +π; (b) )4(22x +π; (c) )1(12x +π; (d) x arctan 1π.2. 设随机变量序列x 1, x 2,…, x n …相互独立,并且都服从参数为1/2的指数分布,则当n 充分大时,随机变量Y n =∑=ni i x n 11的概率分布近似服从 . 【 b 】(a) N(2,4) (b) N(2,4/n) (c) N(1/2,1/4n) (d) N(2n,4n) 3. 设总体X 服从正态分布),(N 2σμ,其中μ已知,2σ未知,321X ,X ,X 是总体X 的一个 简单随机样本,则下列表达式中不是统计量的是 . 【 C 】(a )321X X X ++; (b ))X ,X ,X min(321; (c )∑=σ31i 22i X ; (d )μ+2X .4.在假设检验问题中,检验水平α意义是 . 【 a 】 (a )原假设H 0成立,经检验被拒绝的概率; (b )原假设H 0成立,经检验不能拒绝的概率; (c )原假设H 0不成立,经检验被拒绝的概率; (d )原假设H 0不成立,经检验不能拒绝的概率.5.在线性回归分析中,以下命题中,错误的是 . 【 d 】(a )SSR 越大,SSE 越小; (b )SSE 越小,回归效果越好; (c )r 越大,回归效果越好; (d )r 越小,SSR 越大.二、填空题(将答案写在该题横线上。
答案错选或未选者,该题不得分。
每小题2分,共10分。
3《概率论与数理统计》期末考试试题答案A卷华中农业⼤学本科课程考试参考答案与评分标准考试课程:概率论与数理统计学年学期:试卷类型:A 卷考试时间:⼀、单项选择题(从下列各题四个备选答案中选出⼀个正确答案,并将其字母代号写在该题【】内。
答案错选或未选者,该题不得分。
每⼩题2分,共10分。
)1. 设A 、B 满⾜1)(=A B P ,则.【 d 】(a )A 是必然事件;(b )0)(=A B P ;(c )B A ?;(d ))()(B P A P ≤.2. 设X ~N (µ,σ2),则概率P (X ≤1+µ)=()【 d 】 A )随µ的增⼤⽽增⼤; B )随µ的增加⽽减⼩; C )随σ的增加⽽增加; D )随σ的增加⽽减⼩.3. 设总体X 服从正态分布),(N 2σµ,其中µ已知,2σ未知,321X ,X ,X 是总体X 的⼀个简单随机样本,则下列表达式中不是统计量的是.【 c 】(a )321X X X ++;(b ))X ,X ,X m in(321;(c )∑=σ31i 22i X ;(d )µ+2X .4. 在假设检验中, 0H 表⽰原假设, 1H 表⽰备择假设, 则成为犯第⼆类错误的是.【 c 】(a )1H 不真, 接受1H ;(b )0H 不真, 接受1H ;(c )0H 不真, 接受0H ;(d )0H 为真, 接受1H .5.设n 21X ,,X ,X 为来⾃于正态总体),(N ~X 2σµ的简单随机样本,X 是样本均值,记2n1i i21)X X(1n 1S --=∑=,2n1i i22)X X(n1S -=∑= ,2n1i i23)X(1n 1S µ--=∑=,2n1i i24)X(n1S µ-=∑=,则服从⾃由度为1-n 的t 分布的随机变量是 . 【 b 】(a )1n S X T 1-µ-=;(b )1n S X T 2-µ-=;(c )nS X T 3µ-=;(d )nS X T 4µ-=.⼆、填空题(将答案写在该题横线上。
12012-2013学年第 2学期《概率论与数理统计》试卷评分标准一、1.B ;2. A ;3. C ; 4. B ;5. B ;6.B ;7. D 二、1. 1 ; 2. 0,0.5;3.37;4. 0.4 5.(每空0.5分)6. 22,X X αα-⎛⎫ ⎪⎝⎭; 7. 2(,),N n σμ或2(,)10N σμ 三、1.解:解:,1,)1(lim )(1=∴=-=+∞=-∞→A A e A F x x (3分)P{1≤X ≤3} =F(3)-F(1)=e -1-e -3, (3分)2.解: X 的概率密度为)()(x F x f '=⎪⎩⎪⎨⎧<≥=,a x a x x a ,0,,343(2分)⎰⎰∞+∞+∞-==adx xa dx x xf X E 333)()( (3分) 23a=(1分) 3.解:解:设事件12,A A 分别为任取一件产品,产品是甲、乙厂生产的,事件B 为任取的一件产品为次品,则由已知条件可知1()0.6P A = ,2()0.4P A =,1(|)0.01P B A =,2(|)0.02P B A = (2分) 由贝叶斯公式可得10.60.013(|)0.60.010.40.027P A B ⨯==⨯+⨯,20.40.024(|)0.60.010.40.027P A B ⨯==⨯+⨯,(3分)由上两式知,任取一件为次品,该产品是乙厂生产的可能性最大。
(1分)4.解:解: (,)X Y 的概率密度为2(2分)(2分)同理可得\ (2分)5.解:由于总体差已知,因此用U 检验法,设0:53H μ= ,1:53H μ≠ (1分)由已知条件可知,51.3x =,3σ=,|| 1.7 1.96U ==< , (3分) 所以在05.0=α不能拒绝0H 。
故认为该动物的体重平均值为53公斤。
(2分)四、1. 解:已知X 的概率密度函数为1,01,()0,.X x f x <<⎧=⎨⎩其它Y 的分布函数F Y (y )为11(){}{21}{}22Y X y y F y P Y y P X y P X F --⎛⎫=≤=+≤=≤= ⎪⎝⎭(4分) 因此Y 的概率密度函数为1,13,11()()2220,.Y Y X y y f y F y f ⎧<<⎪-⎛⎫'===⎨ ⎪⎝⎭⎪⎩其它 (4分) 或用代公式法也可以解出答案。
概率论(华南农业大学)华南农业大学智慧树知到答案2024年第一章测试1.设样本空间Ω={1,2,10},事件A={2,3,4},B={3,4,5},C={5,6,7},则事件=( )。
A:{1,2,5,6,7,9,10} B:{1,2,3,5,6,7,8,9,10} C:{1,2,5,6,7,8,9,10}D:{1,2,4,5,6,7,8,9,10}答案:C2.同时掷3枚均匀的硬币,恰好有两枚正面向上的概率为( )。
A:0.375 B:0.25 C:0.325 D:0.125答案:A3.假设任意的随机事件A与B,则下列一定有()。
A: B: C: D:答案:B4.设A,B为任意两个事件,则下式成立的为( ) 。
A: B: C: D:答案:A5.设则=()。
A:0.24 B:0.48 C:0.30 D:0.32答案:C6.设A与B互不相容,则结论肯定正确的是 ( )。
A: B:与互不相容 C: D:答案:C7.已知随机事件A, B满足条件,且,则()。
A:0.3 B:0.4 C:0.7 D:0.6答案:C8.若事件相互独立,且,则( )。
A:0.775 B:0.875 C:0.95 D:0.665答案:A9.A:B: C: D:答案:D10.不可能事件的概率一定为0。
()A:错 B:对答案:B11.A:错 B:对答案:A12.贝叶斯公式计算的是非条件概率。
()A:错 B:对答案:A第二章测试1.下列各函数中可以作为某个随机变量X的分布函数的是( )。
A: B: C:D:答案:C2.设随机变量,随机变量, 则 ( )。
A: B: C: D:答案:C3.设随机变量X服从参数为的泊松分布,则的值为()。
A: B: C: D:答案:C4.设随机变量X的概率密度函数为,则常数()。
A: B: C:5 D:2答案:C5.如果随机变量X的密度函数为,则()。
A:0.875 B: C: D:答案:D6.A:对任意实数,有 B:只对部分实数,有。
1 华南农业大学期末考试试卷(A 卷)2016-2017学年第 2 学期 考试科目:大学数学2 考试类型:(闭卷)考试 考试时间: 120 分钟学号 姓名 年级专业________________________一、选择题(每题3分,共计18分)1. 设A 、B 为相互独立,()0,()0P A P B >>,则()P A B =( )。
(A) 1()()P A P B - (B) 1()()P A P B + (C) ()()P A P B + (D) 1()P AB -2. 随机变量X 的密度函数为()f x ,且()()f x f x -=,()F x 是X 的分布函数,则对任意实数a 有( )(A) 0()1()aF a f x dx -=-⎰ (B) 01()()2a F a f x dx -=-⎰ (C) ()()F a F a -= (D) ()2()1F a F a -=-3. 二维随机变量(,)X Y 的分布函数为(,)F x y ,则下列不正确的为( )(A) (,)(,)F x y P X x Y y =≤≤ (B) (,)0F y -∞= (C) (,)0F -∞-∞= (D) (,)1F y +∞= 4. 设随机变量X 、Y ,下列( )选项是正确的(A) ()()()D XY D X D Y = (B) ()()()E XY E X E Y =2 (C) ()()()E X Y E X E Y +=+ (D) ()()()D X Y D X D Y -=- 5. 若样本12,n X X X 来自于正态分布总体2(,)N μσ,其中标准差σ已知,则对于均值μ的置信度为1α-的区间估计为( )(A) 22[((X t n X t n αα--+-(B) 22[X X ααμμ-+(C) 22[X u X u αα-+(D) [X u X u αα-+6. 若样本12,n X X X 来自于正态分布总体2(,)N μσ,其中期望μ已知,在假设检验20:16H σ=与21:16H σ≠中,使用的检验统计量为( )(A)22116nii Xμ=-∑ (B)21()16nii Xμ=-∑(C)21()16nii XX =-∑ (D)22116nii XX =-∑二、填空题(每空3分,共计18分)1. 已知()P A =0.5,()P B =0.6,(|)P B A =0.8,则()P A B =______________2. 设随机变量X 服从泊松分布(2)P ,则(2)P X ≤=_____________3. 连续型随机变量的分布函数220()00x a bex F x x -⎧⎪+≥=⎨⎪<⎩,则a =___ _______b=____________4. 假设~(1,4)X N -(正态分布),~(2)Y E (指数分布),且,X Y 相互独立,则(2)D X Y -= _________ 5. 样本12,n X X X 来自于正态分布总体2(,)N μσ,则样本均值X 服从___________________ (具体参数及分布)3三、计算题(每题8分,共计48分)1. 中国有两支球队上海上港队和广州恒大队参与亚冠联赛,根据数据分析知,上海上港队夺冠的概率为0.92,广州恒大队夺冠的概率为0.93。
华南农业大学期末考试试卷(A 卷)2014学年第1学期 考试科目: 概率论与数理统计 考试类型:(闭卷)考试 考试时间: 120 分钟 学号 姓名 年级专业一、选择题(本大题共10小题,每小题2分,共20分)1. 有100张从1到100号的卡片,从中任取一张,取到卡号是7的倍数的概率为 ( A )A. 507B. 1007C. 487D. 100152.设A 和B 互不相容,且()0P A >,()0P B >,则下列结论正确的是( C )A. (|)0P A B >B. ()(|)P A P A B =C. (|)0P A B =D. ()()()P AB P A P B =3.设A 和B 相互独立,且()0P A >,()0P B >,则一定有()P A B = ( A )A. 1()()P A P B -B. 1()()P A P B -C. ()()P A P B +D. 1()P AB -4.设随机变量X 的概率密度为21(2)8()x f x --=,若()()P X C P X C >=≤,则C 的值为 ( D )A. 0B. -2C.D. 25.下列函数可以作为某随机变量的密度函数的为: ( D )A. ⎩⎨⎧∈=其他,0],0[,cos )(πx x x fB. ⎪⎩⎪⎨⎧<=其他,02,21)(x x fC. ⎪⎩⎪⎨⎧<≥=--0,00,21)(22)(x x e x f x σμπσ D. ⎩⎨⎧<≥=-0,00,)(x x e x f x6. 设X 1、X 2是随机变量,其数学期望、方差都存在,C 是常数,下列命题中(1)E (CX 1+b )=CE (X 1)+b ; (2)E (X 1+X 2)=E (X 1)+E (X 2) (3)D (C X 1+b )=C 2D (X 1)+b (4)D (X 1+X 2)=D (X 1)+D (X 2)正确的有 ( C ) A. 4个 B. 3个 C. 2个 D. 1个7. 样本129(,,,)X X X 取自总体(0,1)X N ,则统计量49221454iji j X X==∑∑服从以下分布 ( D ) A. (4,9)F B. (4,5)F C. (4,4)F D. 以上都不是. 8. 设总体2(,)X N μσ ,1X ,2X ,…,n X (3n ≥)是来自总体X 的简单随机样本,则下列估计量中,不是总体参数μ 的无偏估计的是 ( B )A. XB. 12n X X X +++C. 120.1(46)X X ⨯+D. 123X X X +-9. 简单随机样本12(,)X X 来自总体2(,)N X μσ ,下列μ的无偏估计量中, 最有效的估计量是 ( D )A.123477X X + B. 122355X X + C. 122133X X + D . 121122X X +10. 设总体2(,)X N μσ 且μ和2σ均未知。
华南农业大学期末考试试卷(A 卷)2008-2009学年第 2学期 考试科目: 概率论 考试类型:(闭卷/开卷)考试 考试时间: 120 分钟学号 姓名 年级专业一、(15分)填空题(每空3分,共15分)1. 设A 、B 为两个事件,已知5.0)(=A P ,4.0)(=B P ,3.0)(=-B A P ,则7.0)(=B A P2. 某人连续射击3次,记i A 为“第i 次射击命中目标”,i =1,2,3, 又设此人命中率为0.7, 各次射击互不影响, 则他恰好只在第三次命中的概率为 0.063 。
3. 设随机变量X 服从[2,4]上的均匀分布,随机变量X Y 23-=,则方差=)(Y D34。
4.已知随机变量2~(2,),(24)0.3X N P X σ<<=, 则(0)P X >= 0.8 。
5. 设随机变量X 与Y 相互独立,且)1,0(~N X ,)6,3(~N Y ,令Y X Z 32-=,则139)(2=Z E二、(12分,每小题6分,)发报台分别以概率6.0和4.0发出信号“0”和“1”,由于通讯系统受到干扰,当发出“0”时,收报台分别以概率8.0和2.0收到“0”和“1”;当发出“1”时,收报台分别以概率9.0和1.0收到“1”和“0”。
试求: (1) 收报台收到“1”的概率;(2) 当收到“1”时,发报台确实发出“1”的概率.解:设发出信号“0”为事件A, 发出信号“1”为事件A ,接收到信号“0”为事件B ,接收到信号“1”为事件B 。
由题意有 2.0)|(,8.0)|(,4.0)(,6.0)(====A B P A B P A P A P1.0)|(,9.0)|(==A B P A B P(1) 求概率)(B P 。
由全概率公式48.04.09.06.02.0)()|()()|()(=⨯+⨯=+=A P A B P A P A B P B P(2)求概率)|(B B P 。
2《概率论与数理统计》期末考试_[B]答案华中农业大学本科课程期末考试试卷B 卷答案考试课程:概率论与数理统计学年学期:考试日期:一、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其字母代号写在该题【】内。
答案错选或未选者,该题不得分。
每小题2分,共10分。
) 1. 设A 和B 是任意两个概率不为0的互不相容事件,则下列结论中肯定正确的是【(d)】.(a) A 与B 不相容; (b) A 与B 相容; (c) P(AB)=P(A)P(B); (d) P(A -B)=P(A). 2. 设随机变量序列X 服从N(μ,16), Y 服从N(μ,25),记p 1=P{X<μ-4},p 2=P{X>μ+5},则下列结论正确的是【(a) 】 .(a)对任何实数μ,都有p 1= p 2; (b) 对任何实数μ,都有p 1< p 2; (c) 对个别实数μ,才有p 1= p 2; (d) 对任何实数μ,都有p 1> p 2. 3. 设总体X 服从正态分布),(N 2σμ,其中μ未知,2σ已知,321X ,X ,X 是总体X 的一个简单随机样本,则下列表达式中不是统计量的是【(d )】.(a )321X X X ++;(b ))X ,X ,X m in(321;(c )∑=σ31i 22i X ;(d )μ+2X .4.在线性回归分析中,以下命题中,错误的是【(d )】 .(a )SSR 越大,SSE 越小;(b )SSE 越小,回归效果越好;(c )r 越大,回归效果越好;(d )r 越小,SSR 越大.5.设随机变量X~F(n,m),欲使P{λ1<x<=""></xλ1的值可为【(a )】 .(a )),(2m n F α; (b )),(2n m F α; (c )12),(-αm n F ;(d )12),(-αn m F ;………………………………… 装……………………………… 订……………………………… 线…………………………………二、填空题(将答案写在该题横线上。
习 题 二 解 答1. 五张卡片上分别写有号码1,2,3,4,5。
随即抽取其中三张,设随机变量X 表示取出三张卡片上的最大号码。
(1) 写出X 的所有可能取值;(2)求X 的分布率。
解:(1)显然是:3,4,5。
(2) X 的分布律 2. 下面表中列出的是否时。
某个随机变量的分布律(1) (2) $答:(1)是(2)不是3.一批产品共有N 件,其中M 件次品。
从中任意抽取n(n<=M)件产品,求这n 件产品中次品数X 的分布律。
(此分布律为超几何分布)解:抽取n 件产品的抽法有nNC 种,抽取到次品的抽法有k n MN k C --M C种,所以所求概率为:P ()k X ==n Nk n MNk M C C C --,k=0,1,2,3……..n―――――――――――――――――――――――――――――――――――――――4.设随机变量X 的分布律为P ={X=k}=15k ,k=1,2,3,4,5. 求:(1)P{X=1或X=2};(2)P{2521<<X };(3)P{21≤≤X }.解:(1)P{X=1或X=2}=P{X=1}+ P{X=2}=152151+=51。
(2)P{2521<<X }=P{21≤≤X }=P{X=1}+ P{X=2}=152151+=51。
^(3)P{21≤≤X }=P{X=1}+ P{X=2}=152151+=51。
―――――――――――――――――――――――――――――――――――――――5.一批产品共10件,其中7件正品,3件次品。
从该批产品中每次任取一件,在下列两种情况下,分别求直至取得正品为止所需次数X 的分布律。
(1)每次取后不放回; (2)每次取后放回。
解:(1),30791073)2(,107)1(=⨯⨯====X P X P,12078910723)3(=⨯⨯⨯⨯==X P"(2){}1103107-⎪⎭⎫⎝⎛==k k X P (k =1,2,…)―――――――――――――――――――――――――――――――――――――――6.某射手每发子弹命中目标概率为,现相互独立地射击5发子弹, 求:(1)命中目标弹数地分布律; (2)命中目标的概率。
华南农业大学期末考试试卷(A卷)2016-2017学年第1学期考试科目:概率论与数理统计考试类型:(闭卷)考试考试时间:120分钟学号姓名年级专业题号一二三总分得分评阅人得分一选择题(每小题3分,共计15分)1、设A,B是两个互斥的随机事件,则必有_________ ()(A)P(A∪B)=P(A)+P(B) (B)P(A-B)=P(A)-P(B)(C)P(AB)=P(A)P(B) (D)P(A)=1-P(B)2、在1到100的自然数里任取一个数,则它能被2和5整除的概率为()(A)错误!未找到引用源。
(B)错误!未找到引用源。
错误!未找到引用源。
(C)错误!未找到引用源。
错误!未找到引用源。
(D)错误!未找到引用源。
错误!未找到引用源。
错误!未找到引用源。
3、设F(x)与G(x)分别为随机变量Χ与Y的分布函数,为使H(x)=aF(x)+bG(x)是某一随机变量的分布函数,在下列给定的各组数据中应取()(A) a=0.3,b=0.2 (B)a=0.3,b=0.7 (C)a=0.4,b=0.5 (D)a=0.5,b=0.64、设X1,X2,...,Xn为取自总体N(0 ,σ^2)的一个样本,则可以作为σ^2的无偏估计量的是()(A)(B) (C)(D)5.设x1,x2,···,x n为正态总体N(μ,4)的一个样本,错误!未找到引用源。
表示样本均值,则μ的置信度为1-α的置信区间为()(A)(错误!未找到引用源。
,错误!未找到引用源。
). (B)(错误!未找到引用源。
,错误!未找到引用源。
).(C)(错误!未找到引用源。
,错误!未找到引用源。
). (D)(错误!未找到引用源。
,错误!未找到引用源。
)参考答案:答案:1、A 2、B 3、B 4、5. D解答:因为正态分布总体方差已知,得错误!未找到引用源。
错误!未找到引用源。
N(μ,错误!未找到引用源。
),错误!未找到引用源。
华南农业大学期末考试试卷(A 卷)
2016-2017学年第 1 学期 考试科目: 概率论 考试类型:(闭卷)考试 考试时间: 120 分钟
学号 姓名 年级专业________________
一、 选择题(每题3分,共计18分)
1.
设,A B 为两随机事件,且B A ⊂,则下列式子正确的是( )。
A. ()()P A
B P B = B. ()()P AB P B =
C. ()()|P B A P B =
D.()()()P B A P B P A -=-
2. 设连续型随机变量X 的分布函数和密度函数分别为()F x 、()f x ,则下列选项中正
确的是( )
A. 0()1F x ≤≤
B. 0()1f x ≤≤
C. {}()P X
x F x == D.{}()P X x f x ==
3. 设12,X X 独立,i
1{0}2P X
==
,
i 1
{1},(i 1,2)2
P X ===,下列结论正确的是
( ) A. 1X
=2X B. 1{P X =2}1X = C. 1
{P X =21}2
X = D .以上都不对
4. 设~()X P λ(泊松分布)且{2}2{1}P X P X ===,则()E X =( )
A. 1
B. 2
C. 3
D. 4
5. 设随机变量,X Y ,下列( )选项是正确的
A. ()()()D XY D X D Y =
B. ()()()E XY E X E Y =
C. ()()()E X Y E X E Y +=+
D.()()()D X Y D X D Y -=- 6. 设随机变量,X Y ,下列( )选项是正确的
A. 联合分布一定可以决定边缘分布
B. 联合分布不一定决定边缘分布
C. 边缘分布一定可以决定联合分布
D. 边缘分布一定不可以决定联合分布
二、 填空题(每题3分,共计18分)
1. 设随机变量()2X B p 服从,,且 {}9
5
1=
≥X P ,则p =________________。
2. 设X 服从(0,4)N ,则()2E X X -=⎡⎤⎣⎦_________________.
3. 已知连续型随机变量X ,其密度函数,
01,()2,12,0,x x f x x x else ≤≤⎧⎪
=-<≤⎨⎪⎩
则
( 1.5)P X ≤=________________
4. 假设~(5,0.5)X B (二项分布), ~(1/6)Y E (指数分布),且,X Y 相互独立,则
()D X Y +=________________ 5. 假设~(1,4)X N (正态分布), ~(2,9)Y N (正态分布),且,X Y 相互独立,则
321X Y -+服从________________(具体分布及其参数)
6. 设随机变量X 服从[0,]π的均匀分布,则(sin )E X =________________
三、 计算题(本大题四小题,共计44分)
1. (本题8分)某单位号召职工每户集资3.5万元建住宅楼,当天报名的占60%,在其
余的40%中,第二天上午报名的占75%,而另外25%在第二天下午报了名,情况表明,当天报名的人能交款的概率为0.8,而在第二天上、下午报名的人能交款的概率分别为0.6与0.4,试求报了名后能交款的人数的概率。
2. (本题10分)一袋子中有四个球,分别标有1,2,2,3,从这袋中任取一球后,不放
回袋中,再从袋中任取一球,设每次取球时,袋中每个球被取到的可能性相同,以
,X Y 分别记第一次,第二次取得的球上的数字
(1) 求(,X Y )的概率分布
(2) 判断,X Y 的相互独立性
3. (本题14分)设随机变量(,X Y )的概率密度函数为
201,02
(,)0
x axy x y f x y else ⎧+≤≤≤≤=⎨⎩
(1) 求a
(2) 求边缘分布密度函数(),()X Y f x f y ,判断,X Y 是否相互独立
(3) 求边缘分布函数()Y F y
(4) 求(1)P X Y +>
4. (本题12分)设随机变量~(0,1)X U
(1) 计算()E X , ()D X
(2) 计算2ln Y X =-的概率密度函数
E Y D Y
(3)计算(),()
四、应用题(每题10分,共计20分)
1.(本题10分)设某商品的需求量X服从区间[2000,4000](单位:吨)的均匀分
布,每销售一吨商品,利润为3万元;若从销售不出,则每吨商品需要贮存费1万
元,问应组织多少商品才能使利润最大?
2. (本题10分)某保险公司有10000人参加人寿保险,每人每年交付保险费12元,一
年内一个人死亡的概率为0.006,死亡时家属可以向保险公司领取1000元赔偿金
(1)
保险公司亏本的概率多大?
(2)
保险公司一年的利润不少于40000元的概率为多少?
1,1,0.9952,(0)0.5Φ≈Φ≈Φ≈Φ=。