华农-2012-2013公共基础《概率论》期末考试试卷参考答案
- 格式:doc
- 大小:345.21 KB
- 文档页数:7
华中农业大学本科课程考试参考答案与评分标准考试课程:概率论与数理统计 学年学期: 试卷类型:B 考试日期:一、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其字母代号写在该题【 】内。
答案错选或未选者,该题不得分。
每小题2分,共10分。
)1. 设随机变量X 的概率密度)1(1)(2x x p +=π,则X Y 2=的分布密度为 . 【 b 】 (a))41(12x +π; (b) )4(22x +π; (c) )1(12x +π; (d) x arctan 1π.2. 设随机变量序列x 1, x 2,…, x n …相互独立,并且都服从参数为1/2的指数分布,则当n 充分大时,随机变量Y n =∑=ni i x n 11的概率分布近似服从 . 【 b 】(a) N(2,4) (b) N(2,4/n) (c) N(1/2,1/4n) (d) N(2n,4n) 3. 设总体X 服从正态分布),(N 2σμ,其中μ已知,2σ未知,321X ,X ,X 是总体X 的一个 简单随机样本,则下列表达式中不是统计量的是 . 【 C 】(a )321X X X ++; (b ))X ,X ,X min(321; (c )∑=σ31i 22i X ; (d )μ+2X .4.在假设检验问题中,检验水平α意义是 . 【 a 】 (a )原假设H 0成立,经检验被拒绝的概率; (b )原假设H 0成立,经检验不能拒绝的概率; (c )原假设H 0不成立,经检验被拒绝的概率; (d )原假设H 0不成立,经检验不能拒绝的概率.5.在线性回归分析中,以下命题中,错误的是 . 【 d 】(a )SSR 越大,SSE 越小; (b )SSE 越小,回归效果越好; (c )r 越大,回归效果越好; (d )r 越小,SSR 越大.二、填空题(将答案写在该题横线上。
答案错选或未选者,该题不得分。
每小题2分,共10分。
3《概率论与数理统计》期末考试试题答案A卷华中农业⼤学本科课程考试参考答案与评分标准考试课程:概率论与数理统计学年学期:试卷类型:A 卷考试时间:⼀、单项选择题(从下列各题四个备选答案中选出⼀个正确答案,并将其字母代号写在该题【】内。
答案错选或未选者,该题不得分。
每⼩题2分,共10分。
)1. 设A 、B 满⾜1)(=A B P ,则.【 d 】(a )A 是必然事件;(b )0)(=A B P ;(c )B A ?;(d ))()(B P A P ≤.2. 设X ~N (µ,σ2),则概率P (X ≤1+µ)=()【 d 】 A )随µ的增⼤⽽增⼤; B )随µ的增加⽽减⼩; C )随σ的增加⽽增加; D )随σ的增加⽽减⼩.3. 设总体X 服从正态分布),(N 2σµ,其中µ已知,2σ未知,321X ,X ,X 是总体X 的⼀个简单随机样本,则下列表达式中不是统计量的是.【 c 】(a )321X X X ++;(b ))X ,X ,X m in(321;(c )∑=σ31i 22i X ;(d )µ+2X .4. 在假设检验中, 0H 表⽰原假设, 1H 表⽰备择假设, 则成为犯第⼆类错误的是.【 c 】(a )1H 不真, 接受1H ;(b )0H 不真, 接受1H ;(c )0H 不真, 接受0H ;(d )0H 为真, 接受1H .5.设n 21X ,,X ,X 为来⾃于正态总体),(N ~X 2σµ的简单随机样本,X 是样本均值,记2n1i i21)X X(1n 1S --=∑=,2n1i i22)X X(n1S -=∑= ,2n1i i23)X(1n 1S µ--=∑=,2n1i i24)X(n1S µ-=∑=,则服从⾃由度为1-n 的t 分布的随机变量是 . 【 b 】(a )1n S X T 1-µ-=;(b )1n S X T 2-µ-=;(c )nS X T 3µ-=;(d )nS X T 4µ-=.⼆、填空题(将答案写在该题横线上。
1华南农业大学期末考试试卷A 答案2011-2012学年第 1 学期 考试科目: 概率论与数理统计 填空题(本大题共 5 小题,每小题 3 分,共 15分) 1、32;2、0.6;3、1;4、21θθD D ≤;5、(2.68963,2.72037)。
二、选择题(本大题共 6小题,每小题 3 分,共 18 分)1、D ;2、B ;3、C ;4、A ;5、C ;6、B 。
三、解答题(本题8分)解:设A 为事件“产品合格”,B 为事件“机器状态良好”.已知(|)0.98P A B =,(|)0.55P A B =,()0.95P B =,()1()0.05P B P B =-=. …………… 2分由全概率公式可知,9585.055.005.098.095.0)|()()|()()(=⨯+⨯=+=B A P B P B A P B P A P ……… 3分由贝叶斯公式,所求概率为97.09585.098.095.0)()|()()|(≈⨯==A PB A P B P A B P … 3分四、解答题(本题11分)解:(1) 由(2)01d (,)d d e d x y x f x y y x A y +∞+∞+∞+∞-+-∞-∞==⎰⎰⎰⎰20e d e d 2x y AAx y +∞+∞--==⎰⎰.得2A =. … 2分 (2) (,)d (,)d xyF x y x f x y y -∞-∞=⎰⎰2002e d e d ,0,0,0,x y x y x y x y --⎧>>⎪=⎨⎪⎩⎰⎰其它. 2(1e )(1e ),0,0,0,x y x y --⎧-->>=⎨⎩其它. … 4分 (3) X 与Y 的边沿密度分别为(2)02,0,0()()0,00,0x y x X edy x e x f x f x y dy x x +∞-+-+∞-∞⎧⎧>>⎪===⎨⎨≤⎩⎪≤⎩⎰⎰, …… 2分 (2)202,02,0()()0,00,0x y y Y edx y e y f y f x y dx y y +∞-+-+∞-∞⎧⎧>>⎪===⎨⎨≤⎩⎪≤⎩⎰⎰, …… 2分 显然, (,)()()X Y f x y f x f y =成立,故X 与Y 独立. ……………………1分 五、解答题(本题8分)解:由X 服从区间]2,1[上的均匀分布,即⎩⎨⎧≤≤=其他,,0211)(~x x f X 当Xe Y 2=时,)ln 21(}ln 21{}{}{)(2y F y X P y e P y Y P y F X X Y =<=<=<= … 3分其中)(x F X 是X 的分布函数。
2009-2010 学年第1学期 概率论(A 卷)考试类型:(闭卷) 考试时间: 120 分钟学号 姓名 年级专业一、填空题(每空3分,共24分) 1.设两事件,A B 满足条件()()P A B P A B =,且()(01P A p p =<<,则()P B =________________.2.设1(),F x 2(),F x 3()F x 分别是随机变量1,X 2,X 3X 的分布函数,为使123()()()()F x a Fx b F xc F x=++是某一随机变量的分布函数,则a+b+c= . 3.设随机变量X服从泊松分布()P λ,且{1}{2P X P X ===,则λ=___________;{3}P X == .4. 设(0,1),21,X N Y X =+ 则{|1|2}P Y -<=______________.5. 若随机变量ξ在[1,6]上服从均匀分布,则方程210X X ξ++=有实根的概率为_______. 6. 设随机变量,X Y 相互独立,其中X 在[2,4]-上服从均匀分布,Y 服从参数为13的指数分布,则(2)E X Y -=_______________; (2)D X Y -=_______________.二、选择题(每小题3分,本题共15分)1. 对两事件A 和B ,下列命题成立的是( ). A 、如果A 、B 相容,则A B 、也相容; B 、如果P(AB)=0,则A 、B 不相容;C 、如果A 、B 相互独立,则()()P B A P B =成立;D 、如果A 、B 对立,则事件A 、B 相互独立.2. 设连续型随机变量X 的密度函数为()f x ,且()(),,f x f x x R -=∈又设X 的分布函数为()F x ,则对任意正实数,()a F a -等于( ).(A) 01();af x dx -⎰(B) 01();2a f x dx -⎰ (C) ();F a (D) 2() 1.F a -3. 当随机变量X 的可能值充满区间 时,则函数()cos()F x x =才可以成为随机变量X 的分布函数.( ) (A)0,2π⎡⎤⎢⎥⎣⎦; (B),2ππ⎡⎤⎢⎥⎣⎦; (C)[]0,π; (D)3,22ππ⎡⎤⎢⎥⎣⎦. 4. 设随机变量X 与Y 相互独立,其概率分布分别为10.30.7X P10.30.7YP则有( ).(A )()0;P X Y == (B )()0.5;P X Y == (C )()0.58;P X Y == (D )() 1.P X Y == 5. 随机变量X 的概率密度函数为21(),(1)X f x x R x π=∈+,则Y=3X 的密度函数为( )A 、21,(1)y R y π∈+; B 、23,(9)y R y π∈+; C 、21,(1)9y R yπ∈+; D 、21,.(19)y R y π∈+ 三、解答题(15分)设随机变量X 与Y 相互独立,它们的密度函数分别为:1,02()20,X x f x ⎧≤≤⎪=⎨⎪⎩其他; 44,0()0,0y Y e y f y y -⎧>=⎨≤⎩.试求:(1) (X,Y)的联合密度函数;(4分) (2) (2)P Y X <;(5分) (3) ()2D X Y -.(6分)四、简答题(10分)某人考公务员接连参加同一课程的笔试和口试,笔试及格的概率为p ,若笔试及格则口试及格的概率也为p ,若笔试不及格则口试及格的概率为2p . (1)如果笔试和口试中至少有一个及格,则他能取得某种资格,求他能取得该资格的概率.(5分)(2)如果已知他口试已经及格,求他笔试及格的概率.(5分)五、解答题(15分)设平面区域为{}2(,)01,D x y x x y x =≤≤≤≤,二维随机变量(X,Y)在该区域上服从均匀分布;(1) 求(X,Y)的联合密度函数;(4分)(2) 求关于X 和关于Y 的边缘密度函数(),()X Y f x f y ,并问X 、Y 是否独立?(7分) (3) 求1().3P X ≤(4分)六、简答题(10分)某仪器装有三支独立工作的同型号电子元件,其寿命X (单位为小时)都服从同一指数分布,概率密度为6001,0()6000,0xe xf x x -⎧>⎪=⎨⎪≤⎩, 求:(1){200}P X <;(4分)(2)在仪器使用的最初200小时内,至少有一支电子元件损坏的概率.(6分)七、简答题(11分)一台设备由三大部件构成,在设备运转中各部件需要调整的概率分别为0.1,0.2,0.3。
12012-2013学年第 2学期《概率论与数理统计》试卷评分标准一、1.B ;2. A ;3. C ; 4. B ;5. B ;6.B ;7. D 二、1. 1 ; 2. 0,0.5;3.37;4. 0.4 5.(每空0.5分)6. 22,X X αα-⎛⎫ ⎪⎝⎭; 7. 2(,),N n σμ或2(,)10N σμ 三、1.解:解:,1,)1(lim )(1=∴=-=+∞=-∞→A A e A F x x (3分)P{1≤X ≤3} =F(3)-F(1)=e -1-e -3, (3分)2.解: X 的概率密度为)()(x F x f '=⎪⎩⎪⎨⎧<≥=,a x a x x a ,0,,343(2分)⎰⎰∞+∞+∞-==adx xa dx x xf X E 333)()( (3分) 23a=(1分) 3.解:解:设事件12,A A 分别为任取一件产品,产品是甲、乙厂生产的,事件B 为任取的一件产品为次品,则由已知条件可知1()0.6P A = ,2()0.4P A =,1(|)0.01P B A =,2(|)0.02P B A = (2分) 由贝叶斯公式可得10.60.013(|)0.60.010.40.027P A B ⨯==⨯+⨯,20.40.024(|)0.60.010.40.027P A B ⨯==⨯+⨯,(3分)由上两式知,任取一件为次品,该产品是乙厂生产的可能性最大。
(1分)4.解:解: (,)X Y 的概率密度为2(2分)(2分)同理可得\ (2分)5.解:由于总体差已知,因此用U 检验法,设0:53H μ= ,1:53H μ≠ (1分)由已知条件可知,51.3x =,3σ=,|| 1.7 1.96U ==< , (3分) 所以在05.0=α不能拒绝0H 。
故认为该动物的体重平均值为53公斤。
(2分)四、1. 解:已知X 的概率密度函数为1,01,()0,.X x f x <<⎧=⎨⎩其它Y 的分布函数F Y (y )为11(){}{21}{}22Y X y y F y P Y y P X y P X F --⎛⎫=≤=+≤=≤= ⎪⎝⎭(4分) 因此Y 的概率密度函数为1,13,11()()2220,.Y Y X y y f y F y f ⎧<<⎪-⎛⎫'===⎨ ⎪⎝⎭⎪⎩其它 (4分) 或用代公式法也可以解出答案。
概率论(华南农业大学)华南农业大学智慧树知到答案2024年第一章测试1.设样本空间Ω={1,2,10},事件A={2,3,4},B={3,4,5},C={5,6,7},则事件=( )。
A:{1,2,5,6,7,9,10} B:{1,2,3,5,6,7,8,9,10} C:{1,2,5,6,7,8,9,10}D:{1,2,4,5,6,7,8,9,10}答案:C2.同时掷3枚均匀的硬币,恰好有两枚正面向上的概率为( )。
A:0.375 B:0.25 C:0.325 D:0.125答案:A3.假设任意的随机事件A与B,则下列一定有()。
A: B: C: D:答案:B4.设A,B为任意两个事件,则下式成立的为( ) 。
A: B: C: D:答案:A5.设则=()。
A:0.24 B:0.48 C:0.30 D:0.32答案:C6.设A与B互不相容,则结论肯定正确的是 ( )。
A: B:与互不相容 C: D:答案:C7.已知随机事件A, B满足条件,且,则()。
A:0.3 B:0.4 C:0.7 D:0.6答案:C8.若事件相互独立,且,则( )。
A:0.775 B:0.875 C:0.95 D:0.665答案:A9.A:B: C: D:答案:D10.不可能事件的概率一定为0。
()A:错 B:对答案:B11.A:错 B:对答案:A12.贝叶斯公式计算的是非条件概率。
()A:错 B:对答案:A第二章测试1.下列各函数中可以作为某个随机变量X的分布函数的是( )。
A: B: C:D:答案:C2.设随机变量,随机变量, 则 ( )。
A: B: C: D:答案:C3.设随机变量X服从参数为的泊松分布,则的值为()。
A: B: C: D:答案:C4.设随机变量X的概率密度函数为,则常数()。
A: B: C:5 D:2答案:C5.如果随机变量X的密度函数为,则()。
A:0.875 B: C: D:答案:D6.A:对任意实数,有 B:只对部分实数,有。
答案华南农业大学期末考试试卷(B专用)华南农业大学期末考试试卷(B 卷)2012-2013学年第 1学期 考试科目: 经济计量学 考试类型:(闭卷)考试 考试时间: 120 分钟学号 姓名 年级专业一、单选题(本大题共20小题,每小题1分,共20分)【答题要求:请将该大题的答案依次抄写在下列指定空格处】三、简答题。
(每题10分,共20分)1. 请概述古典线性回归模型的基本假定? (5分) (1)回归模型是参数线性的,并且正确设定 (2)解释变量与随机项不相关(3)随机误差项具有零均值、同方差及不序列相关性。
(4)随机项满足正态分布(5)解释变量之间不存在完全共线性。
即解释变量之间没有严格的线性关系2. 简述虚拟变量陷阱?(5分)如果一个定性的变量有m 类,则要引入(m-1)个虚拟变量。
否则就会陷入虚拟变量陷阱(dummy variable trap),就会出现完全多重共线性。
3、建立与应用计量经济学模型的主要步骤有哪些?(10分)模型设定 估计参数 模型检验 模型应用四、计算题。
(每题5分,共10分)(7个空,一个一分.第(2)一分,(3)两分)))某汽车制造厂销售部经理认为,汽车的销售量与广告费用之间存在着密切的关系。
为此,该经理收集了12个汽车销售分公司的有关数据。
用Excel 对数据进行回归分析的部分结果如下: (一)方差分析表(二)参数估计表要求(计算结果精确至0.1):(1)在方差分析表中的下划线上填上适当的数据;(2)计算销售量与广告费用之间的相关系数,并据此分析两者的关系形态与强度; R=0.988(3)写出销售量对广告费用的一元线性回归方程,并检验在5%的显著性水平下,回归系数和回归方程的线性关系是否显著。
Y=363.6891+2.0288 7X 因为F 及其Intercept,t 对应的P 值 非常的小,所以回归系数和回归方程的非常显著. 五.综合分析题(共40分)要求:(1)补充表中缺失的数据;(5分)(2)写出回归分析结果报告;(5分) Log(xf)=-0.04266+0.936log(GDP)(3)分别进行经济意义、统计学意义和经济计量学意义检验;(6分) 经济意义的检验,斜率系数表示边际消费倾向0<B2<1本回归适合 统计意义上的检验,T 值,F 值,R2等 .经济计量学检验如AIC,SC,这两个值相对小,DW检验等.整体上看模型的拟合结果较好, 基本通过各种检验.(4)解释系数经济含义。
华南农业大学期末考试试卷( A 卷 )2009-2010 学年第1学期 考试科目:概率论考试类型:(闭卷) 考试时间: 120 分钟学号 姓名 年级专业一、填空题(每空3分,共24分)1.设两事件,A B 满足条件()()P AB P AB =,且()(01)P A p p =<<,则()P B =________________.2.设1(),F x 2(),F x 3()F x 分别是随机变量1,X 2,X 3X 的分布函数,为使123()()()()F x aF x bF x cF x =++是某一随机变量的分布函数,则a+b+c= .3.设随机变量X 服从泊松分布()P λ,且{1}{2}P X P X ===,则λ=___________;{3}P X == .4. 设(0,1),21,X N Y X =+则{|1|2}P Y -<=______________.5. 若随机变量ξ在[1,6]上服从均匀分布,则方程210X X ξ++=有实根的概率为_______.6. 设随机变量,X Y 相互独立,其中X 在[2,4]-上服从均匀分布,Y 服从参数为13的指数分布,则(2)E X Y -=_______________; (2)D X Y -=_______________.二、选择题(每小题3分,本题共15分)1. 对两事件A 和B ,下列命题成立的是( ).A 、如果A 、B 相容,则A B 、也相容;B 、如果P(AB)=0,则A 、B 不相容;C 、如果A 、B 相互独立,则()()P B A P B =成立;D 、如果A 、B 对立,则事件A 、B 相互独立. 2. 设连续型随机变量X 的密度函数为()f x ,且()(),,f x f x x R -=∈又设X 的分布函数为()F x ,则对任意正实数,()a F a -等于( ).(A) 01();af x dx -⎰ (B) 01();2a f x dx -⎰ (C) ();F a (D) 2() 1.F a - 3. 当随机变量X 的可能值充满区间 时,则函数()cos()F x x =才可以成为随机变量X 的分布函数.( ) (A)0,2π⎡⎤⎢⎥⎣⎦; (B),2ππ⎡⎤⎢⎥⎣⎦; (C)[]0,π; (D)3,22ππ⎡⎤⎢⎥⎣⎦. 4. 设随机变量X 与Y 相互独立,其概率分布分别为010.30.7XP 010.30.7Y P 则有( ).(A )()0;P X Y == (B )()0.5;P X Y ==(C )()0.58;P X Y == (D )() 1.P X Y ==5. 随机变量X 的概率密度函数为21(),(1)X f x x R x π=∈+,则Y=3X 的密度函数为( ) A 、21,(1)y R y π∈+; B 、23,(9)y R y π∈+; C 、21,(1)9y R y π∈+; D 、21,.(19)y R y π∈+ 三、解答题(15分)设随机变量X 与Y 相互独立,它们的密度函数分别为:1,02()20,X x f x ⎧≤≤⎪=⎨⎪⎩其他; 44,0()0,0y Y e y f y y -⎧>=⎨≤⎩. 试求:(1) (X,Y)的联合密度函数;(4分)(2) (2)P Y X <;(5分)(3) ()2D X Y -.(6分)四、简答题(10分)某人考公务员接连参加同一课程的笔试和口试,笔试及格的概率为p ,若笔试及格则口试及格的概率也为p ,若笔试不及格则口试及格的概率为2p . (1)如果笔试和口试中至少有一个及格,则他能取得某种资格,求他能取得该资格的概率.(5分)(2)如果已知他口试已经及格,求他笔试及格的概率.(5分)设平面区域为{}2(,)01,D x y x x y x =≤≤≤≤,二维随机变量(X,Y)在该区域上服从均匀分布;(1) 求(X,Y)的联合密度函数;(4分)(2) 求关于X 和关于Y 的边缘密度函数(),()X Y f x f y ,并问X 、Y 是否独立?(7分)(3) 求1().3P X ≤(4分)某仪器装有三支独立工作的同型号电子元件,其寿命X (单位为小时)都服从同一指数分布,概率密度为6001,0()6000,0x e x f x x -⎧>⎪=⎨⎪≤⎩, 求:(1){200}P X <;(4分)(2)在仪器使用的最初200小时内,至少有一支电子元件损坏的概率.(6分)一台设备由三大部件构成,在设备运转中各部件需要调整的概率分别为0.1,0.2,0.3。
2012学年第一学期概率论与数理统计试题解答参考一、1.B ;2. A ;3. C ; 4. B ;5. B ;6.B ;7. C 二、1. 1 ; 2. 0,0.5;3.37;4. 0.4; 5. 0.6; 6. 22,X X αα-⎛⎫ ⎪⎝⎭; 7. 2(,)10N σμ三、1.解:解:,1,)1(lim )(1=∴=-=+∞=-∞→A A e A F x xP{1≤X ≤3} =F(3)-F(1)=e -1-e -3,2.解: X 的概率密度为)()(x F x f '=⎪⎩⎪⎨⎧<≥=,a x a x x a ,0,,343⎰⎰∞+∞+∞-==adx xa dx x xf X E 333)()( 23a=3.解:解:设事件12,A A 分别为任取一件产品,产品是甲、乙厂生产的,事件B 为任取的一件产品为次品,则由已知条件可知1()0.6P A = ,2()0.4P A =,1(|)0.01P B A =,2(|)0.02P B A =由贝叶斯公式可得10.60.013(|)0.60.010.40.027P A B ⨯==⨯+⨯,20.40.024(|)0.60.010.40.027P A B ⨯==⨯+⨯,由上两式知,任取一件为次品,该产品是乙厂生产的可能性较大。
4.解:解: 由题设可知(,)X Y 的概率密度为 ()2,01,01,0,y x x f x y ≤≤-≤≤⎧=⎨⎩其他于是关于X 的边缘分布密度为()()()10221,01,0,x X dy x x f x f x y dy -+∞-∞⎧=-≤≤⎪==⎨⎪⎩⎰⎰其他关于Y 的边缘分布密度为()()()10221,01,0,y Y dx y y f y f x y dx -+∞-∞⎧=-≤≤⎪==⎨⎪⎩⎰⎰其他5.解:由于总体差已知,因此用U 检验法,设0:53H μ= ,1:53H μ≠由已知条件可知,51.3x =,3σ=,|| 1.7 1.96U ==< , 所以在05.0=α不能拒绝0H 。
华南农业大学期末考试试卷(A 卷)2012-2013学年第 1 学期 考试科目: 概率论考试类型:(闭卷)考试 考试时间: 120 分钟 学号 姓名 年级专业题号 一二三总分得分 评阅人一、选择题(本大题共 5 小题,每小题 3 分,共 15 分) 1、设A 与B 互斥(互不相容),则下列结论肯定正确的是( D )。
(A) A 与B 不相容 (B) A 与B 必相容 (C) ()()()P AB P A P B = (D) ()()P A B P A -=2、设随机变量X 与Y 相互独立,其概率分布如下,则有( C )成立。
010.20.8XP 010.20.8Y P(A) ()0P X Y == (B) ()0.4P X Y == (C) ()0.68P X Y == (D) ()1P X Y == 3、设随机变量的概率密度为()x ϕ,=12,则的概率密度为( A )。
(A)1122y ϕ-⎛⎫ ⎪⎝⎭; (B) 112y ϕ-⎛⎫- ⎪⎝⎭; (C) 12y ϕ-⎛⎫- ⎪⎝⎭; (D)2(12)y ϕ- 得分4、设随机变量ξ服从2λ=的泊松分布,则随机变量2ηξ=的方差为( A )。
(A) 8; (B) 4; (C) 2; (D) 16.5、设2~(0,1),~(,)N N a ξησ,则η与ξ之间的关系是( B )。
(A)a ξησ-=; (B) a ησξ=+; (C)2aξησ-= ; (D)2a ησξ=+.二、填空题(本大题共 8 小题,每小题 3 分,共 24 分) 1、设样本空间Ω={1,2,10},事件A={2,3,4},B={3,4,5},C={5,6,7},则事件()A BC =__{1,2,5,6,7,8,9,10} ________。
2、抛一枚硬币三次,和分别表示出现正面的次数和出现反面的次数,则{}P ξη>=__12_______。
3、3、设随机变量X 的分布函数0,0.2,()0.9,1,F x ⎧⎪⎪=⎨⎪⎪⎩ 111122x x x x <--≤<≤<≥,则{03}P X ≤≤=_0.8_。
装订线华南农业大学期末考试试卷(A卷)2012-2013学年第1 学期考试科目:概率论考试类型:(闭卷)考试考试时间:120 分钟学号姓名年级专业题号一二三总分得分评阅人5 小题,每小题 3 分,共15 分)1、设A与B互斥(互不相容),则下列结论肯定正确的是( D )。
(A) A与B不相容(B) A与B必相容(C) ()()()P AB P A P B=(D) ()()P A B P A-=2、设随机变量X与Y相互独立,其概率分布如下,则有( C )成立。
010.20.8XP010.20.8YP(A) ()0P X Y==(B) ()0.4P X Y==(C) ()0.68P X Y==(D) ()1P X Y==3、设随机变量ξ的概率密度为()xϕ,η=12ξ,则η的分布密度为( A )。
(A)1122yϕ-⎛⎫⎪⎝⎭;(B)112yϕ-⎛⎫- ⎪⎝⎭;(C)12yϕ-⎛⎫- ⎪⎝⎭;(D)2(12)yϕ-4、设随机变量ξ服从2λ=的泊松分布,则随机变量2ηξ=的方差为( A )。
(A) 8;(B) 4;(C) 2;(D) 16.5、设2~(0,1),~(,)N N aξησ,则η与ξ之间的关系是( B )。
得分(A) a ξησ-=; (B) a ησξ=+; (C)2a ξησ-= ; (D)2a ησξ=+.二、填空题(本大题共 8 小题,每小题 3 分,共 24 分)1、设样本空间Ω={1,2,10},事件A={2,3,4},B={3,4,5},C={5,6,7},则事件()A B C =__{1,2,5,6,7,8,9,10} ________。
2、抛一枚硬币三次,ξ和η分别表示出现正面的次数和出现反面的次数,则{}P ξη>=__12_______。
3、3、设随机变量X 的分布函数0,0.2,()0.9,1,F x ⎧⎪⎪=⎨⎪⎪⎩ 111122x x x x <--≤<≤<≥,则{03}P X ≤≤=_0.8_。
4、函数2(),xx Ae x ϕ-=-∞<<∞是某随机变量的概率密度,则A 的值是__1π____。
5、设~(0,1),~(10,4)N N ξη,ξ的分布函数为(){}x P x ξΦ=≤,则用()x Φ表示概率{812}P η<≤=___2(1)1Φ-_________。
6、设(ξ、η)的联合分布律为ξ 1 0 1 η= 1 1/8 1/8 1/8 η=0 1/8 0 1/8 η=11/81/81/8则P{ξη=0}=_____0.5________。
7、设ξ服从参数为λ的泊松分布,且已知{2}{3}P P ξξ===,则{4}P ξ==_____________3278e -或33.375e -________。
8、设随机变量,X Y 相互独立,其中X 在[2,4]-上服从均匀分布,Y 服从参数为13的指得分装订线数分布,则(2)D X Y-=______15_________。
三、解答题(本大题共6 小题,共61 分)1、设离散型随机变量ξ和η的分布律分别为2424{}(1),0,1,2.{}(1),0,1,2,3,4.k k k m m mP k C p p k P m C p p mξη--==-===-=已知5{1}9Pξ≥=,求{1}Pη≥。
(10分)解:由25{1}1{1}1{0}1(1)9P P P pξξξ≥=-<=-==--=得24(1)9p-=解出13p= (5)分故4165{1}1{1}1{0}11381P P Pηηη⎛⎫≥=-<=-==--=⎪⎝⎭。
………………5分2、设有A,B,C,D四种元件,组成如图的系统,它们能正常工作的概率分别为1234(),(),(),()P A p P B p P C p P D p====,又各元件损坏与否是相互独立的,问此系统能正常工作的概率是多少?(6分)解:{()}p P D A B C D=………………2分得分1.5CM2224123()()()[()][1()][()][1()()()][1(1)(1)(1)]P D P A B C P D P D P ABC P D P A P B P C p p p p ==-=-=---- ………………6分3、在电源电压不超过200伏,200~240伏和超过240伏三种情形下,某种电子元件损坏的概率分别为0.1,0.001和0.2,假设电源电压ξ服从2(220,25)N ,试求:(1)该电子元件损坏的概率α;(2)该电子元件损坏时,电源电压在200~240伏的概率β。
已知标准正态分布函数()x Φ的值:(0.8)0.788,(0.2)0.579,(0.032)0.512,(0.4)0.655.Φ=Φ=Φ=Φ=(10分)解:设1A ={电压不超过200伏},2A ={电压在200---240伏}3A ={电压超过240伏},B={电子元件损坏},则由条件知ξ服从2(220,25)N ,因此1220200220(){200}{}(0.8)1(0.8)10.7880.212.2525P A P P ξξ--=<=<=Φ-=-Φ=-= …………………………………2分2200220220240220(){200240}{}252525(0.8)(0.8)2(0.8)10.576.P A P P ξξ---=≤<=≤<=Φ-Φ-=Φ-=…………………4分……………………………6分(1)由题设知,,由全概公式有……………8分(2)由条件概率(或贝叶斯公式)知…………10分4、设随机变量X 与Y 相互独立,它们的密度函数分别为:1,03()30,X x f x ⎧≤≤⎪=⎨⎪⎩其他 33,0()0,0y Y e y f y y -⎧>=⎨≤⎩ 试求:(1) (X,Y)的联合密度函数;(5分) (2) 概率(3)P X Y +≤;(5分)(3) 方差()2D X Y -。
(5分)解:(1)因为随机变量X ,Y 相互独立,所以它们的联合密度函数为:3,03,0(,)()()0,y X Y e x y f x y f x f y -⎧≤≤>==⎨⎩其他 ………………………………5分 (2){}33(,)x y P X Y f x y dxdy +≤+≤=⎰⎰3330[]xy e dy dx --=⎰⎰………………………………………3分39301(1)3xe dx -+=-⎰ ()9183e -=+ …………………………………………5分 (3)301332EX xdx ==⎰;()322330011339E X x dx x ===⎰; 所以()()222333()24DX E X EX =-=-=;………………………2分3333000011333y y y y EY y e dy ye e dy e ∞∞--∞--∞=⋅=-+=-=⎰⎰ 2230239y EY y e dy ∞-=⋅=⎰()()222211939DY E Y EY ⎛⎫=-=-= ⎪⎝⎭ ………………………………4分 所以3128(2)4()()4499D X Y D X D Y -=+=⨯+= …………………………………5分[解法二]由密度函数可知~(0,3),(3)X U YE ,所以,22(30)311(),(),12439D X D Y -====……………………………………3分所以3128(2)4()()4499D X Y D X D Y -=+=⨯+= …………………………………5分5、设平面区域为{}222(,),(0)D x y x y a a =+≤>,二维随机变量(X,Y)在该区域上服从均匀分布;(1) 求出(X,Y)的联合密度函数;(3分)(2) 分别求出关于X 和关于Y 的边缘密度函数(),()X Y f x f y ;(4分) (3) 问X 、Y 是否独立?(3分)解:(1)区域D 的面积为:2D S a π=,又已知(,)X Y 在区域D 服从均匀分布,所以(,)X Y 的联合密度函数为:22221,(,)0,x y af x y aπ⎧+≤⎪=⎨⎪⎩否则 …………………………………………………3分 (2)当x a >时,(,)0f x y =,所以()00X f x dy ∞-∞==⎰;当x a ≤时,()X f x == 即,关于X 的边缘密度函数为:()0,..X x af x OW ≤=⎪⎩ ………………………………5分 同理,可以得到关于Y 的边缘密度函数为()0,..Y y af y OW ≤=⎪⎩ ……………………………7分 (1) 当,x a y a ≤≤时,()()(,)X Y f x f y f x y =≠ ……………………………9分 所以,X 、Y 不相互独立。
…………………………………………………10分 6、设随机变量X 服从参数为2的指数分布,证明: 21X Y e -=-在区间(0,1)上服从均匀分布。
(10分)证明 由题意知,X 的概率密度为22,0()0,0x X e x f x x -⎧>=⎨≤⎩………………2分又因为21x y e -=-单调递增,且反函数为1ln(1)(01)2x y y =--<<…………5分故1111()(ln(1))(ln(1))22(1)2(1)2Y X X f y f y f y y y =--=----……8分12[ln(1)]211,ln(1)01210,ln(1)02y e y y y -⋅--⎧-->⎪⎪-=⎨⎪--≤⎪⎩1,010,y <<⎧=⎨⎩其它 ……………………10分。