2020-2021上海 华东师范大学第一附属初级中学八年级数学上期末试题(含答案)
- 格式:doc
- 大小:407.00 KB
- 文档页数:14
2020-2021学年华东师大版八年级上册数学期末复习试卷一.选择题(共12小题,满分36分,每小题3分)1.若a2=4,b2=9,且ab<0,则a﹣b的值为()A.﹣2B.±5C.5D.﹣52.给出下列实数:、、、、、、﹣0.1010010001…(每相邻两个1之间依次多一个0),其中无理数有()A.2个B.3个C.4个D.5个3.下列计算正确的是()A.a2+a3=a5B.a3•a3=a9C.(a3)2=a6D.(ab)2=ab2 4.下列各命题的逆命题是真命题的是()A.对顶角相等B.全等三角形的对应角相等C.相等的角是同位角D.等边三角形的三个内角都相等5.下列四个多项式:①﹣a2+b2;②﹣x2﹣y2;③1﹣(a﹣1)2;④x2﹣2xy+y2,其中能用平方差公式分解因式的有()A.4个B.3个C.2个D.1个6.等腰三角形一边长等于5,一边长等于9,则它的周长是()A.14B.23C.19D.19或237.在期末体育考核中,成绩分为优秀、合格、不合格三个档次,某班有40名学生,达到优秀的有18人,合格的有17人,则这次体育考核中,不合格人数的频率是()A.0.125B.0.45C.0.425D.1.258.如图,△ABC中边AB的垂直平分线分别交BC,AB于点D,E,AE=3cm,△ADC的周长为9cm,则△ABC的周长是()A.10cm B.12cm C.15cm D.17cm9.已知x2﹣8x+a可以写成一个完全平方式,则a可为()A.4B.8C.16D.﹣1610.如图,AB=AC,则数轴上点C所表示的数为()A.+1B.﹣1C.﹣+1D.﹣﹣1 11.如图,将直角边AC=6cm,BC=8cm的直角△ABC纸片折叠,使点B与点A重合,折痕为DE,则CD等于()A.B.C.D.12.某地为了促进旅游业的发展,要在如图所示的三条公路a,b,c围成的一块地上修建一个度假村,要使这个度假村到a,b两条公路的距离相等,且到B,C两地的距离相等,下列选址方法绘图描述正确的是()A.画∠CAB的平分线,再画线段BC的垂直平分线,两线的交点符合选址条件B.先画∠CAB和∠BCA的平分线,再画线段BC的垂直平分线,三线的交点符合选址条件C.画三个角∠CAB,∠BCA和∠ABC三个角的平分线,交点即为所求D.画AB,BC,CA三条线段的垂直平分线,交点即为所求二.填空题(共6小题,满分18分,每小题3分)13.计算a7÷a5,结果等于.14.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=°.15.若a m=3,a n=2,则a2m﹣n=.16.如图,△ABC中,EF是AB的垂直平分线,与AB交于点D,BF=12,CF=3,则AC =.17.若x+y=1,x﹣y=5,则xy=.18.如图是一种“羊头”形图案,其作法是:从正方形①开始,以它的一边为斜边,向外作等腰直角三角形,然后再以其直角边为边,分别向外作正方形②和②′,…依此类推,若正方形①的边长为64cm,则正方形⑨的边长为cm.三.解答题(共2小题,满分12分,每小题6分)19.计算:(1)(﹣22)3﹣﹣(﹣1)2019(2)3x2•(﹣2xy2)3÷xy20.先化简,再求值:[(x+3y)2﹣2x(x﹣2y)+(x+y)(x﹣y)]÷(2y),其中|x+1|+y2+2y+1=0.四.解答题(共4小题,满分28分,每小题7分)21.作图题(1)如图1示,∠AOB内有两点M,N,请你确定一点P,使点P到M,N的距离相等,且到OA,OB边的距离也相等,在图上标出它的位置.(2)某班举行文艺晚会,桌子摆成两直线(如图2中的AO,BO),AO桌面上摆满桔子,BO桌面上摆满糖果,坐在C处的学生小明先拿桔子再拿糖果,然后回到座位,请你帮他设计一条行走路线,使其所走的路程最短.22.如图,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB,求证:AC=AE+CD.23.垃圾的分类处理与回收利用,可以减少污染,节省资源.深圳市环境卫生局为了提高宣传实效,抽样调查了部分居民小区一段时间内生活垃圾的分类情况,其相关信息如下:根据图表解答下列问题:(1)请将条形统计图补充完整;(2)在扇形统计图中,产生的有害垃圾C所对应的圆心角为度;(3)调查发现,在可回收物中塑料类垃圾占13%,每回收1吨塑料类垃圾可获得0.5吨二级原料.假设深圳市每天产生的生活垃圾为28500吨,且全部分类处理,那么每天回收的塑料类垃圾可以获得多少吨二级原料?24.如图,以等腰直角△ABC的直角边AC作等边△ACD,CE⊥AD于E,BD、CE交于点F.(1)求∠DCB、∠DFE的度数;(2)求证:△ADF是等腰直角三角形;(3)求证:AB=2DF.五.解答题(共2小题,满分20分,每小题10分)25.阅读理解题:定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位.那么形如a+bi (a,b为实数)的数就叫做复数,a叫这个复数的实部,b叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似.例如计算:(2+i)+(3﹣4i)=5﹣3i.(1)填空:i3=,2i4=;(2)计算:①(2+i)(2﹣i);②(2+i)2;(3)若两个复数相等,则它们的实部和虚部必须分别相等,完成下列问题:已知:(x+3y)+3i=(1﹣x)﹣yi,(x,y为实数),求x,y的值.(4)试一试:请你参照i2=﹣1这一知识点,将m2+25(m为实数)因式分解成两个复数的积.26.在等边三角形ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP =CQ.(1)求证:△ABP≌△CAQ;(2)请判断△APQ是什么形状的三角形?试说明你的结论.参考答案与试题解析一.选择题(共12小题,满分36分,每小题3分)1.解:∵a2=4,b2=9,∴a=±2,b=±3,∵ab<0,∴a=2,则b=﹣3,a=﹣2,b=3,则a﹣b的值为:2﹣(﹣3)=5或﹣2﹣3=﹣5.故选:B.2.解:,=1.2,实数:、、、、、、﹣0.1010010001…(每相邻两个1之间依次多一个0),其中无理数有、、﹣0.1010010001…(每相邻两个1之间依次多一个0)共3个.故选:B.3.解:因为a2与a3不是同类项,所以选项A不正确;a3•a3=a6≠a9,所以选项B不正确;(a3)2=a3×2=a6,所以选项C正确;(ab)2=a2b2≠ab2,所以选项D不正确.故选:C.4.解:A、对顶角相等的逆命题为“相等的角为对顶角”,此命题为假命题,故本选项错误;B、全等三角形的对应角等的逆命题为“对应角相等的三角形是全等三角形”,此命题为假命题,故本选项错误;C、相等的角是同位角的逆命题为“如果两个角的同位角,那么这两个角为相等”,此命题为假命题,故本选项错误;D、等边三角形的三个内角都相等的逆命题为“如果三个角相等,那么这个三角形是等边三角形”,此命题为真命题,故本选项正确;故选:D.5.解:①﹣a2+b2,③1﹣(a﹣1)2,能用平方差公式分解因式,②﹣x2﹣y2;④x2﹣2xy+y2,不能用平方差公式分解因式,即能用平方差公式分解因式的有2个,故选:C.6.解:当腰长为5时,则三角形的三边分别为5、5、9,满足三角形的三边关系,其周长为19;当腰长为9时,则三角形的三边分别为9、9、5,满足三角形的三边关系,其周长为23;综上可知三角形的周长为19或23,故选:D.7.解:不合格人数为40﹣18﹣17=5,∴不合格人数的频率是=0.125,故选:A.8.解:∵△ABC中,边AB的中垂线分别交BC、AB于点D、E,AE=3cm,∴BD=AD,AB=2AE=6cm,∵△ADC的周长为9cm,∴AC+AD+CD=AC+BD+CD=AC+BC=9cm,∴△ABC的周长为:AB+AC+BC=15cm.故选:C.9.解:∵x2﹣8x+a可以写成一个完全平方式,∴则a可为:16.故选:C.10.解:由勾股定理得,AB==,∴AC=,∵点A表示的数是﹣1,∴点C表示的数是﹣1.故选:B.11.解:设CD=x,则DE=8﹣x,∵△BDE是△ADE沿直线DE翻折而成,∴AD=BD=8﹣x,∵△ACD是直角三角形,∴AC2=AD2﹣CD2,即62=(8﹣x)2﹣x2,解得x=.故选:C.12.解:∵这个度假村到a,b两条公路的距离相等,∴度假村在∠CAB的角平分线上,∵这个度假村到B,C两地的距离相等,∴度假村在线段BC的垂直平分线,由上可得,画∠CAB的平分线,再画线段BC的垂直平分线,两线的交点符合选址条件,故选:A.二.填空题(共6小题,满分18分,每小题3分)13.解:a7÷a5=a2故答案为:a2.14.解:观察图形可知:△ABC≌△BDE,∴∠1=∠DBE,又∵∠DBE+∠3=90°,∴∠1+∠3=90°.∵∠2=45°,∴∠1+∠2+∠3=∠1+∠3+∠2=90°+45°=135°.故答案为:135.15.解:∵a2m﹣n=a2m÷a n=(a m)2÷a n,而a m=3,a n=2,∴a2m﹣n=32÷2=.故答案为.16.解:∵EF是AB的垂直平分线,∴FA=BF=12,∴AC=AF+FC=15.故答案为:15.17.解:∵x+y=1,x﹣y=5,∴xy=[(x+y)2﹣(x﹣y)2]=﹣6,故答案为:﹣618.解:根据题意:第一个正方形的边长为64cm;第二个正方形的边长为:64×=32 cm;第三个正方形的边长为:64×()2cm,…此后,每一个正方形的边长是上一个正方形的边长的,所以第9个正方形的边长为64×()9﹣1=4cm,故答案为4.三.解答题(共2小题,满分12分,每小题6分)19.解:(1)原式=﹣64﹣3+1=﹣66;(2)原式=3x2•(﹣8x3y6)÷xy=﹣24x5y6÷xy=﹣24x4y5.20.解:原式=(x2+6xy+9y2﹣2x2+4xy+x2﹣y2)÷2y=(8y2+10xy)÷2y=4y+5x,∵|x+1|+y2+2y+1=0,∴x+1=0,y+1=0,解得:x=﹣1,y=﹣1,∴原式=4×(﹣1)+5×(﹣1)=﹣9.四.解答题(共4小题,满分28分,每小题7分)21.解:(1)如图所示:点P即为所求;(2)如图所示:小明行走路线是:从C到D,再到H,再回到C处.22.证明:在AC上取AF=AE,连接OF,∵AD平分∠BAC、∴∠EAO=∠FAO,在△AEO与△AFO中,∴△AEO≌△AFO(SAS),∴∠AOE=∠AOF;∵AD、CE分别平分∠BAC、∠ACB,∴∠ECA+∠DAC=∠ACB+∠BAC=(∠ACB+∠BAC)=(180°﹣∠B)=60°则∠AOC=180°﹣∠ECA﹣∠DAC=120°;∴∠AOC=∠DOE=120°,∠AOE=∠COD=∠AOF=60°,则∠COF=60°,∴∠COD=∠COF,∴在△FOC与△DOC中,,∴△FOC≌△DOC(ASA),∴DC=FC,∵AC=AF+FC,∴AC=AE+CD.23.解:(1)本次调查的吨数为:5÷10%=50,B类有50×30%=15(吨),补全的条形统计图如右图所示;(2)在扇形统计图中,产生的有害垃圾C所对应的圆心角为:360°×(1﹣54%﹣30%﹣10%)=21.6°,故答案为:21.6;(3)28500×54%×13%×0.5=1000.35(吨),答:每天回收的塑料类垃圾可以获得1000.35吨二级原料.24.解:(1)∵△ACD是等边三角形,∴∠ACD=60°,∴∠BCD=60°+90°=150°,∵BC=CD∴∠BDC=(180°﹣150°)=15°,∴∠ADF=60°﹣15°=45°,∴∠DFE=180°﹣∠DEF﹣∠EDF=45°,(2)∵∠ADF=45°,∠DFE=45°,∵在△DEF与△AEF中,∴△DEF≌△AEF(SAS),∴∠AFE=∠DFE=45°,∴∠AFD=90°,∴△ADF是等腰直角三角形;(3)∵CE⊥AD,∠DFE=45°,∴△DEF为等腰直角三角形,∵△ABC是等腰直角三角形,∴△ACB∽△DEF,∴,∴AB=2DF.五.解答题(共2小题,满分20分,每小题10分)25.解:(1)∵i2=﹣1,∴i3=i2•i=﹣1•i=﹣i,2i4=2i2•i2=2(﹣1)•(﹣1)=2,故答案是:i;2;(2)①(2+i)(2﹣i)=﹣i2+4=1+4=5;②(2+i)2=i2+4i+4=﹣1+4i+4=3+4i;(3)∵(x+3y)+3i=(1﹣x)﹣yi,∴x+3y=1﹣x,3=﹣y,∴x=5,y=﹣3;(4)m2+25=(m+5i)(m﹣5i).26.证明:(1)∵△ABC为等边三角形,∴AB=AC,∠BAC=60°,在△ABP和△ACQ中,,∴△ABP≌△ACQ(SAS),(2)∵△ABP≌△ACQ,∴∠BAP=∠CAQ,AP=AQ,∵∠BAP+∠CAP=60°,∴∠PAQ=∠CAQ+∠CAP=60°,∴△APQ是等边三角形.。
2020-2021学年八年级数学上学期期末测试卷一、选择题(共10小题,每小题3分,满分30分)1.下列作品中,不是轴对称图形的是()A.B.C.D.2.雾霾天气是一种大气污染状态,造成这种天气的“元凶”是PM2.5,PM2.5是指直径小于或等于0.0000025米的可吸入肺的微小颗粒,将数据0.0000025科学记数法表示为()A.2.5×106B.2.5×10﹣6C.0.25×10﹣6D.0.25×1073.下列根式是最简二次根式的是()A.B.C.D.4.下列计算正确的是()A. +=B.a3•a2=a6C.a7÷a=a6D.(﹣2a2)3=865.解分式方程+=3时,去分母后变形为()A.2+(x+2)=3(x﹣1)B.2﹣x+2=3(x﹣1)C.2﹣(x+2)=3(1﹣x)D.2﹣(x+2)=3(x﹣1)6.如图,△ABC和△DEF中,AB=DE、∠B=∠DEF,添加下列哪一个条件无法证明△ABC ≌△DEF()A.AC∥DF B.∠A=∠D C.AC=DF D.∠ACB=∠F7.如图,OC平分∠AOB,点P是射线OC上的一点,PD⊥OB于点D,且PD=3,动点Q 在射线OA上运动,则线段PQ的长度不可能是()A.2B.3C.4D.58.长和宽分别为a,b的长方形的周长为14,面积为10,则a2b+ab2的值为()A.24B.35C.70D.1409.一项工程,一半由甲单独做需要m小时完成,另一半由乙单独做需要n小时完成,则甲、乙合做这项工程所需的时间为()A.小时B.小时C.小时D.小时10.如图,在△ABC中,AB=AC,AD、CE是△ABC的两条中线,P是AD上一个动点,则下列线段的长度等于BP+EP最小值的是()A.BC B.CE C.AD D.AC二、填空题(共5小题,每小题3分,满分15分)11.计算:(1﹣)0﹣(﹣)﹣2=.12.若代数式有意义,则x的取值范围为.13.若x2+2(m﹣3)x+16是关于x的完全平方式,则m=.14.已知等腰三角形的两边长分别为5和2,则这个等腰三角形的周长为.15.如图AD是△ABC的中线,∠ADC=60°,BC=4,把△ADC沿直线AD折叠后,点C落在C′的位置上,那么BC′为.三、解答题(共7小题,满分75分)16.(12分)(1)分解因式:a2(x﹣y)+4b2(y﹣x)(2)计算:(+)﹣﹣17.(14分)先化简,再求值(1)(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),其中x=+1,y=1﹣(2)÷(1﹣),其中x=﹣118.(9分)如图,在△ABC中,∠A>∠B.(1)作边AB的垂直平分线DE,与AB,BC分别相交于点D,E(用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE,若∠B=50°,求∠AEC的度数.19.(9分)黄麻中学为了创建全省“最美书屋”,购买了一批图书,其中科普类图书平均每本的价格比文学类图书平均每本的价格多5元,已知学校用12000元购买的科普类图书的本数与用9000元购买的文学类图书的本数相等,求学校购买的科普类图书和文学类图书平均每本的价格各是多少元?20.(10分)如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.(1)求证:△ABC≌△AED;(2)当∠B=140°时,求∠BAE的度数.21.(10分)探究应用:(1)填空:①(x+2)(x2﹣2x+4)=;②(2m+n)(4m2﹣2mn+n2)=;(2)上面的整式乘法计算结果比较简洁,类比学习过的平方差公式,完全平方公式的推导过程,通过观察,你又发现了一个新的乘法公式(请用含a、b的字母表示)(3)下列各式能用你(2)中发现的乘法公式计算的是(只填字母代号)A(x+1)(x2+x+1)B.(3a+b)(3a2﹣3ab+b2)C(m+2n)(m2﹣2mn+4n2)D(5+a)(25+10a+a2)(4)直接用你发现的公式计算:(2a+3b)(4a2﹣6ab+9b2)=22.(11分)“魅力数学”社团活动时,张老师出示了如下问题:如图①,已知四边形ABCD中,AC平分∠DAB,∠DAB=120°,∠B与∠D互补,试探究线段AB,AD,AC之间的数量关系;小敏反复探索,不得其解,张老师提示道:“数学中常通过把一个问题特殊化来找到解题思路”,于是,小敏想,若将四边形ABCD特殊化,看如何解决问题:(1)特殊情况入手添加条件:“∠B=∠D”,如图②易知在Rt△CDA中,∠DCA=30°,所以,边AD与AC之间的数量关系为,同理可得AB与AC的数量关系,由此得AB,AD,AC之间的数量关系为;(2)解决原来问题受到(1)的启发,在原问题上,添加辅助线,过点C分别作AB,AD的垂线,垂足分别为E、F,如图③,请写出探究过程;(3)解后反思“一题多解”是数学解题的魅力之一,小敏在张老师的引导下,受探究结论的启发,结合图中的60°角,通过构造等边三角形,利用三角形全等同样解决了该问题,请在图①中作出辅助线,并简述你的探究过程.参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.下列作品中,不是轴对称图形的是()A.B.C.D.【分析】结合轴对称图形的概念求解即可.【解答】解:A、不是轴对称图形,本选项正确;B、是轴对称图形,本选项错误;C、是轴对称图形,本选项错误;D、是轴对称图形,本选项错误.故选:A.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.雾霾天气是一种大气污染状态,造成这种天气的“元凶”是PM2.5,PM2.5是指直径小于或等于0.0000025米的可吸入肺的微小颗粒,将数据0.0000025科学记数法表示为()A.2.5×106B.2.5×10﹣6C.0.25×10﹣6D.0.25×107【分析】绝对值小于1的数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000025=2.5×10﹣6,故选:B.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.下列根式是最简二次根式的是()A.B.C.D.【分析】根据最简二次根式是被开方数不含分母,被开方数不含开的尽的因数或因式,可得答案.【解答】解:A、该二次根式的被开方数中含有分母,不是最简二次根式,故本选项错误;B、该二次根式的被开方数中含有小数,不是最简二次根式,故本选项错误;C、该二次根式符合最简二次根式的定义,故本选项正确;D、20=22×5,该二次根式的被开方数中含开的尽的因数,不是最简二次根式,故本选项错误;故选:C.【点评】本题考查了最简二次根式,最简二次根式是被开方数不含分母,被开方数不含开的尽的因数或因式.4.下列计算正确的是()A. +=B.a3•a2=a6C.a7÷a=a6D.(﹣2a2)3=86【分析】直接利用二次根式的加减运算法则以及同底数幂的乘除运算法则和积的乘方运算法则分别计算得出答案.【解答】解:A、+,无法计算,故此选项错误;B、a3•a2=a5,故此选项错误;C、a7÷a=a6,正确;D、(﹣2a2)3=﹣8a6,故此选项错误;故选:C.【点评】此题主要考查了二次根式的加减运算以及同底数幂的乘除运算和积的乘方运算,正确掌握相关运算法则是解题关键.5.解分式方程+=3时,去分母后变形为()A.2+(x+2)=3(x﹣1)B.2﹣x+2=3(x﹣1)C.2﹣(x+2)=3(1﹣x)D.2﹣(x+2)=3(x﹣1)【分析】本题考查对一个分式确定最简公分母,去分母得能力.观察式子x﹣1和1﹣x 互为相反数,可得1﹣x=﹣(x﹣1),所以可得最简公分母为x﹣1,因为去分母时式子不能漏乘,所以方程中式子每一项都要乘最简公分母.【解答】解:方程两边都乘以x﹣1,得:2﹣(x+2)=3(x﹣1).故选:D.【点评】考查了解分式方程,对一个分式方程而言,确定最简公分母后要注意不要漏乘,这正是本题考查点所在.切忌避免出现去分母后:2﹣(x+2)=3形式的出现.6.如图,△ABC和△DEF中,AB=DE、∠B=∠DEF,添加下列哪一个条件无法证明△ABC ≌△DEF()A.AC∥DF B.∠A=∠D C.AC=DF D.∠ACB=∠F【分析】根据全等三角形的判定定理,即可得出答.【解答】解:∵AB=DE,∠B=∠DEF,∴添加AC∥DF,得出∠ACB=∠F,即可证明△ABC≌△DEF,故A、D都正确;当添加∠A=∠D时,根据ASA,也可证明△ABC≌△DEF,故B正确;但添加AC=DF时,没有SSA定理,不能证明△ABC≌△DEF,故C不正确;故选:C.【点评】本题考查了全等三角形的判定定理,证明三角形全等的方法有:SSS,SAS,ASA,AAS,还有直角三角形的HL定理.7.如图,OC平分∠AOB,点P是射线OC上的一点,PD⊥OB于点D,且PD=3,动点Q 在射线OA上运动,则线段PQ的长度不可能是()A.2B.3C.4D.5【分析】过点P作PE⊥OA于E,根据角平分线上的点到脚的两边距离相等可得PE=PD,再根据垂线段最短解答.【解答】解:如图,过点P作PE⊥OA于E,∵OC平分∠AOB,PD⊥OB,∴PE=PD=3,∵动点Q在射线OA上运动,∴PQ≥3,∴线段PQ的长度不可能是2.故选:A.【点评】本题考查了角平分线上的点到脚的两边距离相等的性质,垂线段最短的性质,是基础题,熟记性质是解题的关键.8.长和宽分别为a,b的长方形的周长为14,面积为10,则a2b+ab2的值为()A.24B.35C.70D.140【分析】根据已知条件长方形的长与宽之和即a+b=7,长与宽的积为ab=10,再将所给的代数式分解用,将a+b与ab代入即可.【解答】解:根据长方形的周长为14,面积为10,可得a+b==7,ab=10,a2b+ab2=ab(a+b)=10×7=70.故选:C.【点评】本题考查了因式分解的应用,由已知可得到a与b的和,a与b的积;求所给代数式的值,关键先分解因式,用已知式子的值整体代入.9.一项工程,一半由甲单独做需要m小时完成,另一半由乙单独做需要n小时完成,则甲、乙合做这项工程所需的时间为()A.小时B.小时C.小时D.小时【分析】根据题意得出甲的效率为、乙的效率为,再根据工作时间=工作量÷甲乙合作的工作效率可得答案.【解答】解:根据题意,甲、乙合做这项工程所需的时间为==,故选:D.【点评】本题主要考查列代数式,解题的关键是掌握工程问题中的基本关系式及代数式的书写规范.10.如图,在△ABC中,AB=AC,AD、CE是△ABC的两条中线,P是AD上一个动点,则下列线段的长度等于BP+EP最小值的是()A.BC B.CE C.AD D.AC【分析】如图连接PC,只要证明PB=PC,即可推出PB+PE=PC+PE,由PE+PC≥CE,推出P、C、E共线时,PB+PE的值最小,最小值为CE的长度.【解答】解:如图连接PC,∵AB=AC,BD=CD,∴AD⊥BC,∴PB=PC,∴PB+PE=PC+PE,∵PE+PC≥CE,∴P、C、E共线时,PB+PE的值最小,最小值为CE的长度,故选:B.【点评】本题考查轴对称﹣最短问题,等腰三角形的性质、线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.二、填空题(共5小题,每小题3分,满分15分)11.计算:(1﹣)0﹣(﹣)﹣2=﹣3.【分析】原式利用零指数幂、负整数指数幂法则计算即可求出值.【解答】解:原式=1﹣4=﹣3,故答案为:﹣3【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.12.若代数式有意义,则x的取值范围为x≥2且x≠3.【分析】根据分式的分母不为零(x﹣3≠0)、二次根式的被开方数是非负数(x﹣2≥0)来解答.【解答】解:根据题意,得x﹣2≥0,且x﹣3≠0,解得,x≥2且x≠3;故答案是:x≥2且x≠3.【点评】本题考查了二次根式有意义的条件、分式有意义的条件.本题需注意的是,被开方数为非负数,且分式的分母不能为0.13.若x2+2(m﹣3)x+16是关于x的完全平方式,则m=﹣1或7.【分析】直接利用完全平方公式的定义得出2(m﹣3)=±8,进而求出答案.【解答】解:∵x2+2(m﹣3)x+16是关于x的完全平方式,∴2(m﹣3)=±8,解得:m=﹣1或7,故答案为:﹣1或7.【点评】此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键.14.已知等腰三角形的两边长分别为5和2,则这个等腰三角形的周长为10+2.【分析】给出等腰三角形有两条边长为5和2,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:分两种情况:当腰为2时,2+2=4<5,所以不能构成三角形;当腰为5时,5+5=10>2,所以能构成三角形,周长是:5+5+2=10+2.故答案为:10+2.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.15.如图AD是△ABC的中线,∠ADC=60°,BC=4,把△ADC沿直线AD折叠后,点C落在C′的位置上,那么BC′为2.【分析】根据中点的性质得BD=DC=2.再根据对称的性质得∠BDC′=60°,判定三角形为等边三角形即可求.【解答】解:根据题意:BC=4,D为BC的中点;故BD=DC=2.由轴对称的性质可得:∠ADC=∠ADC′=60°,DC=DC′=2,则∠BDC′=60°,故△BDC′为等边三角形,即可得BC′=BD=BC=2.故答案为:2.【点评】本题考查了翻折变换的知识,同时考查了等边三角形的性质和判定,判定出△BDC为等边三角形是关键.三、解答题(共7小题,满分75分)16.(12分)(1)分解因式:a2(x﹣y)+4b2(y﹣x)(2)计算:(+)﹣﹣【分析】(1)先提取公因式,再利用平方差公式分解可得;(2)根据二次根式的混合运算顺序和运算法则及二次根式的性质计算可得.【解答】解:(1)原式=(x﹣y)(a2﹣4b2)=(x﹣y)(a+2b)(a﹣2b);(2)原式=3+1﹣3+2﹣3=0.【点评】本题主要考查因式分解、二次根式的混合运算,解题的关键是熟练掌握因式分解的步骤与方法,二次根式的混合运算顺序和运算法则.17.(14分)先化简,再求值(1)(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),其中x=+1,y=1﹣(2)÷(1﹣),其中x=﹣1【分析】(1)根据完全平方公式、平方差公式和单项式乘多项式可以化简题目中的式子,然后将x、y的值代入化简后的式子即可解答本题;(2)根据分式的除法和减法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【解答】解:(1)(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y)=4x2+4xy+y2+x2﹣y2﹣5x2+5xy=9xy,当x=+1,y=1﹣时,原式=9×()()=﹣9;(2)÷(1﹣)===,当x=﹣1时,原式==.【点评】本题考查分式的化简求值、整式的化简求值,解答本题的关键是明确它们各自的计算方法.18.(9分)如图,在△ABC中,∠A>∠B.(1)作边AB的垂直平分线DE,与AB,BC分别相交于点D,E(用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE,若∠B=50°,求∠AEC的度数.【分析】(1)根据题意作出图形即可;(2)由于DE是AB的垂直平分线,得到AE=BE,根据等腰三角形的性质得到∠EAB=∠B=50°,由三角形的外角的性质即可得到结论.【解答】解:(1)如图所示;(2)∵DE是AB的垂直平分线,∴AE=BE,∴∠EAB=∠B=50°,∴∠AEC=∠EAB+∠B=100°.【点评】本题考查了作图﹣基本作图,线段垂直平分线的性质,三角形的外角的性质,等腰三角形的性质,熟练掌握线段垂直平分线的性质是解题的关键.19.(9分)黄麻中学为了创建全省“最美书屋”,购买了一批图书,其中科普类图书平均每本的价格比文学类图书平均每本的价格多5元,已知学校用12000元购买的科普类图书的本数与用9000元购买的文学类图书的本数相等,求学校购买的科普类图书和文学类图书平均每本的价格各是多少元?【分析】首先设文学类图书平均每本的价格为x元,则科普类图书平均每本的价格为(x+5)元,根据题意可得等量关系:用12000元购进的科普类图书的本数=用9000元购买的文学类图书的本数,根据等量关系列出方程,再解即可.【解答】解:设文学类图书平均每本的价格为x元,则科普类图书平均每本的价格为(x+5)元.根据题意,得=.解得x=15.经检验,x=15是原方程的解,且符合题意,则科普类图书平均每本的价格为15+5=20元,答:文学类图书平均每本的价格为15元,科普类图书平均每本的价格为20元.【点评】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程,注意分式方程不要忘记检验.20.(10分)如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.(1)求证:△ABC≌△AED;(2)当∠B=140°时,求∠BAE的度数.【分析】(1)根据∠ACD=∠ADC,∠BCD=∠EDC=90°,可得∠ACB=∠ADE,进而运用SAS 即可判定全等三角形;(2)根据全等三角形对应角相等,运用五边形内角和,即可得到∠BAE的度数.【解答】(1)证明:∵AC=AD,∴∠ACD=∠ADC,又∵∠BCD=∠EDC=90°,∴∠ACB=∠ADE,在△ABC和△AED中,,∴△ABC≌△AED(SAS);(2)解:当∠B=140°时,∠E=140°,又∵∠BCD=∠EDC=90°,∴五边形ABCDE中,∠BAE=540°﹣140°×2﹣90°×2=80°.【点评】本题主要考查了全等三角形的判定与性质的运用,解题时注意:两边及其夹角对应相等的两个三角形全等.21.(10分)探究应用:(1)填空:①(x+2)(x2﹣2x+4)=x3+8;②(2m+n)(4m2﹣2mn+n2)=8m3+n3;(2)上面的整式乘法计算结果比较简洁,类比学习过的平方差公式,完全平方公式的推导过程,通过观察,你又发现了一个新的乘法公式(a+b)(a2﹣ab+b2)=a3+b3(请用含a、b的字母表示)(3)下列各式能用你(2)中发现的乘法公式计算的是C(只填字母代号)A(x+1)(x2+x+1)B.(3a+b)(3a2﹣3ab+b2)C(m+2n)(m2﹣2mn+4n2)D(5+a)(25+10a+a2)(4)直接用你发现的公式计算:(2a+3b)(4a2﹣6ab+9b2)=8a3+27b3【分析】根据已知等式得出立方和公式,计算即可求出所求.【解答】解:(1)①(x+2)(x2﹣2x+4)=x3+8;②(2m+n)(4m2﹣2mn+n2)=8m3+n3;(2)根据题意得:(a+b)(a2﹣ab+b2)=a3+b3;(3)C;(4)(2a+3b)(4a2﹣6ab+9b2)=8a3+27b3.故答案为:(1)①x3+8;②8m3+n3;(2)根据题意得:(a+b)(a2﹣ab+b2)=a3+b3;(3)C;(4)8a3+27b3.【点评】此题考查了平方差公式,弄清题中的规律是解本题的关键.22.(11分)“魅力数学”社团活动时,张老师出示了如下问题:如图①,已知四边形ABCD中,AC平分∠DAB,∠DAB=120°,∠B与∠D互补,试探究线段AB,AD,AC之间的数量关系;小敏反复探索,不得其解,张老师提示道:“数学中常通过把一个问题特殊化来找到解题思路”,于是,小敏想,若将四边形ABCD特殊化,看如何解决问题:(1)特殊情况入手添加条件:“∠B=∠D”,如图②易知在Rt△CDA中,∠DCA=30°,所以,边AD与AC之间的数量关系为AD=AC,同理可得AB与AC的数量关系,由此得AB,AD,AC之间的数量关系为AD+AB=AC;(2)解决原来问题受到(1)的启发,在原问题上,添加辅助线,过点C分别作AB,AD的垂线,垂足分别为E、F,如图③,请写出探究过程;(3)解后反思“一题多解”是数学解题的魅力之一,小敏在张老师的引导下,受探究结论的启发,结合图中的60°角,通过构造等边三角形,利用三角形全等同样解决了该问题,请在图①中作出辅助线,并简述你的探究过程.【分析】(1)根据∠B+∠D=180°且∠B=∠D知∠B=∠D=90°,由AC平分∠DAB,∠DAB=120°知∠DAC=∠BAC=60°,利用直角三角形30°角所对直角边等于斜边的一半求解可得;(2)先证△CDF≌△CBE得DF=BE,据此得AB+AD=AE+BE+AD=AE+DF+AD=AE+AF=AC;(3)延长AB到点E,使得AE=AC,据此可得△ACE为等边三角形,进一步知AC=EC,∠DAC=∠E=60°,证△ADC≌△EBC得AD=EB,进一步求解可得.【解答】解:(1)∵∠B+∠D=180°,且∠B=∠D,∴∠B=∠D=90°,又∵AC平分∠DAB,∠DAB=120°,∴∠DAC=∠BAC=60°,∴∠ACD=∠ACB=30°,则AD=AC,AB=AC,∴AD+AB=AC+AC=AC,故答案为:AD=AC,AD+AB=AC.(2)∵AC为∠DAB的平分线,CF⊥AD,CE⊥AB,∴CF=CE.∵∠B与∠ADC互补,∠ADC与∠CDF互补,∴∠CDF=∠B.又∵∠F=∠CEB=90°,∴△CDF≌△CBE(AAS),∴DF=BE.∴AB+AD=AE+BE+AD=AE+DF+AD=AE+AF=AC,即AB+AD=AC.(3)如图,延长AB到点E,使得AE=AC.∵∠CAB=∠BAD=60°,∴△ACE为等边三角形.∴AC=EC,∠DAC=∠E=60°.又∵∠ABC与∠D互补,∴∠D=∠CBE.∴△ADC≌△EBC(AAS),∴AD=EB.∴AC=AE=AB+EB=AB+AD.【点评】本题主要考查四边形的综合问题,解题的关键是掌握全等三角形的判定与性质、直角三角形的性质、等边三角形的判定与性质等知识点.1、三人行,必有我师。
期末综合卷一.选择题(满分28分,每小题2分)1.若a2=4,b2=9,且ab<0,则a﹣b的值为()A.﹣2B.±5C.5D.﹣52.下列说法中正确的是()A.的平方根是±9B.﹣5的立方根是﹣C.的平方根是D.﹣9没有立方根3.下列数中﹣3,,3.14,﹣3π,3.030030003……中,无理数的个数是()A.1B.2C.3D.44.下列计算正确的是()A.a+a=a2B.(2a)3=6a3C.a3×a3=2a3D.a3÷a=a2 5.若2x=5,2y=3,则22x﹣y的值为()A.25B.C.9D.756.已知m﹣n=,则代数式m2+n2+1﹣2mn的值是()A.8B.7C.6D.57.如(x+a)与(x+3)的乘积中不含x的一次项,则a的值为()A.3B.﹣3C.1D.﹣18.下列四个命题中,真命题有()①两条直线被第三条直线所截,内错角相等.②如果∠1和∠2是对顶角,那么∠1=∠2.③三角形的一个外角大于任何一个内角.④如果x2>0,那么x>0.A.1个B.2个C.3个D.4个9.下列各组数中,以它们为边长的线段能够成直角三角形的是()A.1,2,3B.5,6,7C.5,12,10D.6,8,10 10.如图,直线L1∥L2,点A、B在L1上,点C在L2上,若AB=AC、∠ABC =70°,则∠1的大小为()A.20°B.40°C.35°D.70°11.如图,在△ABC中,AB=AC,AD⊥BC于点D,若AB=6,CD=4,则△ABC的周长是()A.10B.14C.16D.2012.如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,若AB=4,CF=3,则BD的长是()A.0.5B.1C.1.5D.213.如图,3×3方格中小方格的边长为1,图中的线段长度是()A.B.C.D.π14.如图,在等边三角形ABC中,点D、E分别在边BC,AC上,DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,CD=2,则DF的长为()A.2B.3C.4D.5二.填空题(满分12分,每小题3分)15.若2+的小数部分为a,5﹣的小数部分为b,则a+b的值为.16.如图,两个正方形边长分别为a、b,如果a+b=20,ab=18,则阴影部分的面积为.17.如图,已知△ABC中,∠C=90°,AC=BC,AB=8cm,BD平分∠ABC交AC于点D,过D作DE⊥AB于点E,则△ADE的周长为cm.18.如图,在△ABC中,∠ABC=45°,AC=9cm,F是高AD和BE的交点,则BF的长是.三.解答题19.(15分)王老师给学生出了一道题:求(2a+b)(2a﹣b)+2(2a﹣b)2+(2ab2﹣16a2b)÷(﹣2a)的值,其中a =,b=﹣1,同学们看了题目后发表不同的看法.小张说:条件b=﹣1是多余的.”小李说:“不给这个条件,就不能求出结果,所以不多余.”(1)你认为他们谁说的有道理?为什么?(2)若x m等于本題计算的结果,试求x2m的值.20.(8分)分解因式(1)a2b﹣b;(2)﹣2x3+12x2﹣18x.21.(8分)为了解某校七年级学生的英语口语水平,随机抽取该年级部分学生进行英语口语测试,学生的测试成绩按标准定为:A、B、C、D四个等级,并把测试成绩绘成如图所示的两个统计图表.请根据所给信息,解答下列问题:(1)本次被抽取参加英语口语测试的学生共有多少人?(2)求扇形统计图中C级的圆心角度数;(3)若该校七年级共有学生640人,根据抽样结果,估计英语口语达到B级以上(包括B级)的学生人数.七年级英语口语测试成绩统计表成绩/分等级人数x≥90A1275≤x<90B m60≤x<75C nx<60D922.(8分)如图,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE分别交边AB、AC于点E、D,连结BD(1)求∠DBC的度数;(2)若BC=4,求AD的长.23.(9分)(1)化简:;(2)如图,已知△ABC,按如下步骤作图:①分别以A,C为圆心,大于AC的长为半径画弧,两弧交于P,Q两点;②作直线PQ,分别交AB,AC于点E,D;③过C作CF∥AB交PQ于点F.求证:△AED≌△CFD.24.(12分)已知△ABC是等边三角形,BC=4cm.(1)如图1,点P在线段AB上从点A出发沿射线AB以1cm/s的速度运动,过点P作PE∥BC交线段AC于点E,同时点Q从点C出发沿BC的延长线以1cm/s的速度运动,连接BE、EQ.设点P的运动时间为t秒.①求证:△APE是等边三角形;②当点P不与点A、B重合时,求证:BE=EQ.(2)如图2,点K为BC的中点,作直线AK,点S为直线AK上一点,连接CS,将线段CS绕点C逆时针旋转60°得到CT,则点S在直线AK上运动的过程中,AT的最小值是多少?请说明理由.参考答案一.选择题1.解:∵a2=4,b2=9,∴a=±2,b=±3,∵ab<0,∴a=2,则b=﹣3,a=﹣2,b=3,则a﹣b的值为:2﹣(﹣3)=5或﹣2﹣3=﹣5.故选:B.2.解:A、=9,9的平方根是±3,不符合题意;B、﹣5的立方根是﹣,符合题意;C、的平方根是±,不符合题意;D、﹣9的立方根是﹣,不符合题意,故选:B.3.解:﹣3,,3.14是有理数,无理数有:﹣3π,3.030030003……共2个.故选:B.4.解:(A)原式=2a,故A错误;(B)原式=8a3,故B错误;(C)原式=a6,故C错误;故选:D.5.解:∵2x=5,2y=3,∴22x﹣y=(2x)2÷2y=52÷3=.故选:B.6.解:∵m﹣n=,∴m2+n2+1﹣2mn=(m2﹣2mn+n2)+1=(m﹣n)2+1=()2+1=7+1=8,故选:A.7.解:原式=x2+(a+3)x+3a,由结果不含x的一次项,得到a+3=0,解得:a=﹣3,故选:B.8.解:两条平行直线被第三条直线所截,内错角相等,所以①错误;如果∠1和∠2是对顶角,那么∠1=∠2,所以②正确;三角形的一个外角大于任何一个不相邻的内角,所以③错误;如果x2>0,那么x≠0,所以④错误.故选:A.9.解:A、∵12+22=5≠32,∴不能构成直角三角形,故本选项不符合题意;B、∵52+62=61≠72,∴不能构成直角三角形,故本选项不符合题意;C、∵52+102=125≠122,∴不能构成直角三角形,故本选项不符合题意;D、∵62+82=100=102,∴能够构成直角三角形,故本选项符合题意.故选:D.10.解:∵AB=AC,∴∠ACB=∠ABC=70°,∵直线l1∥l2,∴∠1+∠ACB+∠ABC=180°,∴∠1=180°﹣∠ABC﹣∠ACB=180°﹣70°﹣70°=40°.故选:B.11.解:∵AC=AB=6,AD⊥BC,∴BC=2CD=8,∴△ABC的周长=AB+AC+BC=20,故选:D.12.解:∵CF∥AB,∴∠A=∠FCE,∠ADE=∠F,在△ADE和△FCE中,∴△ADE≌△CFE(AAS),∴AD=CF=3,∵AB=4,∴DB=AB﹣AD=4﹣3=1.故选:B.13.解:由图可得,线段长度是=,故选:C.14.解:∵△ABC是等边三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=30°,∵∠ACB=∠EDC=60°,∴△DEC是等边三角形,∴ED=DC=2,∵∠DEF=90°,∠F=30°,∴DF=2DE=4.故选:C.二.填空题15.解:∵4<6<9,∴2<<3,2<5﹣<3,∴a=﹣2,b=3﹣,则a+b=﹣2+3﹣=1,故答案为:116.解:∵a+b=20,ab=18,∴S=阴影====173故答案为:173.17.解:∵△ABC是等腰直角三角形,∴∠A=45°,BC=AC=AB=4.∵BD是∠ABC的平分线,DC⊥BC,DE⊥AB,∴DC=DE,BC=BE=4.所以AE=AB﹣BE=8﹣4.又△ADE是等腰直角三角形,所以AE=DE=DC.△ADE周长=AD+AE+DE=AC+AE=8.故答案为8.18.解:∵AD⊥BC,BE⊥AC,∴∠ADC=∠ADB=90°,∠BEA=90°,又∵∠FBD+∠BDF+∠BFD=180°,∠F AE+∠FEA+∠AFE=180°,且∠BFD =∠AFE,∴∠FBD=∠F AE,又∵∠ABC=45°,∠ABD+∠BAD=90°,∴∠BAD=45°,∴BD=AD,且∠ADC=∠BDF=90°,∠FBD=∠F AE,∴△ADC≌△BDF(ASA)∴BF=AC=9cm,故答案为:9cm.三.解答题19.解:(1)小张说的有道理.理由如下:(2a+b)(2a﹣b)+2(2a﹣b)2+(2ab2﹣16a2b)÷(﹣2a)=(2a)2﹣b2+2(4a2﹣4ab+b2)+(﹣2b+8ab)=4a2﹣b2+8a2﹣8ab+2b2﹣b2+8ab=12a2∵化简的结果为12a2不含字母b∴条件b=﹣1是多余的,小张说的有道理(2)当a=时,12a2=12×()2=3由题意知x m=3∴x2m=(x m)2=32=9即x2m的值为920.解:(1)a2b﹣b=b(a2﹣1)=b(a+1)(a﹣1);(2)﹣2x3+12x2﹣18x=﹣2x(x2﹣6x+9)=﹣2x(x﹣3)2.21.解:(1)本次被抽取参加英语口语测试的学生共有9÷15%=60人;(2)∵A级所占百分比为×100%=20%,∴C级对应的百分比为1﹣(20%+25%+15%)=40%,则扇形统计图中C级的圆心角度数为360°×40%=144°;(3)根据题意得:640×(20%+25%)=288(人),答:英语口语达到B级以上(包括B级)的学生人数为288人.22.解:(1)∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵DE垂直平分AB,∴AD=BD,∴∠DBA=∠A=36°,∴∠DBC=∠ABC﹣∠ABD=36°;(2)由(1)得∠DBC=36°,∠C=72°,∴∠BDC=180°﹣∠C﹣∠DBC=72°,∴∠C=∠BDC,∴BC=BD,∵AD=BD,∴AD=BC=4.23.(1)解:原式==.(2)证明:由作图知:PQ为线段AC的垂直平分线,∴AD=C D,∵CF∥AB,∴∠EAC=∠FCA,∠CFD=∠AED,在△AED与△CFD中,,∴△AED≌△CFD(AAS).24.解:(1)①∵△ABC是等边三角形,∴∠A=∠ABC=60°.∵PE∥BC,∴∠APE=∠ABC=60°.∴∠A=∠APE=60°.∴△APE是等边三角形.②如图1,∵△ABC是等边三角形,∴AB=AC,∠ACB=60°.∵△AFE是等边三角形,∴AP=PE=AE,∠APE=60°.∴AB﹣AP=AC﹣AE,∠BPE=∠ECQ=120°.∴BP=EC.∵AP=CQ=t,∴PE=CQ.∴△BPE≌ECQ(SAS).∴BE=EQ.(2)解:连接BT,如图2所示.∵△ABC为等边三角形,且AK为△ABC的对称轴,∴∠ACK=60°,∠SAC=30°∵∠SCT=60°,∴∠ACS=∠BCT.在△ACS和△BCT中,,∴△ACS≌△BCT(SAS),∴∠CBT=∠SAC=30°.∴点T在直线BT上,AT的最小值为4.。
2020-2021学年华师大第一学期期末测试卷02八年级数学一、选择题(本大题共12小题,共48.0分)1.等腰三角形的两条边长分别为9cm 和12cm ,则这个等腰三角形的周长是( )A .30cmB .33cmC .24cm 或 21cmD .30cm 或 33cm2.如图,已知△ABC ≌△DAE ,BC =2,DE =5,则CE 的长为( ).A .2B .2.5C .3D .3.53.若ABC ∆的三条边长分别是a 、b 、c ,且()20a b b c -+-=则这个三角形是()A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形4.在三角形内,到三条边距离相等的点是这个三角形( )的交点A .三条角平分线B .三条高线C .三条中线D .三边垂直平分线5.如图,已知ABC EFG ∆≅∆,则∠α等于( )A .72°B .60°C .58°D .50°6.下列各数中,无理数是( )A B C .227 D .3.141750b +=,那么a b -=( ).A .1B .1-C .4D .38.图中的小正方形边长都相等,若△MNP ≌△MEQ ,则点Q 可能是图中的( )A .点AB .点BC .点CD .点D9.如图,AD 是等边三角形ABC 的中线,AE=AD ,则∠EDC=( )度.A .30B .20C .25D .1510.如图,依据尺规作图的痕迹,计算∠α∠∠ ∠A .56°B .68°C .28°D .34°11.如图,在OAB 和OCD 中,,,,40OA OB OC OD OA OC AOB COD ==>∠=∠=︒,连接,AC BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠.其中正确的个数为( ).A .4B .3C .2D .112.如图,在△ABC 中,∠C=90°,AC=4,BC=2,点A 、C 分别在x 轴、y 轴上,当点A 在x 轴上运动时,点C 随之在y 轴上运动.在运动过程中,点B 到原点的最大距离是( )A .6B .C .D .+2二、填空题(本大题共4小题,共16.0分)13.如图,要测量河岸相对两点A ,B 的距离,可以从AB 的垂线BF 上取两点C ,D .使BC =CD ,过D 作DE ⊥BF ,且A ,C ,E 三点在一直线上.若测得DE =30米,则AB =______米.14.已知30m n +-=,则22m n ⋅=_______.15.如图,AD 是△ABC 中∠BAC 的平分线,DE ⊥AB 于点E ,S △ABC =7,DE =2,AB =4,则AC 的长是_____.16.如图所示,圆柱体底面圆的半径是2π,高为1,若一只小虫从A 点出发沿着圆柱体的外侧面爬行到C 点,则小虫爬行的最短路程是______三、解答题(本大题共86分)17.如图,已知,在△ABC 中,求作△BED ,使点D 落在AC 上,点E 落在BC 上,且∠CBD =12∠ABC ,BE =12BC .(不写作法,保留作图痕迹)18.如图,在ABC ∆中,90ACB ∠=︒,CD AB ⊥于点D ,CE 平分DCB ∠交AB 于点E .(1)求证:AEC ACE ∠=∠;(2)若2AEC B ∠=∠,1AD =,求BD 的长.19.化简求值(1)求(2)(2)(2)(2)x y x y y x y x -+-+-的值,其中2x =,1y =;(2)求2226314422x x x x x x x ++÷--+--的值,其中1x =. 20.(1)先化简,再求值:[(3a +b)2-(3a -b)(b +3a)]÷2b ,其中(3a+1)2+|1-b|=0.(2)如图,在Rt∠ABC 中,∠ABC =90°,CD 平分∠ACB 交AB 于点D ,DE ⊥AC 于点E ,BF ∥DE 交CD 于点F .求证:DE =BF .21.如图,点B 、F 、C 、E 在直线l 上(F 、C 之间不能直接测量),点A 、D 在l 异侧,AB ∥DE ,测得AB=DE ,∠A=∠D .≅;(1)求证:ABC DEF(2)若BE=10m,BF=3m,求FC的长度.22.如图,ED⊥AB,FC⊥AB,垂足分别为D、C,AE∥BF,AE=BF.求证:△AED≌△BFC.∠,点P是OA边上的一点.23.如图,已知AOB∠=∠(用尺规作图法,保留作图痕迹,不写作法);(1)在OA的右侧作APC AOB(2)在(1)的条件下,判断直线PC与直线OB的位置关系,并说明理由.24.某学校组织七年级学生参加了“热爱宪法,捍卫宪法”的知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计,绘制统计图如下.请根据所给信息,回答下列问题:某校七年级部分学生成绩频数分布直方图某校七年级部分学生成绩扇形统计图(1)求出A组、B组人数分别占总人数的百分比;(2)求本次共抽查了多少名学生的成绩;(3)扇形统计图中,D组对应的圆心角为a ,求a的值;(4)该区共有1000名七年级学生参加了此次竞赛,若主办方想把一等奖的人数控制在150人,那么请你通过计算估计:一等奖的分值应定在多少分及以上?25.如图,在△ABC中,∠BAC=90°,AB=AC,点D是BC上一动点,连接AD,过点A作AE⊥AD,并且始终保持AE=AD,连接CE.(1)求证:△ABD≌△ACE;(2)若AF平分∠DAE交BC于F,探究线段BD,DF,FC之间的数量关系,并证明;(3)在(2)的条件下,若BD=3,CF=4,求AD的长.26.如图,在△ABC中,已知AB=AC,∠BAC=90°,AH是△ABC的高,AH=4 cm,BC=8 cm,直线CM⊥BC,动点D从点C开始沿射线CB方向以每秒3厘米的速度运动,动点E也同时从点C开始在直线CM上以每秒1厘米的速度向远离C点的方向运动,连接AD、AE,设运动时间为t(t>0)秒.(1)请直接写出CD、CE的长度(用含有t的代数式表示):CD=cm,CE=cm;(2)当t为多少时,△ABD的面积为12 cm2?(3)请利用备用图探究,当t为多少时,△ABD≌△ACE?并简要说明理由.27.如图,在ABC 中,点D 为BC 上一点,过点D 作DE AB ⊥于点,E DF AC ⊥于点F .连接EF .(1)若,3,5BAD DAC DE AC ∠=∠==,求ADC 的面积;(2)若DF AF =,求证:AE DE +=.28.如图,以直角△AOC 的直角顶点O 为原点,以OC ,OA 所在直线为x 轴和y 轴建立平面直角坐标系,点A (0,a ),C (b ,080b +-=.(1)点A 的坐标为________;点C 的坐标为________.(2)已知坐标轴上有两动点P ,Q 同时出发,P 点从C 点出发沿x 轴负方向以每秒2个单位长度的速度匀速移动,Q 点从O 点出发沿y 轴正方向以每秒1个单位长度的速度匀速移动,点P 到达O 点整个运动随之结束.AC 的中点D 的坐标是(4,3),设运动时间为t 秒.问:是否存在这样的t ,使得△ODP 与△ODQ 的面积相等?若存在,请求出t 的值;若不存在,请说明理由.(3)在(2)的条件下,若∠DOC=∠DCO ,点G 是第二象限中一点,并且y 轴平分∠GOD .点E 是线段OA 上一动点,连接接CE 交OD 于点H ,当点E 在线段OA 上运动的过程中,探究∠GOA ,∠OHC ,∠ACE 之间的数量关系,并证明你的结论(三角形的内角和为180°可以直接使用)。
2020-2021学年初二数学上册期末测试卷一、选择题(每小题3分,共30分。
下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内。
)1.若一个数的平方根是±8,则这个数的立方根是()A.±2B.±4C.2D.42.下列因式分解正确的是()A.x2﹣y2=(x﹣y)2B.xy﹣x=x(y﹣1)C.a2+a+1=(a+1)2D.2x+y=2(x+y)3.如图,数轴上点P表示的数可能是()A.B.﹣3.2C.D.4.要说明“若两个单项式的次数相同,则它们是同类项”是假命题,可以举的反例是()A.2ab和3ab B.2a2b和3ab2C.2ab和2a2b2D.2a3和﹣2a35.在一篇文章中,“的”、“地”、“和”三个字共出现50次,已知“的”和“地”出现的频率之和是0.7,那么“和”字出现的频数是()A.14B.15C.16D.176.如果x m=4,x n=8(m、n为自然数),那么x3m﹣n等于()A.B.4C.8D.567.已知等边△ABC的中线BD、CE相交于点O,∠BOC等于()A.60°B.150°C.30°D.120°8.如图所示,△ABC≌△AEF,AB=AE,∠B=∠E,则下列结论:①AC=AF;②EF=BC;③∠FAB=∠EAB;④∠EAB=∠FAC,其中正确结论的个数是()A.4个B.3个C.2个D.1个9.如图,锐角三角形ABC中,BC>AB>AC,小靖依下列方法作图:(1)作∠A的角平分线交BC于D点.(2)作AD的中垂线交AC于E点.(3)连接DE.根据他画的图形,判断下列关系何者正确?()A.DE⊥AC B.DE∥AB C.CD=DE D.CD=BD10.如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为1,l2,l3之间的距离为2,则AC的长是()A.B.C.D.5二、填空题(每小题3分,共15分)11.计算:22+|﹣1|﹣=.12.若a+b=1,ab=﹣2,则(a+1)(b+1)的值为.13.已知△ABC中,AB=BC≠AC,作与△ABC只有一条公共边,且与△ABC全等的三角形,这样的三角形一共能作出个.14.在△ABC中,AB=AC,AB的垂直平分线与AC所在的直线相交所得到锐角为50°,则∠B等于.15.如图,在△ABC中,AB=20,AC=12,BC=16,把△ABC折叠,使AB落在直线AC上,则重叠部分(阴影部分)的面积是.三、解答题(共8小题,满分75分)16.(8分)先化简,再求值:(a+b)(a﹣b)+(a﹣2b)2﹣2(3a﹣b)(a﹣b),其中a=,b=﹣1.17.(8分)把下列多项式分解因式:(1)3a2﹣12ab+12b2(2)m2(m﹣2)+4(2﹣m)18.(9分)已知,如图,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.19.(9分)某市积极开展“阳光体育进校园”活动,各校学生坚持每天锻炼一小时,某校根据实际,决定主要开设A:乒乓球,B:篮球,C:跑步,D:跳绳四种运动项目,为了解学生最喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成如下统计图.请你结合图中信息解答下列问题.(1)请计算最喜欢B项目的人数所占的百分比.(2)请计算D项所在扇形图中的圆心角的度数.(3)请把统计图补充完整.20.(10分)如图,一块余料ABCD,AD∥BC,现进行如下操作:以点B为圆心,适当长为半径画弧,分别交BA,BC于点G,H;再分别以点G,H为圆心,大于GH的长为半径画弧,两弧在∠ABC内部相交于点O,画射线BO,交AD于点E.(1)求证:AB=AE;(2)若∠A=100°,求∠EBC的度数.21.(10分)如图,点B、F、C、E在同一直线上,AC、DF相交于点G,AB⊥BE,垂足为B,DE⊥BE,垂足为E,且AB=DE,BF=CE.求证:(1)△ABC≌△DEF;(2)GF=GC.22.(10分)如图,修公路遇到一座山,于是要修一条隧道,为了加快施工进度,想在小山的另一侧同时施工.为了使山的另一侧的开挖点C在AB的延长线上,设想过点C作直线AB的垂线l,过点B作一直线(在山的旁边经过),与l相交于D点,经测量∠ABD=135°,BD=800m,求直线l上距离D点多远的C处开挖?(≈1.414,精确到1米)23.(11分)如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC.①求证:△ABE≌△CBD;②若∠CAE=30°,求∠BDC的度数.参考答案与试题解析一、选择题(每小题3分,共30分。
2020-2021学年华东师大新版八年级上册数学期末复习试卷一.选择题(共10小题,满分40分,每小题4分)1.若a2=4,b2=9,且ab<0,则a﹣b的值为()A.﹣2B.±5C.5D.﹣52.下列计算正确的是()A.(a4b)3=a7b3B.﹣2b(4a﹣1)=﹣8ab﹣2bC.a×a3+(a2)2=2a4D.(a﹣1)2=a2﹣13.“早发现,早报告,早隔离,早治疗”是我国抗击“新冠肺炎”的宝贵经验,其中“早”字出现的频率是()A.B.C.D.4.用直尺和圆规画一个角等于已知角,是运用了“全等三角形的对应角相等”这一性质,其运用全等的方法是()A.SAS B.ASA C.AAS D.SSS5.下列说法中,错误的有()①面积相等的两个三角形是全等三角形②三个角分别相等的两个三角形是全等三角形③全等三角形的周长相等④有两边及其中一边的对角分别对应相等的两个△全等.A.1个B.2个C.3个D.4个6.如图,实数3﹣在数轴上的大致位置是()A.点A B.点B C.点C D.点D7.如图,在△ABC中,AB=13,BC=10,BC边上的中线AD=12,试判定△ABC的形状()A.直角三角形B.等边三角形C.等腰三角形D.以上都不对8.如图是我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形、如果大正方形的面积13,小正方形的面积是1,直角三角形的短直角边为a,较长的直角边为b,那么(a+b)2的值为()A.169B.25C.19D.139.如图,直线l分别与直线AB、CD相交于点E、F,EG平分∠BEF交直线CD于点G,若∠1=∠BEF,若EF=3,则FG为()A.4B.3C.5D.1.510.如图,一个长、宽、高分别为6、3、2的长方体,一只蚂蚁从下底面长边中点P处爬向顶点Q处,在所有爬行路线中,最短的一条长度是()A.B.3C.2D.二.填空题(共6小题,满分24分,每小题4分)11.计算:(12a3+6a2﹣3a)÷3a=12.“等腰三角形两腰上的高相等”的逆命题是.13.超速行驶是交通事故频发的主要原因之一.交警部门统计某日7:00~9:00经过高速公路某测速点的汽车的速度,得到如下频数分布折线图,若该路段汽车限速为110km/h,则超速行驶的汽车有辆.14.如图,在△ABC中,AB,BC边的垂直平分线分别交AC于点E,D,若AC=15cm,则△EBD的周长为cm.15.如图,在四边形ABCD中,AB=AD=4,∠A=60°,BC=,CD=8,则四边形ABCD的面积为.16.如图,Rt△ABC中,∠B=90°,AB=3cm,BC=4cm,将△ABC折叠,使点C与A重合,得折痕DE,则△ABE的周长等于cm.三.解答题(共9小题,满分86分)17.(16分)数学上,我们把称作二阶行列式,规定它的运算法则为=ad﹣bc,例:=2×5﹣3×4=﹣2,请根据阅读理解上述材料解答下列各题:(1)=;(2)计算:++……+;(3)已知实数a,b满足行列式例=5,求代数式的值.18.(8分)先化简,再求值:(x+3)(x﹣3)+x(4﹣x),其中x=.19.(8分)分解因式:(1)﹣x2+4xy﹣4y2;(2)a3b﹣ab.20.(8分)已知,如图,AB=AD,∠B=∠D,∠1=∠2=60°.(1)求证:△ADE≌△ABC;(2)求证:AE=CE.21.(8分)为了了解某地区初二学生课余时间活动安排情况,现对学生课余时间活动安排进行调查,根据调查的部分数据绘制成如图所示的扇形统计图和条形统计图(均不完整),请根据图中所给信息解答下列问题:(1)求调查中,一共抽查了多少名初二同学?(2)求所调查的初二学生课余时间用于安排“读书”活动人数,并补全条形统计图;(3)如果该地区现有初二学生12000人,那么利用课余时间参加“体育”锻炼活动的大约有多少人?22.(8分)如图,两条公路相交于点O,在交角侧有A、B两个村庄,现在要建一加油站P,使得加油站P到两条公路的距离和到A、B两个村庄的距离相等,请画出加油站P的位置.(用尺规作图,保留作图痕迹,不写作法和证明过程).23.(8分)如图,每个小正方形的边长为1,四边形ABCD的每个顶点都在格点上,且AB =,AD=.(1)请在图中补齐四边形ABCD,并求其面积;(2)判断∠BCD是直角吗?请说明理由;(3)直接写出点C到BD的距离为.24.(10分)任何一个整数N,可以用一个多项式来表示:N==a n×10n+a n×10n﹣1+…+a1×10+a0.﹣1例如:325=3×102+2×10+5.已知是一个三位数.(1)可以用一个多项式来表示为.(2)小明猜想:“与的差一定是9的倍数”,请你帮助小明说明理由.(3)在一次游戏中,小明算出,,,与这5个数和是3470,请你求出这个三位数.25.(12分)在平面直角坐标系中,四边形AOBC是矩形,点O(0,0),点A(6,0),点B(0,8).以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,点O,B,C 的对应点分别为D,E,F,记旋转角为α(0°<α<90°).(Ⅰ)如图①,当α=30°时,求点D的坐标;(Ⅱ)如图②,当点E落在AC的延长线上时,求点D的坐标;(Ⅲ)当点D落在线段OC上时,求点E的坐标(直接写出结果即可).参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.解:∵a2=4,b2=9,∴a=±2,b=±3,∵ab<0,∴a=2,则b=﹣3,a=﹣2,b=3,则a﹣b的值为:2﹣(﹣3)=5或﹣2﹣3=﹣5.故选:B.2.解:A、(a4b)3=a12b3,故此选项错误;B、﹣2b(4a﹣1)=﹣8ab+2b,故此选项错误;C、a×a3+(a2)2=2a4,正确;D、(a﹣1)2=a2﹣2a+1,故此选项错误;故选:C.3.解:“早”字出现的频率是:=,故选:D.4.解:设已知角为∠O,以顶点O为圆心,任意长为半径画弧,交角的两边分别为A,B 两点;画一条射线b,端点为M;以M为圆心,OA长为半径画弧,交射线b于C点;以C为圆心,AB长为半径画弧,两弧交于点D;作射线MD.则∠COD就是所求的角.由以上过程不难看出两个三角形中有三条边对应相等,∴证明全等的方法是SSS.故选:D.5.解:①面积相等的两个三角形不一定重合,所以不一定全等,故此选项是假命题;②角应相等的两个三角形,边不一定相等,两三角形也不一定全等;故此选项是假命题;③全等三角形的周长相等,根据全等三角形性质是正确的,故此选项正确,是真命题;④有两边及其中一边的对角对应相等的两个三角形,满足SSA时不能证明三角形全等的,故此选项是假命题,故假命题有3个,故选:C.6.解:由3<4,得﹣4<﹣<﹣3,﹣1<3﹣<0,故选:C.7.解:∵AD是中线,AB=13,BC=10,∴BD=BC=5.∵52+122=132,即BD2+AD2=AB2,∴△ABD是直角三角形,则AD⊥BC,又∵BD=CD,∴AC=AB=13,∴△ABC的形状是等腰三角形,故选:C.8.解:∵大正方形的面积13,小正方形的面积是1,∴四个直角三角形的面积和是13﹣1=12,即4×ab=12,即2ab=12,a2+b2=13,∴(a+b)2=13+12=25.故选:B.9.解:∵EG平分∠BEF,∴∠GEB=∠GEF,∵∠1=∠BEF,∴CD∥AB,∴∠EGF=∠GEB,∴∠GEF=∠EGF,∴△EFG是等腰三角形,∴FG=EF=3,故选:B.10.解:如图①,把我们所看到的前面和上面组成一个平面,则这个矩形的边长为6和5,∴PQ==,如图②,把我们所看到的前面和右面组成一个长方形,则这个矩形的边长为9和2,∴PQ==2,∵<2,∴在所有爬行路线中,最短的一条长度是,故选:A.二.填空题(共6小题,满分24分,每小题4分)11.解:原式=4a2+2a﹣1.12.解:命题的条件是“一个三角形是等腰三角形”,结论是“两腰上的高相等”.将条件和结论互换得逆命题为:如果一个三角形两边上的高相等,那么这个三角形是等腰三角形.13.解:读图可知:超过限速110km/h的有60+20=80(辆).故答案为:80.14.解:∵AB,BC边的垂直平分线分别交AC于点E,D,∴AE=BE,BD=CD,∵△EBD 的周长=BE +DE +BD =AE +DE +CD =AC =15cm , 故答案为:15. 15.解:连接BD .∵AD =AB =4,∠A =60°, ∴△ABD 是等边三角形, ∴BD =AD =4, ∵BC =4,CD =8,∴BC 2=BD 2+CD 2, ∴∠BDC =90°,∴S 四边形ABCD =S △ABD +S △BDC =×42+×4×8=4+16,故答案为4+16.16.解:由折叠的性质知,AE =CE ,∴△ABE 的周长=AB +BE +AE =AB +BE +CE =AB +BC =3+4=7cm . 故答案为:7.三.解答题(共9小题,满分86分)17.解:(1)根据题中的新定义得:原式=﹣6×﹣3×4=﹣3﹣12=﹣15; 故答案为:﹣15;(2)根据题中的新定义得:原式=1×4﹣2×3+5×8﹣6×7+…+97×100﹣98×99 =4﹣6+40﹣42+…+9700﹣9702 =﹣2﹣2…﹣2 =﹣2×25 =﹣50;(3)已知等式整理得:a (a ﹣1)﹣(a 2+b )=a 2﹣a +a 2+b =﹣a +b =5,即a ﹣b =﹣5, 则原式===(a ﹣b )+2=﹣×5+2=﹣.18.解:原式=x 2﹣9+4x ﹣x 2 =4x ﹣9,当x=时,原式=1﹣9=﹣8.19.解:(1)原式=﹣(x2﹣4xy+4y2)=﹣(x﹣2y)2;(2)原式=ab(a2﹣1)=ab(a﹣1)(a+1).20.(1)证明:∵∠1=∠2,∴∠1+∠BAE=∠2+∠BAE,即∠DAE=∠BAC,在△ABC和△ADE中,,∴△ABC≌△ADE(ASA);(2)证明:由(1)得△ABC≌△ADE,∴AE=AC,∵∠2=60°,∴△ACE是等边三角形,∴AE=CE.21.解:(1)50÷20%=250(名),即调查中,一共抽查了250名初二同学;(2)安排“体育”活动的学生有:250×28%=70(名),安排“读书”活动的学生有:250﹣70﹣50﹣30=100(名),补全的条形统计图如右图所示;(3)12000×28%=3360(人),即利用课余时间参加“体育”锻炼活动的大约有3360人.22.解:如图,点P即为所求.23.解:(1)如图所示,四边形ABCD即为所求,其面积为5×5﹣×5×1﹣×2×4﹣×1×4﹣×(1+3)×1=14;(2)是,∵BC2=22+42=20,CD2=12+22=5,BD2=32+42=25,∴BC2+CD2=BD2,∴△BCD是直角三角形,且∠BCD=90°,(3)设点C到BD的距离为d,由(2)知,BC=2,CD=,BD=5,=BC•CD=BD•d,根据S△BCD则d===2.故答案为:2.24.解:(1)可以用一个多项式来表示为100a+10b+c.故答案为:100a+10b+c;(2)∵﹣=100a+10b+c﹣(100c+10b+a)=99(a﹣c)=9×11(a﹣c),∴与的差一定是9的倍数;(3)∵+++++=3470+,由已知条件可得+++++=100a+10b+c+100a+10c+b+100b+10a+c+100c+10a+b+100b+10c+a+100c+10b+a =222a+222b+222c=222(a+b+c),即222(a+b+c)=222×15+140+,是个三位数a+b+c至少从16开始,经尝试发现,只有a+b+c=19 满足条件,此时=748,∴这个三位数为748.25.解:(I)过点D作DG⊥x轴于G,如图①所示:∵点A(6,0),点B(0,8).∴OA=6,OB=8,∵以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,∴AD=AO=6,α=∠OAD=30°,DE=OB=8,在Rt△ADG中,DG=AD=3,AG=DG=3,∴OG=OA﹣AG=6﹣3,∴点D的坐标为(6﹣3,3);(Ⅱ)过点D作DG⊥x轴于G,DH⊥AE于H,如图②所示:则GA=DH,HA=DG,∵DE=OB=8,∠ADE=∠AOB=90°,∴AE===10,∵AE×DH=AD×DE,∴DH===,∴OG=OA﹣GA=OA﹣DH=6﹣=,DG===,∴点D的坐标为(,);(Ⅲ)连接AE,作EG⊥x轴于G,如图③所示:由旋转的性质得:∠DAE=∠AOC,AD=AO,∴∠AOC=∠ADO,∴∠DAE=∠ADO,∴AE∥OC,∴∠GAE=∠AOD,∴∠DAE=∠GAE,在△AEG和△AED中,,∴△AEG≌△AED(AAS),∴AG=AD=6,EG=ED=8,∴OG=OA+AG=12,∴点E的坐标为(12,8).。
2020-2021学年八年级数学上学期期末测试卷一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.4的平方根是()A.±2B.﹣2C.2D.162.在实数0,2,,3中,最大的是()A.0B.2C.D.33.如图,数轴上有A,B,C,D四个点,其中表示绝对值相等的两个实数的点是()A.点A与点D B.点B 与点D C.点B与点C D.点C与点D4.“I am a good student.”这句话中,字母“a”出现的频率是()A.2B.C.D.5.下列计算正确的是()A.33=9B.(a﹣b)2=a2﹣b2C.(a3)4=a12D.a2•a3=a66.下列各数中,可以用来证明命题“任何偶数都是8的整数倍”是假命题的反例是()A.17B.16C.8D.47.因式分解x2y﹣4y的结果是()A.y(x2﹣4)B.y(x﹣2)2C.y(x+4)(x﹣4)D.y(x+2)(x﹣2)8.下列说法中正确的个数有()①0是绝对值最小的有理数;②无限小数是无理数;③数轴上原点两侧的数互为相反数;④a,0,都是单项式;⑤﹣3x2y+4x﹣1是关于x,y的三次三项式,常数项是﹣1.A.2个B.3个C.4个D.5个9.下列条件中,不能判定△ABC是等腰三角形的是()A.a=3,b=3,c=4B.a:b:c=2:3:4C.∠B=50°,∠C=80°D.∠A:∠B:∠C=1:1:210.国家八纵八横高铁网络规划中“京昆通道”的重要组成部分──西成高铁于2017年12月6日开通运营,西安至成都列车运行时间由14小时缩短为3.5小时.张明和王强相约从成都坐高铁到西安旅游.如图,张明家(记作A)在成都东站(记作B)南偏西30°的方向且相距4000米,王强家(记作C)在成都东站南偏东60°的方向且相距3000米,则张明家与王强家的距离为()A.6000米B.5000米C.4000米D.2000米11.如图,给出下列四个条件,AB=DE,BC=EF,∠B=∠E,∠C=∠F,从中任选三个条件能使△ABC≌△DEF的共有()A.1组B.2组C.3组D.4组12.已知(x﹣2015)2+(x﹣2017)2=34,则(x﹣2016)2的值是()A.4B.8C.12D.16二、填空题(本大题共4小题,每小题4分,共16分.请将最后答案直接写在相应题中的横线上.)13.因式分解:x2﹣6x+9=.14.如图△ABC≌△FED,∠A=30°,∠B=80°,则∠EDF=.15.小丽在计算一个二项式的平方时,得到正确结果m2﹣10mn+■,但最后一项不慎被墨水污染,这一项应是.16.如图是放在地面上的一个长方体盒子,其中AB=18cm,BC=12cm,BF=10cm,点M 在棱AB上,且AM=6cm,点N是FG的中点,一只蚂蚁要沿着长方体盒子的表面从点M爬行到点N,它需要爬行的最短路程为.三、解答题(本大题共6小题,共56分)17.(9分)计算:(1)+×(﹣)2(2)x3•x6+x20÷x10﹣x n+8÷x n﹣1(3)(a2b+2ab2﹣b3)÷b﹣(a+b)(a﹣b).18.(8分)已知多项式A=(x+1)2﹣(x2﹣4y).(1)化简多项式A;(2)若x+2y=1,求A的值.19.(8分)如图,在△ABC中,∠A>∠B.(1)作边AB的垂直平分线DE,与AB,BC分别相交于点D,E(用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE,若∠B=50°,求∠AEC的度数.20.(9分)中国共产党与世界政党高层对话会于2017年12月3日在北京落下帷幕.某社区为了解居民对此次大会的关注程度,在全社区范围内随机抽取部分居民进行问卷调查,根据调查结果,把居民对大会的关注程度分成“淡薄”、“一般”、“较强”、“很强”四个层次,并绘制成如下两幅尚不完整的统计图.根据以上信息,解答下列问题:(1)这次调查一共抽取了多少120名居民?(2)关注程度为“很强”的居民占被调查居民总数的百分比是多少?(3)请将条形统计图补充完整.21.(10分)仔细阅读下面例题,解答问题:例题:已知二次三项式x2﹣4x+m有一个因式是(x+3),求另一个因式以及m的值.解:设另一个因式为(x+n),得x2﹣4x+m=(x+3)(x+n)则x2﹣4x+m=x2+(n+3)x+3n∴.解得:n=﹣7,m=﹣21∴另一个因式为(x﹣7),m的值为﹣21问题:仿照以上方法解答下面问题:已知二次三项式2x2+3x﹣k有一个因式是(2x﹣5),求另一个因式以及k的值.22.(12分)如图①,点M为锐角三角形ABC内任意一点,连接AM、BM、CM.以AB 为一边向外作等边三角形△ABE,将BM绕点B逆时针旋转60°得到BN,连接EN.(1)求证:△AMB≌△ENB;(2)若AM+BM+CM的值最小,则称点M为△ABC的费马点.若点M为△ABC的费马点,试求此时∠AMB、∠BMC、∠CMA的度数;(3)小翔受以上启发,得到一个作锐角三角形费马点的简便方法:如图②,分别以△ABC的AB、AC为一边向外作等边△ABE和等边△ACF,连接CE、BF,设交点为M,则点M即为△ABC的费马点.试说明这种作法的依据.参考答案与试题解析一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.4的平方根是()A.±2B.﹣2C.2D.16【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2.故选:A.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2.在实数0,2,,3中,最大的是()A.0B.2C.D.3【分析】根据正负数的大小比较,估算无理数的大小进行判断即可.【解答】解:2<<3,实数0,2,,3中,最大的是3.故选:D.【点评】本题考查了实数的大小比较,要注意无理数的大小范围.3.如图,数轴上有A,B,C,D四个点,其中表示绝对值相等的两个实数的点是()A.点A与点D B.点B 与点D C.点B与点C D.点C与点D【分析】根据互为相反数的绝对值相等,可得答案.【解答】解:|﹣2|=2,|﹣1|=1=|1|,|3|=3,故选:C.【点评】本题考查了实数的性质,利用互为相反数的绝对值相等是解题关键.4.“I am a good student.”这句话中,字母“a”出现的频率是()A.2B.C.D.【分析】首先正确数出这句话中的字母总数,a出现的次数;再根据频率=频数÷总数进行计算.【解答】解:这句话中,15个字母a出现了2次,所以字母“a”出现的频率是.故选:B.【点评】考查了频率的概念以及计算方法:频率=频数÷总数.5.下列计算正确的是()A.33=9B.(a﹣b)2=a2﹣b2C.(a3)4=a12D.a2•a3=a6【分析】直接利用完全平方公式以及幂的乘方运算法则和同底数幂的乘法运算法则计算得出答案.【解答】解:A、33=27,故此选项错误;B、(a﹣b)2=a2﹣2ab+b2,故此选项错误;C、(a3)4=a12,正确;D、a2•a3=a5,故此选项错误;故选:C.【点评】此题主要考查了完全平方公式以及幂的乘方运算和同底数幂的乘法运算等知识,正确掌握运算法则是解题关键.6.下列各数中,可以用来证明命题“任何偶数都是8的整数倍”是假命题的反例是()A.17B.16C.8D.4【分析】根据题意对各选项数据进行验证即可得解.【解答】解:A、17是奇数不是偶数,B、16是偶数,并且是8的2倍,C、8是偶数,并且是8的1倍,D、4是偶数,是8的,所以,不是8的倍数,所以可以用来证明命题“任何偶数都是8的整数倍”是假命题的反例是4.故选:D.【点评】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.7.因式分解x2y﹣4y的结果是()A.y(x2﹣4)B.y(x﹣2)2C.y(x+4)(x﹣4)D.y(x+2)(x﹣2)【分析】此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有2项,可采用平方差公式继续分解.1【解答】解:x2y﹣4y=y(x2﹣4)=y(x+2)(x﹣2).故选:D.【点评】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.8.下列说法中正确的个数有()①0是绝对值最小的有理数;②无限小数是无理数;③数轴上原点两侧的数互为相反数;④a,0,都是单项式;⑤﹣3x2y+4x﹣1是关于x,y的三次三项式,常数项是﹣1.A.2个B.3个C.4个D.5个【分析】根据实数的分类、单项式和多项式的定义进行选择即可.【解答】解:①0是绝对值最小的有理数,正确;②无限小数是无理数,错误;③数轴上原点两侧的数互为相反数,错误;④a,0,都是单项式,错误;⑤﹣3x2y+4x﹣1是关于x,y的三次三项式,常数项是﹣1,正确;所以正确的有①⑤,共2个;故选:A.【点评】本题考查了实数、单项式以及多项式,掌握实数的分类、单项式和多项式的定义是解题的关键.9.下列条件中,不能判定△ABC是等腰三角形的是()A.a=3,b=3,c=4B.a:b:c=2:3:4C.∠B=50°,∠C=80°D.∠A:∠B:∠C=1:1:2【分析】由等腰三角形的定义与等角对等边的判定定理,即可求得答案.【解答】解:A、∵a=3,b=3,c=4,∴a=b,∴△ABC是等腰三角形;B、∵a:b:c=2:3:4∴a≠b≠c,∴△ABC不是等腰三角形;C、∵∠B=50°,∠C=80°,∴∠A=180°﹣∠B﹣∠C=50°,∴∠A=∠B,∴AC=BC,∴△ABC是等腰三角形;D、∵∠A:∠B:∠C=1:1:2,∵∠A=∠B,∴AC=BC,∴△ABC是等腰三角形.故选:B.【点评】此题考查了等腰三角形的判定.此题比较简单,注意掌握等腰三角形的定义与等角对等边的判定定理是解题的关键.10.国家八纵八横高铁网络规划中“京昆通道”的重要组成部分──西成高铁于2017年12月6日开通运营,西安至成都列车运行时间由14小时缩短为3.5小时.张明和王强相约从成都坐高铁到西安旅游.如图,张明家(记作A)在成都东站(记作B)南偏西30°的方向且相距4000米,王强家(记作C)在成都东站南偏东60°的方向且相距3000米,则张明家与王强家的距离为()A.6000米B.5000米C.4000米D.2000米【分析】根据题意可得∠ABC=90°,AB=4000米,BC=3000米,然后利用勾股定理求得AC.【解答】解:如图,连接AC.依题意得:∠ABC=90°,AB=4000米,BC=3000米,则由勾股定理,得AC===5000(米).故选:B.【点评】本题考查勾股定理在实际生活中的运用,关键是得出两车行驶的路程和两车的距离构成的是直角三角形,然后根据勾股定理可求出解.11.如图,给出下列四个条件,AB=DE,BC=EF,∠B=∠E,∠C=∠F,从中任选三个条件能使△ABC≌△DEF的共有()A.1组B.2组C.3组D.4组【分析】要使△ABC≌△DEF的条件必须满足SSS、SAS、ASA、AAS,可据此进行判断.【解答】解:第①组AB=DE,∠B=∠E,∠C=∠F,满足AAS,能证明△ABC≌△DEF.第②组AB=DE,∠B=∠E,BC=EF满足SAS,能证明△ABC≌△DEF.第③组∠B=∠E,BC=EF,∠C=∠F满足ASA,能证明△ABC≌△DEF.所以有3组能证明△ABC≌△DEF.故选:C.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.12.已知(x﹣2015)2+(x﹣2017)2=34,则(x﹣2016)2的值是()A.4B.8C.12D.16【分析】先把(x﹣2015)2+(x﹣2017)2=34变形为(x﹣2016+1)2+(x﹣2016﹣1)2=34,把(x﹣2016)看作一个整体,根据完全平方公式展开,得到关于(x﹣2016)2的方程,解方程即可求解.【解答】解:∵(x﹣2015)2+(x﹣2017)2=34,∴(x﹣2016+1)2+(x﹣2016﹣1)2=34,(x﹣2016)2+2(x﹣2016)+1+(x﹣2016)2﹣2(x﹣2016)+1=34,2(x﹣2016)2+2=34,2(x﹣2016)2=32,(x﹣2016)2=16.故选:D.【点评】考查了完全平方公式,本题关键是把(x﹣2015)2+(x﹣2017)2=34变形为(x ﹣2016+1)2+(x﹣2016﹣1)2=34,注意整体思想的应用.二、填空题(本大题共4小题,每小题4分,共16分.请将最后答案直接写在相应题中的横线上.)13.因式分解:x2﹣6x+9=(x﹣3)2.【分析】直接运用完全平方公式进行因式分解即可.【解答】解:x2﹣6x+9=(x﹣3)2.【点评】本题考查了公式法分解因式,熟记完全平方公式的结构特点是解题的关键.14.如图△ABC≌△FED,∠A=30°,∠B=80°,则∠EDF=70°.【分析】根据三角形内角和定理求出∠ACB,根据全等三角形的性质解答.【解答】解:∵∠A=30°,∠B=80°,∴∠ACB=180°﹣30°﹣80°=70°,∵△ABC≌△FED,∴∠EDF=∠ACB=70°,故答案为:70°.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应角相等是解题的关键.15.小丽在计算一个二项式的平方时,得到正确结果m2﹣10mn+■,但最后一项不慎被墨水污染,这一项应是25n2.【分析】根据m2﹣10mn+■=(m﹣5n)2求出即可.【解答】解:∵m2﹣10mn+■是一个二项式的平方,∴■=(5n)2=25n2,故答案为:25n2.【点评】本题考查了完全平方公式的应用,能熟记公式的特点是解此题的关键,注意:完全平方公式为:①(a+b)2=a2+2ab+b2,②(a﹣b)2=a2﹣2ab+b2.16.如图是放在地面上的一个长方体盒子,其中AB=18cm,BC=12cm,BF=10cm,点M 在棱AB上,且AM=6cm,点N是FG的中点,一只蚂蚁要沿着长方体盒子的表面从点M爬行到点N,它需要爬行的最短路程为20cm.【分析】利用平面展开图有两种情况,画出图形利用勾股定理求出MN的长即可.【解答】解:如图1,∵AB=18cm,BC=GF=12cm,BF=10cm,∴BM=18﹣6=12,BN=10+6=16,∴MN==20;如图2,∵AB=18cm,BC=GF=12cm,BF=10cm,∴PM=18﹣6+6=18,NP=10,∴MN=.∵20<2,∴蚂蚁沿长方体表面爬到米粒处的最短距离为20.故答案为:20cm【点评】此题主要考查了平面展开图的最短路径问题和勾股定理的应用,利用展开图有两种情况分析得出是解题关键.三、解答题(本大题共6小题,共56分)17.(9分)计算:(1)+×(﹣)2(2)x3•x6+x20÷x10﹣x n+8÷x n﹣1(3)(a2b+2ab2﹣b3)÷b﹣(a+b)(a﹣b).【分析】(1)根据根式的性质即可求出答案.(2)根据整式的运算法则即可求出答案.(3)根据整式的运算法则即可求出答案.【解答】解:(1)原式==3+1=4(2)原式=x9+x10﹣x9=x10(3)原式=a2+2ab﹣b2﹣(a2﹣b2)=a2+2ab﹣b2﹣a2+b2=2ab【点评】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.18.(8分)已知多项式A=(x+1)2﹣(x2﹣4y).(1)化简多项式A;(2)若x+2y=1,求A的值.【分析】(1)根据整式的混合计算解答即可.(2)把x+2y=1整体代入解答即可.【解答】解:(1)A=(x+1)2﹣(x2﹣4y)=x2+2x+1﹣x2+4y=2x+1+4y;(2)∵x+2y=1,由(1)得:A=2x+1+4y=2(x+2y)+1∴A=2×1+1=3.【点评】此题考查整式的加减,关键是根据整式的混合计算解答.19.(8分)如图,在△ABC中,∠A>∠B.(1)作边AB的垂直平分线DE,与AB,BC分别相交于点D,E(用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE,若∠B=50°,求∠AEC的度数.【分析】(1)利用基本作作图,作线段AB的垂直平分线即可;(2)根据线段的垂直平分线的性质得AE=BE,则∠EAB=∠B=50°,然后根据三角形外角性质计算∠AEC的度数.【解答】解:(1)如图,DE为所作;(2)∵DE是AB的垂直平分线,∴AE=BE,∴∠EAB=∠B=50°,∵∠AEC=∠EAB+∠B∴∠AEC=50°+50°=100°.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).20.(9分)中国共产党与世界政党高层对话会于2017年12月3日在北京落下帷幕.某社区为了解居民对此次大会的关注程度,在全社区范围内随机抽取部分居民进行问卷调查,根据调查结果,把居民对大会的关注程度分成“淡薄”、“一般”、“较强”、“很强”四个层次,并绘制成如下两幅尚不完整的统计图.根据以上信息,解答下列问题:(1)这次调查一共抽取了多少120名居民?(2)关注程度为“很强”的居民占被调查居民总数的百分比是多少?(3)请将条形统计图补充完整.【分析】(1)根据安全意识一般的有18人,所占的百分比是15%,据此即可求得调查的总人数,(2)然后利用百分比的意义求得安全意识为“很强”的居民占被调查居民总数的百分比;(3)利用总人数乘以对应的百分比即可求解;【解答】解:(1)这次调查的居民总数为:18÷15%=120(人);(2)关注程度为“很强”的居民占被调查居民总数的百分比是:.(3)关注程度为“较强”的人数是:120×45%=54(人),补全的条形统计图为:【点评】本题考查扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.21.(10分)仔细阅读下面例题,解答问题:例题:已知二次三项式x2﹣4x+m有一个因式是(x+3),求另一个因式以及m的值.解:设另一个因式为(x+n),得x2﹣4x+m=(x+3)(x+n)则x2﹣4x+m=x2+(n+3)x+3n∴.解得:n=﹣7,m=﹣21∴另一个因式为(x﹣7),m的值为﹣21问题:仿照以上方法解答下面问题:已知二次三项式2x2+3x﹣k有一个因式是(2x﹣5),求另一个因式以及k的值.【分析】根据例题中的已知的两个式子的关系,两个中二次三项式x2﹣4x+m的二次项系数是1,因式是(x+3)的一次项系数也是1,利用待定系数法求出另一个因式.所求的式子2x2+3x﹣k的二次项系数是2,因式是(2x﹣5)的一次项系数是2,则另一个因式的一次项系数一定是1,利用待定系数法,就可以求出另一个因式.【解答】解:设另一个因式为(x+a),得(1分)2x2+3x﹣k=(2x﹣5)(x+a)(2分)则2x2+3x﹣k=2x2+(2a﹣5)x﹣5a∴(6分)解得:a=4,k=20(8分)故另一个因式为(x+4),k的值为20(9分)【点评】正确读懂例题,理解如何利用待定系数法求解是解本题的关键.22.(12分)如图①,点M为锐角三角形ABC内任意一点,连接AM、BM、CM.以AB 为一边向外作等边三角形△ABE,将BM绕点B逆时针旋转60°得到BN,连接EN.(1)求证:△AMB≌△ENB;(2)若AM+BM+CM的值最小,则称点M为△ABC的费马点.若点M为△ABC的费马点,试求此时∠AMB、∠BMC、∠CMA的度数;(3)小翔受以上启发,得到一个作锐角三角形费马点的简便方法:如图②,分别以△ABC的AB、AC为一边向外作等边△ABE和等边△ACF,连接CE、BF,设交点为M,则点M即为△ABC的费马点.试说明这种作法的依据.【分析】(1)结合等边三角形的性质,根据SAS可证△AMB≌△ENB;(2)连接MN,由(1)的结论证明△BMN为等边三角形,所以BM=MN,即AM+BM+CM=EN+MN+CM,所以当E、N、M、C四点共线时,AM+BM+CM的值最小,从而可求此时∠AMB、∠BMC、∠CMA的度数;(3)根据(2)中费马点的定义,又△ABC的费马点在线段EC上,同理也在线段BF上.因此线段EC与BF的交点即为△ABC的费马点.【解答】解:(1)证明:∵△ABE为等边三角形,∴AB=BE,∠ABE=60°.而∠MBN=60°,∴∠ABM=∠EBN.在△AMB与△ENB中,∵,∴△AMB≌△ENB(SAS).(2)连接MN.由(1)知,AM=EN.∵∠MBN=60°,BM=BN,∴△BMN为等边三角形.∴BM=MN.∴AM+BM+CM=EN+MN+CM.∴当E、N、M、C四点共线时,AM+BM+CM的值最小.此时,∠BMC=180°﹣∠NMB=120°;∠AMB=∠ENB=180°﹣∠BNM=120°;∠AMC=360°﹣∠BMC﹣∠AMB=120°.(3)由(2)知,△ABC的费马点在线段EC上,同理也在线段BF上.因此线段EC与BF的交点即为△ABC的费马点.【点评】本题考查全等三角形的判定与性质以及等边三角形的性质,是一道综合性的题目难度很大.1、三人行,必有我师。
2020-2021学年八年级数学上册期末测试卷一.选择题(共12小题)1.下列四个手机APP图标中,是轴对称图形的是()A.B.C.D.2.下列计算正确的是()A.a3+a3=2a6B.a3•a2=a6C.a6÷a2=a3D.(a3)2=a6 3.下列图形中具有稳定性的是()A.等腰三角形B.长方形C.正方形D.平行四边形4.下列长度的三根木棒能组成三角形的是()A.1,2,4 B.2,2,4 C.2,3,4 D.2,3,6 5.分式中的m、n的值同时扩大到原来的5倍,则此分式的值()A.是原来的5倍B.是原来的C.不变D.是原来的10倍6.若等腰三角形的两边长分别是2和6,则这个三角形的周长是()A.14 B.10 C.14或10 D.以上都不对7.已知x+y=5,xy=6,则x2+y2的值是()A.1 B.13 C.17 D.258.如果一个多边形的每个内角的度数都是108°,那么这个多边形的边数是()A.3 B.4 C.5 D.69.一个三角形的三内角的度数的比为1:1:2,则此三角形()A.锐角三角形B.钝角三角形C.等边三角形D.等腰直角三角形10.已知x2+16x+k是完全平方式,则常数k等于()A.64 B.32 C.16 D.811.计算的结果是()A.B.C.D.12.如图,在△ABC中,∠B与∠C的平分线交于点O,过点O作DE∥BC,分别交AB、AC 于点D、E.若AB=5,AC=4,则△ADE的周长为()A.9 B.5 C.17 D.20二.填空题(共4小题)13.因式分解:a2﹣4=.14.0.000608用科学记数法表示为.15.若点A(2,m)关于y轴的对称点是B(n,5),则mn的值是.16.如图,在△ABC中,∠BAC=50°,AD为∠BAC的平分线,DE⊥AB,DF⊥AC,则∠DEF =.三.解答题(共6小题)17.计算(1)(2)18.因式分解:(1)x3﹣25x(2)x2y﹣4xy2+4y319.解下列分式方程.(1)(2).20.如图,在平面直角坐标系中,A(﹣1,2),B(1,1),C(﹣4,﹣1)(1)在图中作出△ABC关于x轴对称的△A1B1C1.(2)写出点A1,B1,C1的坐标(直接写答案).A1=B1=C1=.21.先化简,再求值:,其中a=2.22.如图1,在△ABC中,AB=AC,点D是BC边上一点(不与点B,C重合),以AD为边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.设∠BAC=α,∠BCE=β.(1)求证:△CAE≌△BAD;(2)探究:当点D在BC边上移动时,α、β之间有怎样的数量关系?请说明理由;(3)如图2,若∠BAC=90°,CE与BA的延长线交于点F.求证:EF=DC.参考答案与试题解析一.选择题(共12小题)1.下列四个手机APP图标中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:C中的图形是轴对称图形,故选:C.2.下列计算正确的是()A.a3+a3=2a6B.a3•a2=a6C.a6÷a2=a3D.(a3)2=a6【分析】根据合并同类项,可判断A;根据同底数幂的乘法,可判断B;根据同底数幂的除法,可判断C;根据幂的乘方,可判断D.【解答】解:A、系数相加字母部分不变,故A错误;B、底数不变指数相加,故B错误;C、底数不变指数相减,故C错误;D、底数不变指数相乘,故D正确;故选:D.3.下列图形中具有稳定性的是()A.等腰三角形B.长方形C.正方形D.平行四边形【分析】根据三角形具有稳定性解答.【解答】解:等腰三角形,长方形,正方形,平行四边形中只有等腰三角形具有稳定性.故选:A.4.下列长度的三根木棒能组成三角形的是()A.1,2,4 B.2,2,4 C.2,3,4 D.2,3,6【分析】根据三角形的三边关系“任意两边之和大于第三边”,进行分析.【解答】解:A、1+2<4,不能构成三角形;B、2+2=4,不能构成三角形;C、2+3>4,能够组成三角形;D、2+3<6,不能组成三角形.故选:C.5.分式中的m、n的值同时扩大到原来的5倍,则此分式的值()A.是原来的5倍B.是原来的C.不变D.是原来的10倍【分析】根据分式的基本性质进行计算,判断即可.【解答】解:=,∴把分式中的m、n的值同时扩大到原来的5倍,则分式的值不变,故选:C.6.若等腰三角形的两边长分别是2和6,则这个三角形的周长是()A.14 B.10 C.14或10 D.以上都不对【分析】分腰长为2和腰长为6两种情况,结合三角形三边关系进行讨论即可求得答案.【解答】解:当腰长为2时,则三角形三边长为2、2、6,此时2+2<6,不满足三角形三边关系,故该种情况不存在;当腰长为6时,则三角形三边长为6、6、2,满足三角形三边关系,此时三角形的周长为6+6+2=14,综上可知该三角形的周长为14.故选:A.7.已知x+y=5,xy=6,则x2+y2的值是()A.1 B.13 C.17 D.25【分析】将x+y=5两边平方,利用完全平方公式化简,把xy的值代入计算,即可求出所求式子的值.【解答】解:将x+y=5两边平方得:(x+y)2=x2+2xy+y2=25,将xy=6代入得:x2+12+y2=25,则x2+y2=13.故选:B.8.如果一个多边形的每个内角的度数都是108°,那么这个多边形的边数是()A.3 B.4 C.5 D.6【分析】首先计算出多边形的外角的度数,再根据外角和÷外角度数=边数可得答案.【解答】解:∵多边形的每个内角都是108°,∴每个外角是180°﹣108°=72°,∴这个多边形的边数是360°÷72°=5,∴这个多边形是五边形,故选:C.9.一个三角形的三内角的度数的比为1:1:2,则此三角形()A.锐角三角形B.钝角三角形C.等边三角形D.等腰直角三角形【分析】设这三个内角度数分别为x、x、2x,根据三角形内角和定理列出方程,解方程即可.【解答】解:设这三个内角度数分别为x、x、2x,则x+x+2x=180°,解得x=45°,∴2x=90°,∴这个三角形是等腰直角三角形,故选:D.10.已知x2+16x+k是完全平方式,则常数k等于()A.64 B.32 C.16 D.8【分析】根据乘积项先确定出这两个数是x和8,再根据完全平方公式的结构特点求出8的平方即可.【解答】解:∵16x=2×x×8,∴这两个数是x、8,∴k=82=64.故选:A.11.计算的结果是()A.B.C.D.【分析】分式的除法计算首先要转化为乘法运算,然后对式子进行化简,化简的方法就是把分子、分母进行分解因式,然后进行约分.分式的乘除运算实际就是分式的约分.【解答】解:原式==;故选:C.12.如图,在△ABC中,∠B与∠C的平分线交于点O,过点O作DE∥BC,分别交AB、AC 于点D、E.若AB=5,AC=4,则△ADE的周长为()A.9 B.5 C.17 D.20【分析】先根据角平分线的定义及平行线的性质证明△BDO和△CEO是等腰三角形,再由等腰三角形的性质得BD=DO,CE=EO,则△ADE的周长=AB+AC,从而得出答案.【解答】解:∵BO平分∠ABC,∴∠DBO=∠CBO,∵DE∥BC,∴∠CBO=∠DOB,∴∠DBO=∠DOB,∴BD=DO,同理OE=EC,∴△ADE的周长=AD+AE+ED=AB+AC=5+4=9.故选:A.二.填空题(共4小题)13.因式分解:a2﹣4=(a+2)(a﹣2).【分析】直接利用平方差公式分解因式得出即可.【解答】解:a2﹣4=(a+2)(a﹣2).故答案为:(a+2)(a﹣2).14.0.000608用科学记数法表示为 6.08×10﹣4.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000608用科学记数法表示为6.08×10﹣4,故答案为6.08×10﹣4.15.若点A(2,m)关于y轴的对称点是B(n,5),则mn的值是﹣10 .【分析】关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得答案.【解答】解:由题意,得n=﹣2,m=5.mn=﹣2×5=﹣10,故答案为:﹣10.16.如图,在△ABC中,∠BAC=50°,AD为∠BAC的平分线,DE⊥AB,DF⊥AC,则∠DEF =25°.【分析】根据四边形的内角和定理求出∠EDF,再根据角平分线上的点到角的两边距离相等可得DE=DF,然后根据等腰三角形两底角相等列式计算即可得解.【解答】解:∵DE⊥AB,DF⊥AC,∠BAC=50°,∴∠EDF=360°﹣50°﹣90°×2=130°,∵AD为∠BAC的平分线,DE⊥AB,DF⊥AC,∴DE=DF,∴∠DEF=(180°﹣130°)=25°.故答案为:25°.三.解答题(共6小题)17.计算(1)(2)【分析】(1)先把除法运算化为乘法运算,然后约分即可;(2)先把分母化为同分母,然后进行同分母的加减运算.【解答】解:(1)原式==;(2)原式====1.18.因式分解:(1)x3﹣25x(2)x2y﹣4xy2+4y3【分析】(1)先提公因式x,再利用平方差进行分解即可;(2)先提公因式y,再利用完全平方进行分解即可.【解答】解:(1)原式=x(x2﹣25)=x(x+5)(x﹣5);(2)原式=y(x2﹣4xy+4y2)=y(x﹣2y)2.19.解下列分式方程.(1)(2).【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:3(x﹣5)=2x,去括号得:3x﹣15=2x,移项得:3x﹣2x=15,解得:x=15,检验:当x=15时,x(x﹣5)≠0,则原分式方程的解为x=15;(2)去分母得:3(5x﹣4)+3(x﹣2)=4x+10,去括号得:15x﹣12+3x﹣6﹣4x=10,移项合并得:14x=28,解得:x=2,检验:当x=2时,3(x﹣2)=0,则原分式方程无解.20.如图,在平面直角坐标系中,A(﹣1,2),B(1,1),C(﹣4,﹣1)(1)在图中作出△ABC关于x轴对称的△A1B1C1.(2)写出点A1,B1,C1的坐标(直接写答案).A1=(﹣1,﹣2)B1=(1,﹣1)C1=(﹣4,1).【分析】(1)分别作出点A、B、C关于x轴的对称点,再首尾顺次连接可得;(2)根据(1)中所作图形可得.【解答】解:(1)如图所示,△A1B1C1即为所求.(2)由图可知,A1(﹣1,﹣2),B1(1,﹣1),C1(﹣4,1),故答案为:(﹣1,﹣2)、(1,﹣1)、(﹣4,1).21.先化简,再求值:,其中a=2.【分析】由(a+b)c=ab+bc知,运用分配律可约去各个分式的分母,使计算简便.【解答】解:原式=3(a+1)﹣(a﹣1)=2a+4;当a=2时,原式=8.22.如图1,在△ABC中,AB=AC,点D是BC边上一点(不与点B,C重合),以AD为边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.设∠BAC=α,∠BCE=β.(1)求证:△CAE≌△BAD;(2)探究:当点D在BC边上移动时,α、β之间有怎样的数量关系?请说明理由;(3)如图2,若∠BAC=90°,CE与BA的延长线交于点F.求证:EF=DC.【分析】(1)根据SAS证明△BAD≌△CAE即可;(2)结论:α+β=180°.利用全等三角形的性质,三角形的内角和定理即可证明;(3)想办法证明CB=CF,再利用(1)中结论即可解决问题.【解答】(1)证明:∵∠DAE=∠BAC,∴∠DAE﹣∠DAC=∠BAC﹣∠DAC,∴∠CAE=∠BAD.∵AD=AE,AC=AB,∴△CAE≌△BAD(SAS).(2)解:α+β=180°,理由如下:由△CAE≌△BAD,∴∠ACE=∠B.∵AB=AC,∴∠B=∠ACB.∴∠ACE=∠B=∠ACB.∴∠BCE=β=2∠B,在△ABC中,∠BAC=α=180°﹣2∠B.∴α+β=180°.(3)证明:由(1)知,△CAE≌△BAD,∴CE=BD.∵∠BAC=90°,AB=AC,∴∠B=∠ACB=45°,由(2)得,∠BCF+∠BAC=180°.∴∠BCF=90°.∴∠F=∠B=45°,∴CF=CB.∴CF﹣CE=CB﹣BD.∴EF=DC.1、三人行,必有我师。
2020-2021学年华师大第一学期期末测试卷01八年级数学一、选择题(本大题共12小题,共48.0分)1.以长度分别为下列各组数的线段为边,其中能构成直角三角形的是( )A .1,2,3B .2,4,4C .5,12,15D .3,4 【答案】D【分析】利用勾股定理逆定理进行计算即可.【详解】解:A 、12+22≠32,不能构成直角三角形,故此选项不合题意;B 、22+42≠42,不能构成直角三角形,故此选项不合题意;C 、52+122≠152,不能构成直角三角形,故此选项不合题意;D 、32=42,能构成直角三角形,故此选项符合题意;故选:D .【点睛】此题主要考查了勾股定理逆定理,关键是掌握勾股定理的逆定理将数转化为形,作用是判断一个三角形是不是直角三角形.必须满足较小两边平方的和等于最大边的平方才能做出判断.2.下列各数中,是无理数的是( )A .227 BC D .3.14159 【答案】B【分析】根据无理数的定义可判断答案.【详解】为无理数.故选:B【点睛】本题考查了无理数的定义,要求学生掌握其定义,能正确判断出无理数.3)A.±5B.-5C.5D.0【答案】C【分析】25的算术平方根,即可得出答案.【详解】25的算术平方根故选:C【点睛】本题考查了算术平方根的定义,若一个非负数x的平方等于a,即x2=a,则这个数x叫做a的算术平方根.4.等腰三角形的两条边长分别为9cm和12cm,则这个等腰三角形的周长是( )A.30cm B.33cm C.24cm或21cm D.30cm或33cm【答案】D【分析】由于题中没有指明哪边是底哪边是腰,则应该分两种情况进行分析.【详解】解:①当9为腰时,9+9>12,故此三角形的周长=9+9+12=30;②当12为腰时,9+12>12,故此三角形的周长=9+12+12=33.故选D.【点睛】本题考查的是等腰三角形的性质和三边关系,解答此题时注意分类讨论,不要漏解.5.如图,已知△ABC≌△DAE,BC=2,DE=5,则CE的长为().A .2B .2.5C .3D .3.5【答案】C【分析】 依据全等三角形的性质及等量代换即可求出.【详解】解:∵△ABC ≌△DAE ,∴AE=BC =2,AC=DE =5,∴CE=AC−AE =3.故故:C .【点睛】找到全等三角形的对应边是关键.6.下列运算正确的是( )A .236x x x ⋅=B .824x x x ÷=C .()2224x x =D .()32626x x = 【答案】C【分析】根据同底数幂的乘、除法法则,幂的乘方与积的乘方运算法则分别求解判断.【详解】A 、235x x x ⋅=,故A 错误;B 、826x x x ÷=,故B 错误;C 、()2224x x =,故C 正确;D 、()()332326228x x x ==,故D 错误. 故选:C .【点睛】本题考查了同底数幂的乘除法,幂的乘方与积的乘方,熟练掌握各运算法则是解题的关键.7.如图,在△ABC中,DE是AC的垂直平分线,且分别交BC故AC于点D和E故∠B故60°故∠C故25°,则∠BAD为故 故A.50°B.70°C.75°D.80°【答案】B【解析】分析:根据线段垂直平分线的性质得到DA=DC,根据等腰三角形的性质得到∠DAC=∠C,根据三角形内角和定理求出∠BAC,计算即可.详解:∵DE是AC的垂直平分线,∴DA=DC故∴∠DAC=∠C=25°故∵∠B=60°故∠C=25°故∴∠BAC=95°故∴∠BAD=∠BAC-∠DAC=70°故故选B故点睛:本题考查的是线段垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.8.如图所示,若△ABE≌△ACF ,且AB = 5,AE= 2 ,则EC 的长为()A.2B.3C.5D.2.5【答案】B【分析】根据全等三角形的对应边相等解答即可.【详解】∵△ABE≌△ACF,∴AC=AB=5,∴EC=AC-AE=3,故选B.【点睛】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、全等三角形的对应角相等是解题的关键.9.如图,有一张直角三角形纸片,两直角边AC=6cm,BC=8cm,D为BC边上的一点,现将直角边AC沿直线AD折叠,使AC落在斜边AB上,且与AE重合,则CD的长为()A.2cm B.2.5cm C.3cm D.4cm【答案】C【分析】-,在△BDE中,利用首先由勾股定理求得AB=10,然后由翻折的性质求得BE=4,设DC=x,则BD=8x勾股定理列方程求解即可.【详解】在Rt△ABC中,由勾股定理可知:==,10由折叠的性质可知:DC=DE,AC=AE=6,∠DEA=∠C=90°,∴BE=AB-AE=10-6=4,∠DEB=90°,设DC=x,则BD=8-x,DE=x,在Rt△BED中,由勾股定理得:BE2+DE2=BD2,即42+x2=(8-x)2,解得:x=3,∴CD=3.故选:C.【点睛】本题主要考查了勾股定理与折叠问题,熟练掌握翻折的性质和勾股定理是解决问题的关键.10.下列约分正确的有()(1)22a2a3a2a1ab--=++;(2)()()33a m n1b n m-=-;(3)2xyxy2+=+;(4)a m ab m b+=+A.0个B.2 个C.3?个D.4?个【答案】A【分析】原式各项约分得到结果,即可做出判断.【详解】(1)()()()2a-3a+1a-3a+1a+1=,故此项错误;(2)()()()()3333a m n a m n a=bb n m b m n--=----,故此项错误;(3)2xy xy21xy2xy2++==++,故此项错误;(4)a mb m++不能约分,故此项错误;综上所述,全部错误,答案选A【点睛】此题考查了约分,约分的关键是找出分子分母的公因式.11.如图,在△ABD中,AD=AB,∠DAB=90⁰,在△ACE中,AC=AE,∠EAC=90⁰,CD,BE相交于点F,有下列四个结论:①DC=BE;②∠BDC=∠BEC;③DC⊥BE;④FA平分∠DFE.其中,正确的结论有()A.4个B.3个C.2个D.1个【答案】B【分析】根据∠BAD=∠CAE=90°,结合图形可得∠CAD=∠BAE,再结合AD=AB,AC=AE,利用全等三角形的判定定理可得△CAD≌△EAB,再根据全等三角形的性质即可判断①;根据已知条件,结合图形分析,对②进行分析判断,设AB与CD的交点为O,由(1)中△CAD≌△BAE可得∠ADC=∠ABE,再结合∠AOD=∠BOF,即可得到∠BFO=∠BAD=90°,进而判断③;对④,可通过作△CAD和△BAE的高,结合全等三角形的性质得到两个高之间的关系,再根据角平分线的判定定理即可判断.【详解】∵∠BAD=∠CAE=90°,∴∠BAD+∠BAC=∠CAE+∠BAC,∴∠CAD=∠BAE,又∵AD=AB,AC=AE,∴△CAD≌△EAB(SAS),∴DC=BE.故①正确.∵△CAD≌△EAB,∴∠ADC=∠ABE.设AB与CD的交点为O.∵∠AOD=∠BOF,∠ADC=∠ABE,∴∠BFO=∠BAD=90°,∴CD⊥BE.故③正确.过点A作AP⊥BE于P,AQ⊥CD于Q.∵△CAD ≌△EAB ,AP ⊥BE ,AQ ⊥CD ,∴AP=AQ ,∴AF 平分∠DFE .故④正确.②无法通过已知条件和图形得到.故选B.【点睛】本题考查三角形全等的判定和性质,掌握三角形全等的判定方法和性质应用为解题关键.12.如图,直线AB 与CD 相交于点,60O AOC ∠=,一直角三角尺EOF 的直角顶点与点O 重合,OE 平分AOC ∠,现将三角尺EOF 以每秒3的速度绕点O 顺时针旋转,同时直线CD 也以每秒9的速度绕点O 顺时针旋转,设运动时间为t 秒(040t ≤≤),当CD 平分EOF ∠时,t 的值为( )A .2.5B .30C .2.5或30D .2.5或32.5【答案】D【分析】 分两种情况进行讨论:当转动较小角度的OC 平分EOF ∠时,45COE ∠=︒;当转动较大角度的OC 平分EOF ∠时,45COE ∠=︒;分别依据角的和差关系进行计算即可得到t 的值.【详解】解:分两种情况:①如图OC 平分EOF ∠时,45AOE ∠=︒,即930345t t +︒-=︒,解得 2.5t =;②如图OC 平分EOF ∠时,45COE ∠=︒,即9150345t t -︒-=︒,解得32.5t =.综上所述,当CD 平分EOF ∠时,t 的值为2.5或32.5.故选:D .【点睛】本题考查角的动态问题,理解题意并分析每个运动状态是解题的关键.二、填空题(本大题共4小题,共16.0分)13.如图,已知AC=BD , 要使ABC ≅DCB , 则只需添加一个适合的条件是_________(填一个即可).【答案】AB=DC【分析】已知AC=BD,BC为公共边,故添加AB=DC后可根据“SSS”证明ABC≅DCB.【详解】解:∵BC为公共边,∴BC=CB,又∵AC=BD,∴要使ABC≅DCB,只需添加AB=DC即可故答案为:AB=DC【点睛】本题考察了全等三角形的判断,也可以添加“∠ABC=∠DCB”,根据“SAS”可证明ABC≅DCB.14.比较大小:3.(填“>”、“<”、“=”)【答案】>【分析】首先将3放到根号下,然后比较被开方数的大小即可.【详解】=>,39,98∴>3故答案为:>.【点睛】本题主要考查实数的大小比较,掌握实数大小比较的方法是解题的关键.15.如图点C,D在AB同侧,AD=BC,添加一个条件____________就能使△ABD≌△BAC.【答案】BD=AC或∠BAD=∠ABC【分析】根据全等三角形的判定,满足SAS,SSS即可.解:∵AD=BC,AB=AB,∴只需添加BD=AC或∠BAD=∠ABC,可以利用SSS或SAS证明△ABD≌△BAC;故答案为BD=AC或∠BAD=∠ABC.【点睛】本题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解题的关键.16.如图,CA⊥BC,垂足为C,AC=2Cm,BC=6cm,射线BM⊥BQ,垂足为B,动点P从C点出发以1cm/s的速度沿射线CQ运动,点N为射线BM上一动点,满足PN=AB,随着P点运动而运动,当点P运动_______秒时,△BCA 与点P、N、B为顶点的三角形全等.(2个全等三角形不重合)【答案】0;4;8;12【分析】此题要分两种情况:①当P在线段BC上时,②当P在BQ上,再分别分两种情况AC=BP或AC=BN进行计算即可.【详解】解:①当P在线段BC上,AC=BP时,△ACB≌△PBN,∵AC=2,∴CP=6−2=4,∴点P的运动时间为4÷1=4(秒);②当P在线段BC上,AC=BN时,△ACB≌△NBP,这时BC=PN=6,CP=0,因此时间为0秒;③当P在BQ上,AC=BP时,△ACB≌△PBN,∵AC=2,∴BP=2,∴CP=2+6=8,∴点P的运动时间为8÷1=8(秒);④当P在BQ上,AC=NB时,△ACB≌△NBP,∵BC=6,∴BP=6,∴CP=6+6=12,点P的运动时间为12÷1=12(秒),故答案为0或4或8或12.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等时必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.三、解答题(本大题共86分)17.如图:AB=CD,AE=DF,CE=FB.求证:AF=DE.【答案】见解析.【分析】先根据CE=FB得到CF=BE,然后利用“边边边”证明△ABE和△DCF全等,根据全等三角形对应角相等可得∠B=∠C ,再利用“边角边”证明△ABF 和△DCE 全等,然后根据全等三角形对应边相等得证.【详解】∵CE=FB ,∴CE+EF=FB+EF ,即CF=BE ,在△ABE 和△DCF 中,AB CD AE DF CF BE ⎧⎪⎨⎪⎩===∴△ABE ≌△DCF (SSS ),∴∠B=∠C ,在△ABF 和△DCE 中AB CD B C CE FB ⎧⎪∠∠⎨⎪⎩===∴△ABF ≌△DCE (SAS ),∴AF=DE .【点睛】本题考查了全等三角形的判定与性质,根据CE=FB 证明得到CF=BE 是解题的关键,注意本题需要两次证明三角形全等.18.如图,已知B ,C ,E 三点在同一条直线上,//AC DE ,AC CE =,ACD B ∠=∠.求证:ABC EDC △≌△.【答案】见解析【分析】首先根据AC ∥DE ,利用平行线的性质可得:∠ACB=∠E ,∠ACD=∠D ,再根据∠ACD=∠B 证出∠D=∠B ,再由∠ACB=∠E ,AC=CE 可根据三角形全等的判定定理AAS 证出△ABC ≌△EDC .【详解】证明:∵//AC DE ,∴BCA E ∠=∠,ACD D ∠=∠.又∵ACD B ∠=∠,∴B D ∠=∠.在ABC 和EDC △中,B D BCA E AC EC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ABC EDC △≌△.【点睛】本题考查全等三角形的判定,关键是熟练掌握判定两个三角形全等的方法:SSS 、SAS 、ASA 、AAS ,选用哪一种方法,取决于题目中的已知条件.19.先化简,再求值:221(2)()(3)52x y x y x y y x ⎛⎫⎡⎤+-+--÷- ⎪⎣⎦⎝⎭,其中12,2x y =-=. 【答案】44x y -,-10.【分析】根据整式的乘除运算法则即可求解.【详解】()()()2212352x y x y x y y x ⎛⎫⎡⎤+-+--÷- ⎪⎣⎦⎝⎭=()222221443352x xy y x xy xy y y x ⎛⎫⎡⎤++--+--÷- ⎪⎣⎦⎝⎭=()222221443352x xy y x xy xy y y x ⎛⎫++-+-+-÷- ⎪⎝⎭=()21222x xy x ⎛⎫-+÷-⎪⎝⎭ =44x y - 把12,2x y =-=代入原式=()14-24-82-102⨯-⨯=-=. 【点睛】 此题主要考查整式的化简求值,解题的关键是熟知整式的乘除运算法则.20.为了深入践行素质教育,落实学生的核心素养,培养全面发展的人,育红中学积极开展校本课程建设,促进学生的个性发展,计划成立“A.陶艺社团、B.航模社团、C.足球社团、D.skill科技社团、E.其他”,规定每位学生选报一个.为了了解报名情况,随机抽取了部分学生进行调查,将所有调查结果整理后绘制成不完整的条形统计图(如图1)和扇形统计图(如图2),请结合统计图回答下列问题:(1)在这次调查中,一共调查了_______名学生;(2)扇形统计图中,扇形B的圆心角度数是_______;(3)请补全条形统计图;(4)若该校共有6800名学生,请估计全校选择“skill科技社团”的学生人数.【答案】(1)200(2)144︒(3)见解析(4)680人【分析】(1)由C社团的人数及其百分比可得总人数;(2)先求出B社团的人数,再用360 ︒乘以所得百分比可得;(3)根据B社团的人数即可补全条形统计图;(4)总人数乘以样本中D社团的百分比可得.【详解】(1)本次调查的学生人数为60÷30%=200人,故答案为:200;(2)∵B社团的人数为200-10-60-20-30=80人,∴扇形统计图中,扇形B的圆心角度数为360 ︒×80200=144︒,故答案为:144︒;(3)B社团的人数为80人,故补全条形统计图如下:(4)估计全校选择“skill科技社团”的学生人数为6800×20200=680人.【点睛】本题考查条形统计图、用样本估计总体、扇形统计图,解题的关键是明确题意,找出所求问题需要的条件、利用数形结合的思想解答问题.21.(1)计算:2a2•a4﹣(2a2)3+7a6(2)因式分解:3x3﹣12x2+12x【答案】(1)a6;(2)3x(x﹣2)2.【分析】(1)根据单项式乘单项式的运算法则、合并同类项法则计算;(2)利用提公因式法和完全平方公式因式分解.【详解】(1)原式=2a6﹣8a6+7a6=a6;(2)原式=3x(x2﹣4x+4)=3x(x﹣2)2.【点睛】本题考查的是单项式乘单项式、多项式的因式分解,掌握单项式乘单项式的运算法则、提公因式法和完全平方公式因式分解的一般步骤是解题的关键.22.如图,已知:AC∥DE,DC∥EF,CD平分∠BCA.求证:EF平分∠BED.(证明注明理由)【答案】见解析【分析】要证明EF 平分∠BED ,即证∠4=∠5,由平行线的性质,∠4=∠3=∠1,∠5=∠2,只需证明∠1=∠2,而这是已知条件,故问题得证.【详解】解:证明:∵AC ∥DE ,∴∠BCA=∠BED ,即∠1+∠2=∠4+∠5,∵AC ∥DE ,∴∠1=∠3;∵DC ∥EF ,∴∠3=∠4;∴∠1=∠4,∴∠2=∠5;∵CD 平分∠BCA ,∴∠1=∠2,∴∠4=∠5,∴EF 平分∠BED .【点睛】本题考查了角平分线的定义及平行线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.23.如图,在四边形ABCD 中, 45,ABC ADC ∠=∠=︒将BCD 绕点C 顺时针旋转一定角度后,点B 的对应点恰好与点A 重合,得到ACE △.(1)求证:AE BD ⊥;(2)若1,2AD CD ==,试求四边形ABCD 的对角线BD 的长.【答案】(1)见解析;(2)3BD =.【分析】()1证明:由BCD 绕点C 顺时针旋转到ACE △,利用旋转性质得BC=AC ,12∠=∠,由∠ABC =45º,可知∠ACB=90º,由1390∠+∠=︒,可证2490∠+∠=︒ 即可,()2解:连DE ,由BCD ∆绕点C 顺时针旋转到ACE ∆,得BCD ACE ∠=∠,CD=CE=2,BD=AE ,利用等式性质得90DCE ACB ∠=∠=︒,∠CDE=45º,利用勾股定理,由∠ADC=45º可得∠ADE=90º,由勾股定理可求AE 即可.【详解】()1证明:BCD 绕点C 顺时针旋转一定角度后,点B 的对应点恰好与点A 重合,得到ACE △, ,12BC AC ∴=∠=∠,45,ABC BAC ∴∠=∠=︒18090,ACB ABC BAC ∴∠=︒∠∠=︒--1390,∴∠+∠=︒又34,∠=∠241390,∴∠+∠=∠+∠=︒1802490,ANM ∴∠=︒-∠-∠=︒即AE BD ⊥,()2解:连DE ,BCD 绕点C 顺时针旋转一定角度后,点B 的对应点恰好与点A 重合,得到,ACEBCD ACE ∴∠=∠,即,2,ACB ACD DCE ACD CD CE BD AE ∠+∠=∠+∠===,90,DCE ACB ∴∠=∠=︒DE ∴==又90,2,DCE CD CE ∠=︒==45,CDE ∴∠=︒90,ADE ADC CDE ∴∠=∠+∠=︒3AE ∴===,3BD ∴=.【点睛】本题考查旋转的性质和勾股定理问题,关键是掌握三角形旋转的性质与勾股定理知识,会利用三角形旋转性质结合∠ABC=45º证∠ACB=90º,利用余角证AE ⊥BD ,利用等式性质证∠DCE=90º,利用勾股定理求DE ,结合∠ADC=45º证Rt △ADE,会用勾股定理求AE 使问题得以解决.24.如图所示,四边形ABCD 中AB=AD ,AC 平分∠BCD ,AE∠BC ,AF∠CD ,图中有无和∠ABE 全等的三角形?请说明理由【答案】证△ABE ≌△ADF (AD=AB 、AE=AF )【分析】由题中条件AC 平分∠BCD ,AE ⊥BC ,AF ⊥CD ,可得AE=AF ,由AB=AD ,可由HL 判定Rt △ABE ≌Rt △ADF ,即可得证.【详解】图中△ADF 和△ABE 全等.∵AC 平分∠BCD ,AF ⊥CD ,AE ⊥CE ;∴AF=AE,∠AFD=∠AEB=90°在Rt△ADF与Rt△ABE中,AB=AD,AF=AE∴Rt△ADF≌Rt△ABE.【点睛】本题考查的是全等三角形的判定定理HL,判定定理即“斜边,直角边判定定理”判定直角三角形全等.注意应用.25.如图,在△ABC中,∠BAC=90°,AB=AC,点D是BC上一动点,连接AD,过点A作AE⊥AD,并且始终保持AE=AD,连接CE.(1)求证:△ABD≌△ACE;(2)若AF平分∠DAE交BC于F,探究线段BD,DF,FC之间的数量关系,并证明;(3)在(2)的条件下,若BD=3,CF=4,求AD的长.【答案】(1)证明见解析;(2)结论:BD2+FC2=DF2.证明见解析;(3).【分析】(1)根据SAS,只要证明∠1=∠2即可解决问题;(2)结论:BD2+FC2=DF2.连接FE,想办法证明∠ECF=90°,EF=DF,利用勾股定理即可解决问题;(3)过点A作AG⊥BC于G,在Rt△ADG中,想办法求出AG、DG即可解决问题.【详解】(1)证明:如图,∵AE⊥AD,∴∠DAE=∠DAC+∠2=90°,又∵∠BAC=∠DAC+∠1=90°,∴∠1=∠2,在△ABD 和△ACE 中12AB AC AD AE ⎧⎪∠∠⎨⎪⎩===,∴△ABD ≌△ACE .(2)结论:BD 2+FC 2=DF 2.理由如下:连接FE ,∵∠BAC=90°,AB=AC ,∴∠B=∠3=45°由(1)知△ABD ≌△ACE∴∠4=∠B=45°,BD=CE∴∠ECF=∠3+∠4=90°,∴CE 2+CF 2=EF 2,∴BD 2+FC 2=EF 2,∵AF 平分∠DAE ,∴∠DAF=∠EAF ,在△DAF 和△EAF 中AF AF DAF EAF AD AE ⎧⎪∠∠⎨⎪⎩===,∴△DAF ≌△EAF∴DF=EF∴BD 2+FC 2=DF 2.(3)过点A 作AG ⊥BC 于G ,由(2)知DF 2=BD 2+FC 2=32+42=25∴DF=5,∴BC=BD+DF+FC=3+5+4=12,∵AB=AC ,AG ⊥BC ,∴BG=AG=12BC=6, ∴DG=BG -BD=6-3=3,∴在Rt△ADG中,【点睛】本题考查三角形综合题、等腰直角三角形的性质、勾股定理、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.26.如图,△ACB和△DCE均为等腰三角形,点A,D,E在同一直线上,连接BE.(1)如图1,若∠CAB=∠CBA=∠CDE=∠CED=50°.故求证:AD=BE;故求∠AEB的度数.(2)如图2,若∠ACB=∠DCE=90°,CF为△DCE中DE边上的高,试猜想AE,CF,BE之间的关系,并证明你的结论.【答案】(1)故见解析;故80°;(2)AE=2CF+BE,理由见解析.【分析】(1)①通过角的计算找出∠ACD=∠BCE,再结合△ACB和△DCE均为等腰三角形可得出“AC=BC,DC=EC”,利用全等三角形的判定(SAS)即可证出△ACD≌△BCE,由此即可得出结论AD=BE;②结合①中的△ACD≌△BCE可得出∠ADC=∠BEC,再通过角的计算即可算出∠AEB的度数;(2)根据等腰三角形的性质结合顶角的度数,即可得出底角的度数,利用(1)的结论,通过解直角三角形即可求出线段AD、DE的长度,二者相加即可证出结论.【详解】(1)①证明:∵∠CAB=∠CBA=∠CDE=∠CED=50°,∴∠ACB=∠DCE=180°﹣2×50°=80°,∵∠ACB=∠ACD+∠DCB,∠DCE=∠DCB+∠BCE,∴∠ACD=∠BCE,∵△ACB,△DCE都是等腰三角形,∴AC=BC,DC=EC,在△ACD 和△BCE 中,AC BC ACD BCE DC EC =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△BCE (SAS ),∴AD =BE .②解:∵△ACD ≌△BCE ,∴∠ADC =∠BEC ,∵点A 、D 、E 在同一直线上,且∠CDE =50°,∴∠ADC =180°﹣∠CDE =130°,∴∠BEC =130°,∵∠BEC =∠CED+∠AEB ,∠CED =50°,∴∠AEB =∠BEC ﹣∠CED =80°.(2)结论:AE =2CF+BE .理由:∵△ACB ,△DCE 都是等腰直角三角形,∴∠CDE =∠CED =45°,∵CF ⊥DE ,∴∠CFD =90°,DF =EF =CF ,∵AD =BE ,∴AE =AD+DE =BE+2CF .【点睛】本题主要考查等腰三角形的性质以及三角形全等的证明,正确理解等腰三角形的性质以及三角形全等的证明是本题的解题关键.27.如图1,△ABC 是等边三角形,D 是BC 边上一点,且满足60ADE ∠=︒,DE 交等边三角形外角平分线CE 所在直线于点E ,试探究AD 与DE 的数量关系.(1)小明发现,当点D 是边BC 的中点时,过点D 作DF //AC ,交AB 于点F ,通过构造全等三角形,能够使问题得到解决,请直接写出AD 与DE 的数量关系:______;(2)如图2,当点D 是线段BC 上(除B 、C 外)任意一点时(其它条件不变),试猜想AD 与DE 之间的数量关系,并说明理由;(3)当点D 在线段BC 的延长线上,且满足CD BC =(其它条件不变)时,请画出图形,并直接写出△ABC 与△BDE 的面积之比.【答案】(1)AD DE =;(2)不变,AD DE =;证明见解析;(3)1:4.【分析】(1)根据题意易证△ADF ≌△DEC ,进而问题可得证;(2)过点D 作//DF AC ,交AB 于点F ,由题意易证△ADF ≌△DEC ,进而问题得证;(3)根据题意画出图形,然后由题意易得△ABD ≌△DCE ,则根据三角形中线把三角形的面积分成相等的两部分可进行求解.【详解】解:(1)△ABC 是等边三角形,∴AB=AC=BC ,∠B=∠ACB=60°,等边三角形外角平分线CE ,∴∠ACE=60°,点D 是边BC 的中点,//DF AC ,∴△DBF 是等边三角形,BD=DC ,AD ⊥BC ,∴BF=BD=DC=DF=AF ,∠BFD=60°,∴∠AFD=∠DCE=120°,∠FDA=30°,60ADE ∠=︒,∠ADC=90°,∴∠EDC=30°,∴∠EDC=∠FDA ,∴△ADF≌△DEC,∴AD=DE,故答案为AD=DE;(2)AD=DE,理由如下:DF AC,交AB于点F,如图所示:过点D作//△ABC是等边三角形,∴AB=AC=BC,∠B=∠ACB=60°,∴△BDF是等边三角形,∴∠BFD=60°,BF=BD,∴AF=DC,∠AFD=120°,等边三角形外角平分线CE,∴∠ACE=60°,∴∠DCE=120°,∴∠DCE=∠AFD,∠=︒,ADE60∴∠CDE+∠ABD=120°,∠FAD+∠ABD=120°,∴∠FAD=∠CDE,∴△ADF≌△DEC(ASA),∴AD=DE;(3)△ABC与△BDE的面积之比为1∶4,由题意可作图:△ABC 是等边三角形,∴AB=AC=BC ,∠B=∠ACB=∠BAC=60°,CD BC =,∴AC=CD=AB ,∴∠CAD=∠ADC=30°,∠ADE=60°,∴∠BAD=∠CDE=90°,CE 平分∠ACD ,∴∠ECD=∠DBA=60°,∴△BAD ≌△CDE ,∴BAD CDE S S =,2,2BAD ABC BDE CDE SS S S ==, ∴4BDE ABC S S =,∴△ABC 与△BDE 的面积之比为1∶4.【点睛】本题主要考查全等三角形的性质与判定、三角形的中线及等边三角形的性质与判定,熟练掌握全等三角形的性质与判定、三角形的中线及等边三角形的性质与判定是解题的关键.28.如图,在△ABC 中,∠ACB =90°,AC =6cm ,BC =8cm ,动点P 从点C 出发,按C →B →A 的路径,以2cm 每秒的速度运动,设运动时间为t 秒.(1)当t=1s时,求△ACP的面积.(2)t为何值时,线段AP是∠CAB的平分线?(3)请利用备用图2继续探索:当△ACP是等腰三角形时,求t的值.【答案】(1)6;(2)32;(3)3s或6s或132s或5.4s.【分析】(1)当t=1s时,故ACP是直角三角形,根据公式求故ACP的面积;(2)如图3,过P作PH故AB于H,Rt故PHB中,PB=8﹣2t,根据勾股定理列方程可求解;(3)分四种情况进行讨论:故如图4,根据AC=CP列式求解;故如图5,根据AC=AP列式求解;故如图6,AP=PC,根据AP=PB列式求解;故如图7,AC=CP,根据AP的值列式求解.【详解】解:(1)如图1,点P在BC上,由题意得:CP=2t,当t=1时,PC=2,故S△ACP=12AC•PC=12×6×2=6;(2)如图2,Rt故ACB中,由勾股定理得:AB=10,如图3,AP平分故CAB,过P作PH故AB于H,故故C=90°,故PC=PH=2t,故故C=故AHP=90°,AP=AP,故故ACP故故AHP,故AH=AC=6,故BH=4,在Rt故PHB中,PB=8﹣2t,故(2t)2+42=(8﹣2t)2,t=32;则当t=32时,线段AP是故CAB的平分线;(3)当故ACP是等腰三角形时,有四种情况:故如图4,AC=CP时,由题意得2t=6,故t=3;故如图5,AC=AP时,由题意得18﹣2t=6,故t=6;故如图6,AP=PC时,过P作PG故AC于G,故故C=90°,故PG故BC,故AP=PB,即18﹣2t=2t﹣8,故t=132;故如图7,AC=CP时,过C作CM故AB于M,故AM=PM=12(18-2t)=9-t,∵12AB×CM=12AC×BC,∴CM=4.8,∴,∴9-t=3.6,故t=5.4,综上所述,当故ACP是等腰三角形时,t的值是3s或6s或132s或5.4s.【点睛】本题是三角形的综合题,考查了动点运动问题、等腰三角形的性质和判定、勾股定理、角平分线的性质等知识,首先要确定动点P的运用路程=时间t×速度2,本题在第3问的等腰三角形中采用了分类讨论的思想,注意不要丢解,并利用数形结合的思想解决问题.。
2020-2021上海 华东师范大学第一附属初级中学八年级数学上期末试题(含答案)一、选择题1.如图,已知AOB ∠.按照以下步骤作图:①以点O 为圆心,以适当的长为半径作弧,分别交AOB ∠的两边于C ,D 两点,连接CD .②分别以点C ,D 为圆心,以大于线段OC 的长为半径作弧,两弧在AOB ∠内交于点E ,连接CE ,DE .③连接OE 交CD 于点M .下列结论中错误的是( )A .CEO DEO ∠=∠B .CM MD =C .OCD ECD ∠=∠ D .12OCED S CD OE =⋅四边形 2.已知三角形的两边长分别为4cm 和9cm,则下列长度的线段能作为第三边的是( ) A .13cm B .6cm C .5cmD .4m 3.如图,以∠AOB 的顶点O 为圆心,适当长为半径画弧,交OA 于点C ,交OB 于点D .再分别以点C 、D 为圆心,大于12CD 的长为半径画弧,两弧在∠AOB 内部交于点E ,过点E 作射线OE ,连接CD .则下列说法错误的是A .射线OE 是∠AOB 的平分线 B .△COD 是等腰三角形C .C 、D 两点关于OE 所在直线对称D .O 、E 两点关于CD 所在直线对称4.若长度分别为,3,5a 的三条线段能组成一个三角形,则a 的值可以是( ) A .1 B .2 C .3 D .85.运用图腾解释神话、民俗民风等是人类历史上最早的一种文化现象. 下列图腾中,不是轴对称图形的是( )A .B .C .D .6.已知关于x 的分式方程213x m x -=-的解是非正数,则m 的取值范围是( ) A .3m ≤ B .3m <C .3m >-D .3m ≥- 7.在平面直角坐标系内,点 O 为坐标原点, (4,0)A -, (0,3)B ,若在该坐标平面内有以 点 P (不与点 A B O 、、重合)为一个顶点的直角三角形与 Rt ABO ∆全等,且这个以点 P 为顶点的直角三角形 Rt ABO ∆有一条公共边,则所有符合的三角形个数为( )。
A .9B .7C .5D .38.如图,已知△ABC 中,∠A=75°,则∠BDE+∠DEC =( )A .335°B .135°C .255°D .150°9.下列各式中不能用平方差公式计算的是( )A .()2x y)x 2y -+( B .() 2x y)2x y -+--( C .() x 2y)x 2y ---( D .()2x y)2x y +-+( 10.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y轴于点N ,再分别以点M 、N 为圆心,大于12MN 的长为半径画弧,两弧在第二象限交于点P .若点P 的坐标为(2a ,b+1),则a 与b 的数量关系为( )A .a=bB .2a+b=﹣1C .2a ﹣b=1D .2a+b=1 11.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )A .AB .BC .CD .D 12.一个正多边形的每个内角的度数都等于相邻外角的度数,则该正多边形的边数是( )A .3B .4C .6D .12二、填空题13.若关于x 的分式方程x 2322m m x x++=--的解为正实数,则实数m 的取值范围是____.14.等腰三角形的一个内角是100︒,则这个三角形的另外两个内角的度数是__________.15.已知:如图△ABC 中,∠B =50°,∠C =90°,在射线BA 上找一点D ,使△ACD 为等腰三角形,则∠ACD 的度数为_____.16.分解因式:2288a a -+=_______17.分解因式:x 3y ﹣2x 2y+xy=______.18.A 、B 两种型号的机器加工同一种零件,已知A 型机器比B 型机器每小时多加工20个零件,A 型机器加工400个零件所用时间与B 型机器加工300个零件所用时间相同.A 型机器每小时加工零件的个数_____.19.如图,△ABC 中,EF 是AB 的垂直平分线,与AB 交于点D ,BF=12,CF=3,则AC = .20.分解因式2m 2﹣32=_____.三、解答题21.为了改善生态环境,某乡村计划植树4000棵.由于志题者的支援,实际工作效率提高了20%,结果比原计划提前3天完成,并且多植树80棵,原计划植树多少天?22.已知2340m m +-=,求代数式253(2)22m m m m m-+-÷--的值. 23.先化简,再求值:224(2)24x x x x --÷+-,其中x =5. 24.如图,△ABC 中,∠C =90°,∠A =30°.(1)用尺规作图作AB 边上的中垂线DE ,交AC 于点D ,交AB 于点E .(保留作图痕迹,不要求写作法和证明);(2)连接BD ,求证:BD 平分∠CB A .25.如图,已知AB比AC长2cm,BC的垂直平分线交AB于点D,交BC于点E,△ACD的周长是14cm,求AB和AC的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】利用基本作图得出是角平分线的作图,进而解答即可.【详解】由作图步骤可得:OE是AOB∠的角平分线,∴∠COE=∠DOE,∵OC=OD,OE=OE,OM=OM,∴△COE≌△DOE,∴∠CEO=∠DEO,∵∠COE=∠DOE,OC=OD,∴CM=DM,OM⊥CD,∴S四边形OCED=S△COE+S△DOE=111222OE CM OE DM CD OE+=g g g,但不能得出OCD ECD∠=∠,∴A、B、D选项正确,不符合题意,C选项错误,符合题意,故选C.【点睛】本题考查了作图﹣基本作图,全等三角形的判定与性质,等腰三角形的性质,三角形的面积等,熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线)是解题的关键.2.B解析:B【解析】【分析】根据三角形的三边关系,两边之和大于第三边,两边之差小于第三边可求得第三边取值范围.【详解】设第三边长度为a ,根据三角形三边关系9494a -<<+解得513a <<.只有B 符合题意故选B.【点睛】本题考查三角形三边关系,能根据关系求得第三边的取值范围是解决此题的关键.3.D解析:D【解析】试题分析:A 、连接CE 、DE ,根据作图得到OC=OD ,CE=DE .∵在△EOC 与△EOD 中,OC=OD ,CE=DE ,OE=OE ,∴△EOC ≌△EOD (SSS ).∴∠AOE=∠BOE ,即射线OE 是∠AOB 的平分线,正确,不符合题意.B 、根据作图得到OC=OD ,∴△COD 是等腰三角形,正确,不符合题意.C 、根据作图得到OC=OD ,又∵射线OE 平分∠AOB ,∴OE 是CD 的垂直平分线.∴C 、D 两点关于OE 所在直线对称,正确,不符合题意.D 、根据作图不能得出CD 平分OE ,∴CD 不是OE 的平分线,∴O 、E 两点关于CD 所在直线不对称,错误,符合题意.故选D .4.C解析:C【解析】【分析】根据三角形三边关系可得5﹣3<a <5+3,解不等式即可求解.【详解】由三角形三边关系定理得:5﹣3<a <5+3,即2<a <8,由此可得,符合条件的只有选项C ,故选C .本题考查了三角形三边关系,能根据三角形的三边关系定理得出5﹣3<a <5+3是解此题的关键,注意:三角形的两边之和大于第三边,三角形的两边之差小于第三边.5.C解析:C【解析】【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】A 、是轴对称图形,故本选项不符合题意;B 、是轴对称图形,故本选项不符合题意;C 、不是轴对称图形,故本选项符合题意;D 、是轴对称图形,故本选项不符合题意.故选C .【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.6.A解析:A【解析】【分析】分式方程去分母转化为整式方程,由分式方程解为正数确定出m 的范围即可【详解】213x m x -=-, 方程两边同乘以3x -,得23x m x -=-,移项及合并同类项,得3x m =-,Q 分式方程213x m x -=-的解是非正数,30x -≠, 30(3)30m m -≤⎧∴⎨--≠⎩, 解得,3m ≤,故选:A .【点睛】此题考查分式方程的解,解题关键在于掌握运算法则求出m 的值7.A【解析】【分析】根据题意画出图形,分别以OA、OB、AB为边、根据直角三角形全等的判定定理作出符合条件的三角形即可.【详解】如图:分别以OA、OB、AB为边作与Rt△ABO全等的三角形各有3个,则则所有符合条件的三角形个数为9,故选:A.【点睛】本题考查的知识点是直角三角形全等的判定和坐标与图形性质,解题关键是注意不要漏解. 8.C解析:C【解析】【分析】先由三角形内角和定理得出∠B+∠C=180°-∠A=105°,再根据四边形内角和定理即可求出∠BDE+∠DEC =360°-105°=255°.【详解】:∵∠A+∠B+∠C=180°,∠A=75°,∴∠B+∠C=180°-∠A=105°,∵∠BDE+∠DEC+∠B+∠C=360°,∴∠BDE+∠DEC=360°-105°=255°;故答案为:C.【点睛】本题考查了三角形、四边形内角和定理,掌握n边形内角和为(n-2)•180°(n≥3且n为整数)是解题的关键.9.A解析:A【解析】【分析】根据公式(a+b)(a-b)=a2-b2的左边的形式,判断能否使用.【详解】解:A、由于两个括号中含x、y项的系数不相等,故不能使用平方差公式,故此选项正确;B、两个括号中,含y项的符号相同,1的符号相反,故能使用平方差公式,故此选项错误;C、两个括号中,含x项的符号相反,y项的符号相同,故能使用平方差公式,故此选项错误;D、两个括号中,y相同,含2x的项的符号相反,故能使用平方差公式,故此选项错误;故选:A.【点睛】本题考查了平方差公式.注意两个括号中一项符号相同,一项符号相反才能使用平方差公式.10.B解析:B【解析】试题分析:根据作图方法可得点P在第二象限角平分线上,则P点横纵坐标的和为0,即2a+b+1=0,∴2a+b=﹣1.故选B.11.C解析:C【解析】试题分析:根据轴对称图形的定义可知,只有选项C是轴对称图形,故选C.12.B解析:B【解析】【分析】首先设正多边形的一个外角等于x°,由在正多边形中,一个内角的度数恰好等于它的外角的度数,即可得方程:x+x=180,解此方程即可求得答案.【详解】设正多边形的一个外角等于x°,∵一个内角的度数恰好等于它的外角的度数,∴这个正多边形的一个内角为: x°,∴x+x=180,解得:x=900,∴这个多边形的边数是:360°÷90°=4.故选B.【点睛】此题考查了多边形的内角和与外角和的知识.此题难度不大,方程思想的应用是解题的关键.二、填空题13.m <6且m≠2【解析】【分析】利用解分式方程的一般步骤解出方程根据题意列出不等式解不等式即可【详解】方程两边同乘(x-2)得x+m-2m=3x-6解得x=由题意得>0解得m <6∵≠2∴m≠2∴m<6解析:m <6且m≠2.【解析】【分析】利用解分式方程的一般步骤解出方程,根据题意列出不等式,解不等式即可.【详解】x 2322m m x x++=--, 方程两边同乘(x-2)得,x+m-2m=3x-6,解得,x=6-2m , 由题意得,6-2m >0, 解得,m <6, ∵6-2m ≠2, ∴m≠2, ∴m<6且m≠2.【点睛】要注意的是分式的分母暗含着不等于零这个条件,这也是易错点.14.40°40°【解析】【分析】因为等腰三角形的两个底角相等且三角形内角和为180°100°只能为顶角所以剩下两个角为底角且为40°40°【详解】解:∵三角形内角和为180°∴100°只能为顶角∴剩下两解析:40° 40°【解析】【分析】因为等腰三角形的两个底角相等,且三角形内角和为180°,100°只能为顶角,所以剩下两个角为底角,且为40°,40°.【详解】解:∵三角形内角和为180°,∴100°只能为顶角,∴剩下两个角为底角,且它们之和为80°,∴另外两个内角的度数分别为40°,40°.故答案为:40°,40°.【点睛】本题考查了等腰三角形的性质和三角形的内角和,若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.15.70°或40°或20°【解析】【分析】分三种情况:①当AC =AD 时②当CD′=AD′时③当AC =AD″时分别根据等腰三角形的性质和三角形内角和定理求解即可【详解】解:∵∠B=50°∠C=90°∴∠B解析:70°或40°或20°【解析】【分析】分三种情况:①当AC =AD 时,②当CD′=AD′时,③当AC =AD″时,分别根据等腰三角形的性质和三角形内角和定理求解即可.【详解】解:∵∠B =50°,∠C =90°,∴∠BAC =90°-50°=40°,如图,有三种情况:①当AC =AD 时,∠ACD =()1180402??=70°; ②当CD′=AD′时,∠ACD′=∠BAC =40°; ③当AC =AD″时,∠ACD″=12∠BAC =20°, 故答案为:70°或40°或20°【点睛】本题考查等腰三角形的判定和性质以及三角形的内角和定理等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.16.【解析】=2()=故答案为解析:22(2)a -【解析】22a 8a 8-+=2(2a 4a 4-+)=()22a 2-.故答案为()22a 2-. 17.xy (x ﹣1)2【解析】【分析】原式提取公因式再利用完全平方公式分解即可【详解】解:原式=xy (x2-2x+1)=xy (x-1)2故答案为:xy (x-1)2【点睛】此题考查了提公因式法与公式法的综合解析:xy (x ﹣1)2【解析】原式提取公因式,再利用完全平方公式分解即可.【详解】解:原式=xy(x2-2x+1)=xy(x-1)2.故答案为:xy(x-1)2【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.18.80【解析】【分析】设A型机器每小时加工x个零件则B型机器每小时加工(x-20)个零件根据工作时间=工作总量÷工作效率结合A型机器加工400个零件所用时间与B型机器加工300个零件所用时间相同即可得解析:80【解析】【分析】设A型机器每小时加工x个零件,则B型机器每小时加工(x-20)个零件,根据工作时间=工作总量÷工作效率结合A型机器加工400个零件所用时间与B型机器加工300个零件所用时间相同,即可得出关于x的分式方程,解之经检验后即可得出结论.【详解】解:设A型机器每小时加工x个零件,则B型机器每小时加工(x-20)个零件,根据题意得:40030020x x=-,解得:x=80,经检验,x=80是原分式方程的根,且符合题意.答:A型机器每小时加工80个零件.故答案为80.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.19.15【解析】试题分析:因为EF是AB的垂直平分线所以AF=BF因为BF=12CF=3所以AF=BF=12所以AC=AF+FC=12+3=15考点:线段垂直平分线的性质解析:15【解析】试题分析:因为EF是AB的垂直平分线,所以AF=BF,因为BF=12,CF=3,所以AF=BF=12,所以AC =AF+FC=12+3=15.考点:线段垂直平分线的性质20.2(m+4)(m﹣4)【解析】【分析】原式提取2再利用平方差公式分解即可【详解】原式=2(m2﹣16)=2(m+4)(m﹣4)故答案为2(m+4)(m﹣4)【点睛】本题考查了提公因式法与公式法的综合解析:2(m+4)(m﹣4)【分析】原式提取2,再利用平方差公式分解即可.【详解】原式=2(m 2﹣16)=2(m +4)(m ﹣4),故答案为2(m +4)(m ﹣4).【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.三、解答题21.原计划植树20天.【解析】【分析】设原计划每天种x 棵树,则实际每天种(1+20%)x 棵,根据题意可得等量关系:原计划完成任务的天数﹣实际完成任务的天数=3,列方程即可.【详解】解:设原计划每天种x 棵树,则实际每天种(1+20%)x 棵, 依题意得:4004000803(120%)x x+-=+ 解得x=200,经检验得出:x=200是原方程的解. 所以4000200=20. 答:原计划植树20天.【点睛】此题主要考查了分式方程的应用,正确理解题意,找出题目中的等量关系,列出方程是解题关键.22.【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把已知等式变形后代入计算即可求出值.【详解】253222m m m m m -⎛⎫+-÷ ⎪--⎝⎭, ()()22253222m m m m m m m ⎛⎫+--=-÷ ⎪---⎝⎭, ()2245·23m m m m m ---=--,()229·23m m m m m --=--, ()()()332·23m m m m m m +--=--, ()3m m =+,∵2340m m +-=∴234m m +=∴原式()2334m m m m =+=+= 【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.23.-x+2,3.【解析】【分析】先根据分式混合运算的法则把原式进行化简,再把x 的值代入进行计算即可.【详解】 原式=22x 4x •x 2--+ ()()x 2x 2x 2x 24+-=--=-+(), 当x 5=时,原式=523-+=.24.(1)作图见解析;(2)证明见解析.【解析】【分析】(1)分别以A 、B 为圆心,以大于12AB 的长度为半径画弧,过两弧的交点作直线,交AC 于点D ,AB 于点E ,直线DE 就是所要作的AB 边上的中垂线; (2)根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD ,再根据等边对等角的性质求出∠ABD=∠A=30°,然后求出∠CBD=30°,从而得到BD 平分∠CBA .【详解】(1)解:如图所示,DE 就是要求作的AB 边上的中垂线;(2)证明:∵DE是AB边上的中垂线,∠A=30°,∴AD=BD,∴∠ABD=∠A=30°,∵∠C=90°,∴∠ABC=90°﹣∠A=90°﹣30°=60°,∴∠CBD=∠ABC﹣∠ABD=60°﹣30°=30°,∴∠ABD=∠CBD,∴BD平分∠CB A.【点睛】考查线段的垂直平分线的作法以及角平分线的判定,熟练掌握线段的垂直平分弦的作法是解题的关键.25.AB=9cm,AC=6cm.【解析】根据线段垂直平分线上的点到两端点的距离相等可得CD=BD,然后求出△ACD的周长=AB+AC,再解关于AC、AB的二元一次方程组即可.解:∵DE垂直平分BC,∴BD=DC,∵AB=AD+BD,∴AB=AD+DC.∵△ADC的周长为15cm,∴AD+DC+AC=15cm,∴AB+AC=15cm.∵AB比AC长3cm,∴AB-AC=3cm.∴AB=9cm,AC=6cm.。