2017年四川省绵阳市中考数学二模试卷和解析word版
- 格式:doc
- 大小:688.50 KB
- 文档页数:29
2017年四川省绵阳市中考数学试卷 第Ⅰ卷 (选择题,共36分)一、选择题:本大题共12小题,每小题3分,共36分.)1.(2017年四川绵阳)中国人最早使用负数,可追溯到两千多年前的秦汉时期,-0.5的相反数是A .0.5B.5C .﹣0.5D .5答案:A 解析:根据相反数的定义求解即可. 2.(2017年四川绵阳)下列图案中,属于轴对称的是答案:A 解析:本题考查轴对称图形的识别,判断一个图形是否是轴对称图形,就是看是否可以存在一条直线,使得这个图形的一部分沿着这条直线折叠,能够和另一部分互相重合.3.(2017年四川绵阳)中国幅员辽阔,陆地面积约为960万平方公里.“960万”用科学计数法表示为A .0.96×107B .9.6×106C .96×105D .9.6×102答案:B 解析:科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 4.(2017年四川绵阳)如图所示的几何体的主视图正确的是答案:D 解析:考查画几何体的三视图;用到的知识点为:主视图,左视图与俯视图分别是从物体的正面,左面,上面看得到的图形. 5.(2017年四川绵阳)使代数式x x 3431-++有意义的整数x 有 A .5个B .4个C .3个D .2个答案:B 解析:根据被开方数是非负数,分母不能为零,可得答案. 6.(2017年四川绵阳)为测量操场上旗杆的高度,效力同学想到了物理学(第4题图) A B DC中平面镜成像的原理.她拿出随身携带的镜子和卷尺.先将镜子放在脚下的地面上,然后后退,直到她站直身子刚好能从镜子里看到旗杆的顶端E ,标记好脚掌中心位置为B .测得脚掌中心位置B 到镜面中心C 的距离是50cm ,镜面中心C 距旗杆底部D 的距离为4m ,如图所示,已知小丽同学的身高是1.54cm ,眼睛位置A 距离小丽头顶的距离是4cm ,则旗杆的高度等于A .10mB .12mC .12.4mD .12.32m答案:B 解析:根据题意得出△ABC ∽△EDC ,进而利用相似三角形的性质得出答案. 7.关于x 的方程2x 2+mx +n =0的两根为-2和1,则n m 的值为A .-8B .8C .16D .-16答案:C 解析:利用根与系数的关系求解即可.8.(2017年四川绵阳)“赶陀螺”是一项深受人们喜爱的运动.如图所示是一个陀螺的立体结构图.已知底面圆的直径AB=8cm ,圆柱部分的高BC=6cm ,圆锥体部分的高CD=3cm ,则这个陀螺的表面积是A .68πcm 2B .74πcm 2C .84πcm 2D .100πcm 2答案:C 解析:圆锥的表面积加上圆柱的侧面积即可求得其表面积.9.(2017年四川绵阳)如图,矩形ABCD 的对角线AC 与BD 交于点O ,过点O 作BD 的垂线分别交AD ,BC 于E ,F 两点.若AC =23,∠AEO =120°,则FC 的长度为A .1B .2C .2D .3答案:A 解析:10.(2017年四川绵阳)将二次函数y =x 2的图象先向下平移1个单位,再向右平移3个单位,得到的图象与一次函数y =2x +b 的图象有公共点,则实数b 的取值范围是A .b >8B .b >-8C .b ≥8D .b ≥-8答案:D 解析:二次函数向下平移1个单位,再向右平移3个单位后,得到y =(x -3)2+1,再结合与一次函数y =2x +b 有公共点,联立方程组,建立关于x 的一元二次方程,利用一元二次方程有解的条件△≥0,可求出b 的范围.11.(2017年四川绵阳)如图,直角△ABC 中,∠B =30°,点O 是△ABC 的重心,连接CO 并延长交AB 于点E ,过点E 作EF ⊥AB 交BC 于点F ,连接AF 交CE 于点E .则MFMO的值为 (第8题图)D CBAA BCDEFO(第9题图) (第11题图)BA .21B .45C .32D .33答案:D 解析:根据三角形的重心性质可得OC =32CE ,根据直角三角形的性质可得CE =AE ,根据等边三角形的判定和性质得到CM =21CE ,进一步得到OM =61CE ,即OM =61AE ,根据垂直平分线的性质和含30°的直角三角形的性质可得EF =33AE ,MF =21EF ,依此得到MF =63AE ,从而得到MF MO的值. 12.(2017年四川绵阳)如图所示,将形状、大小完全相同的“形,第1幅图形中“a 1,第2a 2,第3幅图形中“为a 3,…,以此类推,则193211111a a a a +⋯+++的值为 A .2120B .8461C .840589D .760431答案:C 解析:首先根据图形中“●”的个数得出数字变化规律, a 1=3=1×3,a 2=8=2×4,a 3=15=3×5,a 4=24=4×6,…,a n =n (n +2);进而求出即可.第Ⅱ卷(非选择题,共104分)二、填空题:(本大题共6个小题,每小题3分,共18分.将答案填写在答题卡相应的横线上) 13.(2017年四川绵阳)因式分解:8a 2-2= . 答案:)12)(12(2-+n n解析:首先提取公因式2,进而利用平方差公式进行分解即可.14.(2017年四川绵阳)关于x 的分式方程xx x -=+--111112的解是 . 答案:2-=x 解析:观察可得最简公分母是(x +1)(x -1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.15.(2017年四川绵阳)如图,将平行四边形ABCO 放置在平面直角坐标系xOy 中,O 为坐标原点.若点A 的坐标是(6,0),点C 的坐标是(1,4),则点B 的坐标是 .答案:(7,4) 解析:根据平行四边形的性质及A 点和C 的坐标求出点B 的坐标即可.:∵四边形ABCO 是平行四边形,O 为坐标原点,点A 的坐标是(6,0),点C 的坐标是(1,4),∴BC =OA =6,6+1=7,∴点B 的坐标是(7,4).16.(2017年四川绵阳)同时抛掷两枚质地均匀的骰子,则事件“两枚骰子的点数和小于8且为偶第1幅图 第2幅图 第3幅图 第4幅图数”的概率是 . 答案:41解析:画树状图展示所有36种等可能的结果数,再找出“两枚骰子的点数和小于8且为偶数”的结果数,然后根据概率公式求解.17.(2017年四川绵阳)将形状、大小完全相同的两个等腰三角形如图所示放置,点D 在AB 边上,△DEF 绕点D 旋转,腰DF 和底边DE 分别交△CAB 的两腰CA 、CB 于M 、N 两点.若CA =5,AB =6,AD ∶AB =1∶3,则MD +DNMA ⋅12的最小值为 .答案:32 解析:先求出AD =2,BD =4,根据三角形的一个外角等于与它不相邻的两个内角的和可得∠AMD +∠A =∠E D F +∠BDN ,然后求出∠AMD =∠BDN ,从而得到△AMD 和△BDN 相似,根据相似三角形对应边成比例可得DNMDBD MA =,求出MA •DN =4MD ,再将所求代数式整理出完全平方的形式,然后根据非负数的性质求出最小值即可.18.(2017年四川绵阳)如图,过锐角△ABC 的顶点A 作DE ∥BC ,AB 恰好平分∠DAC ,AF 平分∠EAC 交BC 的延长线于点F .在AF 上取点M ,使得AM =31AF ,连接CM 并延长交直线DE 于点H ,若AC =2,△AMH 的面积是121,则ACH∠tan 1的值是 . 答案:158- 解析:利用平行和角平分线先得出AC =CB =CF =2;再利用平行得到△AMH 与△CMF相似,结合AM =31AF ,得出△AMH 的面积与△ACH 面积的关系,以及△CMF 的关系,求出△ACH 的面积和△CMF 的面积;从而求出三角形ABF 的面积,取MF 的中点N ,可得△CAN 是直角三角形,将∠ACH 转化到∠CAM ,最终转化到∠F ,则可求出结论.三、解答题:本大题共7个小题,共86分,解答应写出文字说明,证明过程或演算步骤. 19.(2017年四川绵阳)(本题共2个小题,每小题8分,共16分)(1)计算:21245cos 04.012----︒+-)(; (1)原式=2121)22(2.02---+………………………………………………4分 A HED BC FM(第18题图)(第17题图)CAB DEFNM=21212151-++…………………………………………………………………6分 =107………………………………………………………………………………8分 (2)先化简,再求值:(yx yxy x x y xy x y x 2)22(222-÷--+--),其中x =22,y =2. (2)原式=y x yy x x x y x y x 2)2()(2-÷⎥⎦⎤⎢⎣⎡----……………………………………………………2分 =y x yy x y x 2)211(-÷---………………………………………………………………3分 =yx yy x y x y x y x 2)2()()()2(-÷⎥⎦⎤⎢⎣⎡-⋅----……………………………………………………4分 =yx y y x y x y x y --=-⋅-⋅--12)2()(………………………………………………6分 当222==y x ,时,22211-=-=--y x .……………………………………………8分 20.(2017年四川绵阳)(本题满分11分)红星中学课外兴趣活动小组对某水稻品种的稻穗谷粒数目进行调查,从试验田中随机抽取了30株,得到的数据如下(单位:颗):182 195 201 179 208 204 186 192 210 204 175 193 200 203 188 197 212 207 185 206 188 186 198 202 221 199 219 208 187 224(1)对抽取的30株水稻穗谷粒数进行分析,请补全下表中空格,并完善直方图:上图所示的扇形统计图中,扇形A 对应的圆心角为 度,扇形B 对应的圆心角为 度; (2)该试验田中大约有3000株水稻,据此估计,其中稻穗谷粒数大于或等于205颗的水稻有对手(颗)株?解:(1)频数从左到右应填:3,6;对应扇形图中区域从左到右应填:B ,A ;……………4分正确完成直方图;……………………………………………………………………………6分 扇形A 对应的圆心角为72度,扇形B 对应的圆心角为36度.………………8分 (2)9003093000=⨯(株).…………………………………………………………………11分 思路分析:(1)根据表格中数据填表即可,利用360°×其所占的百分比求出扇形对应的圆心角度数;(2)用360°乘以样本中稻穗谷粒数大于或等于205颗的水稻所占百分比即可. 21.(2017年四川绵阳)(本题满分11分)江南农场收割小麦,已知1台大型收割机和3台小型收割机1小时可以收割小麦1.4公顷,2台大型收割机和5台小型收割机1小时可以收割小麦2.5公顷.(1)每台大型收割机和小型收割机1小时收割小麦各多少公顷?(2)大型收割机每小时费用为300元,小型收割机每小时费用为200元.两种型号的收割机一共有10台,要求2小时完成8公顷小麦的收割任务,且总费用不超过5400元.有几种方案?请指出费用最低的一种方案,并求出相应的费用.解:(1)设1台大型收割机每小时收割小麦a 公顷,1台小型收割机每小时收割小麦b 公顷…1分根据题意,得⎩⎨⎧=+=+5.2524.13b a b a ,……………………………………3分解得⎩⎨⎧==3.05.0b a .………………………………4分(2)设需要大型收割机x 台,则需要小型收割机(10-x )台,…………………………5分 根据题意,得⎩⎨⎧≥-+≤-+8)10(6.05400)10(400600x x x x ,…………………………………7分解得75≤≤x ,又x 取整数,所以x =5,6,7,一共有3种方案.……………9分 设费用为w 元,则4000200)10(400600+=-+=x x x w .由一次函数性质知,w 随x 增大而增大.所以x =5时,w 值最小,即大型收割机5台,小型收割机5台时,费用最低,………………………………………………………………………………10分此时,所有费用w =600×5+400×5=5000(元).……………………11分 思路分析:(1)此题可设1台大型收割机和1台小型收割机工作1天各收割小麦a 公顷和b 公顷,根据题中的等量关系列出二元一次方程组解答即可;(2)大收割机为x 台,则小收割机为(10-x )台.由“两种收割机共15台,要求两种型号的收割机一共有10台,要求2小时完成8公顷小麦的收割任务,且总费用不超过5400元.列出关于x 的不等式组,通过解不等式组求得整数x 的值. 22.(2017年四川绵阳)(本题满分11分)如图,设反比例函数的解析式为y =xk3(k >0). (1)若该反比例函数和正比例函数y =2x 的图象有一个交点的纵坐标为2,求k 的值; (2)若该反比例函数于过点M (-2,0)的直线l :y =kx +b 的图象交于A ,B 两点.如图所示,当△ABO 的面积为316时,求直线l 的解析式.解:(1)根据题意,正比例函数与反比例函数的一个交点坐标是(1,2),…2分 代入反比例函数解析式x k y 3=,得32=k .…………………………4分 (2)因为直线l 过点M (-2,0).代入直线方程,得0=-2k +b ,所以b =2k ,所以直线l 方程可写为y =kx +2k ,……5分联立方程⎪⎩⎪⎨⎧=+=x ky kkx y 32,消去y ,得x k k kx 32=+, 因为k >0,所以xx 32=+,得0322=-+x x ,…………………………7分 解得1321=-=x x ,,所以A (1,3k ),B (-3,-k ),……………………8分所以△ABO 的面积=316)3(221=-+⨯⨯=+k k S S BMO AMO △△,解得34=k .………………………………………………10分所以直线l 的解析式为:3834+=x y .……………………………………11分思路分析:(1)由题意可得A (2,4),利用待定系数法即可解决问题;(2)把M (-2,0)代入y =kx +b ,可得b =2k ,可得y =kx +2k ,由⎪⎩⎪⎨⎧+==kkx y xk y 23消去y 得到x 2+2x -3=0,解得x =-3或1,推出B (-3,-k ),A (1,3k ),根据△ABO 的面积为316,可得21•2•3k +21•2•k =316,解方程即可解决问题. 23.(2017年四川绵阳)(本题满分11分)如图,已知AB 是圆O 的直径.弦CD ⊥AB ,垂足为H .与AC 平行的圆O 的一条切线交CD 的延长线于点M ,交AB 的延长线于点E ,切点为F ,连接AF 交CD 于点N . (1)求证:CA =CN ; (2)连接DF ,若cos ∠DF A =54,AN =210,求圆O 的直径的长度.(1)证明:连接OF ,∵ME 与圆O 相切与点F ,∴OF ⊥ME ,即∠OFN +∠MFN =90°,…………………………1分 ∵∠OFN =∠OAN ,∠OAN +∠ANH =90°, ∴∠MFN =∠ANH ,(等量代换)…………………………………3分 又∵ME ∥AC ,∴∠MFN =∠NAC ,∴∠ANH =∠NAC . ∴CA =CN .…………………………………………5分 (2)解:∵cos ∠DF A =54,所以cosC =54,……6分 在直角△AHC 中,设AC =5a ,HC =4a ,则AH =3a由(1)知,CA =CN ,∴NH =a ,……7分 在直角△ANH 中,利用勾股定理, 得222AN NH AH =+,即222)102()3(=+a a ,解得a =2,……………8分连接OC ,在直角△OHC 中,利用勾股定理,得222OC HC OH =+, 设圆O 的半径为R ,则2228)6(R R =+-,解得325=R ,……………10分 所以圆O 的直径长度为3502=R .……………………………………………………11分 方法2:同(2)中,解得a =2,连接BC ,因为AB 为直径,所以∠ACB =90°,由射影定理,得 AB AH CA ⋅=2,即AB ⋅=6100,解得AB =350.…………………11分 思路分析:(1)连接OF ,根据切线的性质结合四边形内角和为360°,即可得出∠M +∠FOH =180°,由三角形外角结合平行线的性质即可得出∠M =∠C =2∠OAF ,再通过互余利用角的计算即可得出∠CAN =90°-∠OAF =∠ANC ,由此即可证出CA =CN ;(2)连接OC ,由圆周角定理结合cos ∠DF A =54、AN =210,即可求出CH 、AH 的长度,设圆的半径为R ,则OH =R ﹣6,根据勾股定理即可得出关于R 的一元一次方程,解之即可得出R ,再乘以2即可求出圆O 直径的长度.(第23题图)24.(2017年四川绵阳)(本题满分12分)如图,已知抛物线y =ax 2+bx +c (a ≠0)的图象的顶点坐标是(2,1),并且经过点(4,2).直线y =21x +1与抛物线交于B ,D 两点,以BD 为直径作圆,圆心为点C ,圆C 于直线m 交于对称轴右侧的点M (t ,1).直线m 上每一点的纵坐标都等于1. (1)求抛物线的解析式; (2)证明:圆C 与x 轴相切;(3)过点B 作BE ⊥m ,垂足为E ,再过点D 作DF ⊥m ,垂足为F .求BE ∶MF 的值.解:(1)设抛物线方程为k h x a y +-=2)(,因为抛物线的顶点坐标是(2,1),所以1)2(2+-=x a y …………………………1分 又抛物线经过点(4,2),所以1)24(22+-=a ,解得41=a ,………………2分 所以抛物线的方程是2411)2(4122+-=+-=x x x y .……………………………3分 (2)联立⎪⎪⎩⎪⎪⎨⎧+=+-=1212412x y x x y ,消去y ,整理得0462=+-x x ,………………………4分解得531-=x ,532+=x ,…………………………5分代入直线方程,解得25251-=y ,25252+=y , 所以B (252553--,),D (252553++,),因为点C 是BD 的中点,所以点C 的纵坐标为25221=+y y ,………………………6分利用勾股定理,可算出BD =5)()(221221=-+-y y x x ,即半径R =25, 即圆心C 到x 轴的距离等于半径R ,所以圆C 与x 轴相切.…………………………7分 (3)连接BM 和DM ,因为BD 为直径, 所以∠BMD =90°,所以∠BME +∠DMF =90°,又因为BE ⊥m 于点E ,DF ⊥m 于点F , 所以∠BME =∠MDF , 所以△BME ∽△MDF ,所以DF EMMF BE =,……………………………9分 即112121--=--y x t t x y , 代入得2523)53()53(25-23+--=-+t t , 化简得4)3(2=-t ,解得t =5或t =1,………………………………10分因为点M 在对称轴右侧,所以t =5,………………………11分 所以215+=MF BE …………………………………………………12分 法2:过点C 作CH ⊥m ,垂足为H ,连接CM ,由(2)知CM =R =52 ,CH =R -1=32,由勾股定理,得MH =2,…………………9分又HF =5212=-x x , 所以MF =HF -MH = 5 -2,…………………10分又BE =y 1-1=32 -52,所以BE MF =5+12,………………………………………………12分思路分析:(1)知抛物线的顶点和其它任意一点,可设出抛物线的顶点式,代入点的坐标即可求出抛物线的解析式;(2)由抛物线与直线交于B 、D ,联立方程组,求出点B 点D 坐标,求出直径BD 的长度,从而求出半径,与C 的纵坐标进行比较,得出结论;(3)连接BM 和DM ,因为BD 为直径, 所以∠BMD =90°,所以∠BME +∠DMF =90°,又因为BE ⊥m 于点E ,DF ⊥m 于点F ,所以∠BME =∠MDF ,所以△BME ∽△MDF ,所以DFEM MF BE =,即112121--=--y x t t x y ,代入得2523)53()53(25-23+--=-+t t ,化简得4)3(2=-t ,解得t =5或t =1,因为点M 在对称轴右侧,所以t =5,所以215+=MF BE .25.(2017年四川绵阳)(本题满分14分)如图,已知△ABC 中,∠C =90°,点M 从点C 出发沿CB 方向以1cm /s 的速度匀速运动,到达点B 停止运动,在点M 的运动过程中,过点M 作直线MN 交AC 于点N ,且保持∠NMC =45°,再过点N 作AC 的垂线交AB 于点F ,连接MF ,将△MNF 关于直线NF 对称后得到△ENF ,已知AC =8cm ,BC =4cm ,设点M 运动时间为t (s ),△ENF 与△ANF 重叠部分的面积为y (cm 2).(1)在点M 的运动过程中,能否使得四边形MNEF 为正方形?如果能,求出相应的t 值;如果不能,说明理由;(2)求y 关于t 的函数解析式及相应t 的取值范围;(3)求y 取最大值时,求sin ∠NEF 的值.25.(1)能,……………………………………………………………………1分如图,四边形MNEF 为正方形时,过F 作FD ⊥BC于点D ,则∠FMD =∠NMC =45°,所以CN =ND =DF =t ,易证△FDB ∽△ACB ,所以FD AC =BD BC,………………2分 即t 8 =4-2t 4 ,解得t =85.……………………………………4分 (2)当点E 恰好落在AB 上时,连接ME ,同(1),易证△EMB ∽△ACB ,所以EM AC =BM BC, 即2t 8 =4-t 4,解得t =2.……………………………………5分 当0<t <2时,连接EM ,易证△ANF ∽△ACB ,所以NF BC =AN AC, 即NF 4 =8-t 8 ,解得NF =4-t 2.…………………………6分 所以t t NC NF y ⋅-⋅=⋅⋅=)24(2121 t t 241-2+=,…………………………………7分 当42≤≤t 时,如图,设NE 与AB 交于点K , 过K 作KL ⊥NF ,垂足为L ,连接EM ,交直线NF 于点H .易证△KLF ∽△ANF ,所以LF NF =KL AN, 因为NF =4-t 2 ,所以t NL t NL t -=---824)24(, 解得NL =83 -t 3 ,即KL =83 -t 3,………………………………………9分 (第25题图) AB C MEN F所以)338()24(2121t t KL NF y -⋅-⋅=⋅⋅=31634121)8(12122+-=-=t t t , 综上所述,⎪⎪⎩⎪⎪⎨⎧≤≤+-<<+-=)42(31634121)20(24122t t t t t t y .……………………………………10分(3)由题意知,当t =2,y 取得最大值,此时,点E 恰好落在AB 上,…………………………11分由(2)知,NM =2t =2 2 ,NF =4-t 2=3, 由勾股定理,得MF = 5 ,又因为222NF MF MN >+,所以,△NMF 为锐角三角形,…………………12分 所以MNFMF NMF NF ∠=∠sin sin ,即︒=∠45sin 5sin 3NMF , 所以sin ∠NMF =31010 ,即sin ∠NEF =31010.………………………………14分思路分析:(1)若四边形MNEF 为正方形时,过F 作FD ⊥BC 于点D ,则∠FMD =∠NMC =45°,所以CN =ND =DF =t ,易证△FDB ∽△ACB ,所以FD AC =BD BC,代入求解;(2)当点E 恰好落在AB 上时,连接ME ,同(1),易证△EMB ∽△ACB ,所以EM AC =BM BC ,即2t 8 =4-t 4,解得t =2. 当0<t <2时,连接EM ,易证△ANF ∽△ACB ,所以NF BC =AN AC ,即NF 4 =8-t 8 ,解得NF =4-t 2. 所以t t NC NF y ⋅-⋅=⋅⋅=)24(2121t t 2412+-=,当42≤≤t 时,如图,设NE 与AB 交于点K ,过K 作KL ⊥NF ,垂足为L ,连接EM ,交直线NF 于点H .易证△KLF ∽△ANF ,所以LF NF =KL AN ,因为NF =4-t 2 ,(第25题(2)图) A B C MEN F A (第25题图) B C M EN F D (第25题(2)图) A B C M EN FHKL所以t NL t NL t -=---824)24(,解得NL =83 -t 3 ,即KL =83 -t 3 ,所以 )338()24(2121t t KL NF y -⋅-⋅=⋅⋅= 31634121)8(12122+-=-=t t t , (3)由题意知,当t =2,y 取得最大值,此时,点E 恰好落在AB 上,由(2)知,NM =2t =2 2 ,NF =4-t 2=3,由勾股定理,得MF = 5 ,又因为222NF MF MN >+,所以,△NMF 为锐角三角形,所以MNFMF NMF NF ∠=∠sin sin ,即︒=∠45sin 5sin 3NMF ,所以sin ∠NMF =31010 ,即sin ∠NEF =31010 .。
绝密★启用前四川省绵阳市2017年高中阶段学校招生暨初中学业水平考试数学本试卷满分140分,考试时间120分钟.第Ⅰ卷(选择题共36分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.中国人最早使用负数,可追溯到两千多年前的秦汉时期,0.5-的相反数是( )A.0.5B.0.5±C.0.5-D.52.下列图案中,属于轴对称图形的是( )A B C D3.中国幅员辽阔,陆地面积约为960万平方公里.“960万”用科学记数法表示为( )A.70.9610⨯B.69.610⨯C.59610⨯D.29.610⨯4.如图所示的几何体的主视图正确的是( )A B C D5.使代数式433xx+-+有意义的整数x有( )A.5个B.4个C.3个D.2个6.为测量操场上旗杆的高度,小丽同学想到了物理学中平面镜成像的原理.她拿出随身携带的镜子和卷尺,先将镜子放在脚下的地面上,然后后退,直到她站直身子-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------_____________________________刚好能从镜子里看到旗杆的顶端E ,标记好脚掌中心位置为B .测得脚掌中心位置B 到镜面中心C 的距离是50cm ,镜面中心C 距旗杆底部D 的距离为4m ,如图所示.已知小丽同学的身高是1.54m ,眼睛位置A 距离小丽头顶的距离是4cm ,则旗杆DE 的高度等于( )A .10mB .12mC .12.4mD .12.32m 7.关于x 的方程220x mx n ++=的两个根是2-和1,则m n 的值为( )A .8-B .8C .16D .16-8.“赶陀螺”是一项深受人们喜爱的运动.如图所示是一个陀螺的立体结构图.已知底面圆的直径8cm AB =,圆柱体部分的高6cm BC =,圆锥体部分的高3cm CD =,则这个陀螺的表面积是( )A .268πcmB .274πcmC .284πcmD .2100πcm9.如图,矩形ABCD 的对角线AC 与BD 交于点O .过点O 作BD 的垂线分别交AD ,BC 于E ,F 两点.若23AC =,120AEO =︒∠,则FC 的长度为( )A .1B .2C .2D .310.将二次函数2y x =的图象先向下平移1个单位,再向右平移3个单位,得到的图象与一次函数2y x b =+的图象有公共点,则实数b 的取值范围是( ) A .8b >B .8b >-C .8b ≥D .8b ≥-11.如图,Rt ABC △中,30B ∠=︒.点O 是ABC △的重心,连接CO 并延长交AB 于点E ,过点E 作EF AB ⊥交BC 于点F ,连接AF 交CE 于点M ,则MOMF的值为 ( ) A .12B .5C .23D .3312.如图所示,将形状、大小完全相同的“”和线段按照一定规律摆成下列图形.第1幅图形中“”的个数为1a ,第2幅图形中“”的个数为2a ,第3幅图形中“”的个数为3a ,……,以此类推,则123111a a a +++ (19)1a +的值为 ( )A .2021B .6184C .589840D .431760第Ⅱ卷(非选择题 共104分)二、填空题(本大题共6小题,每小题3分,共18分.请把答案填在题中的横线上) 13.因式分解:282a -= .14.关于x 的分式方程211111x x x-=-+-的解是 . 15.如图,将平行四边形ABCO 放置在平面直角坐标系xOy 中,O 为坐标原点.若点A 的坐标是(6,0),点C 的坐标是(1,4),则点B 的坐标是 .16.同时抛掷两枚质地均匀的骰子,则事件“两枚骰子的点数和小于8且为偶数”的概率是 .17.将形状、大小完全相同的两个等腰三角形如图所示放置,点D 在AB 边上.DEF △绕点D 旋转,腰DF 和底边DE 分别交CAB △的两腰CA ,CB 于M ,N 两点.若5CA =,6AB =,:1:3AD AB =,则12MD MA DN+的最小值为 .18.如图,过锐角ABC △的顶点A 作//DE BC ,AB 恰好平分DAC ∠.AF 平分EAC ∠交BC 的延长线于点F .在AF 上取点M ,使得13AM AF =.连接CM 并延长交直线DE 于点H .若2AC =,AMH △的面积是112,则1tan ACH∠的值是 .三、解答题(本大题共7小题,共86分.解答应写出必要的文字说明、证明过程或演算步骤)19.(本小题满分16分,每题8分)(1)计算:2110.04cos 45(2)||2-+︒----;(2)先化简,再求值:222()222x y x yx xy y x xy x y--÷-+--,其中22x =,2y =.20.(本小题满分11分)红星中学课外兴趣活动小组对某水稻品种的稻穗谷粒数目进行调查.从试验田中随机抽取了30株,得到的数据如下(单位:颗):182 195 201 179 208 204 186 192 210 204 175 193 200 203 188 197 212 207 185 206 188 186 198 202 221 199 219 208 187 224(上图所示的扇形统计图中,扇形A 对应的圆心角为 度,扇形B 对应的圆心角为 度; (2)该试验田中大约有3000株水稻.据此估计,其中稻穗谷粒数大于或等于205颗的水稻有多少株?21.(本小题满分11分)江南农场收割小麦.已知1台大型收割机和3台小型收割机1小时可以收割小麦1.4公顷,2台大型收割机和5台小型收割机1小时可以收割小麦2.5公顷.(1)每台大型收割机和每台小型收割机1小时收割小麦各多少公顷?(2)大型收割机每小时费用为300元,小型收割机每小时费用为200元.两种型号的收割机一共有10台.要求2小时完成8公顷小麦的收割任务,且总费用不超过5400元.有几种方案?请指出费用最低的一种方案,并求出相应的费用.22.(本小题满分11分)如图,设反比例函数的解析式为3 (0)ky k x=>. (1)若该反比例函数与正比例函数2y x =的图象有一个交点的纵坐标为2,求k 的值;(2)若该反比例函数与过点(2,0)M -的直线l y kx b =+:的图象交于A ,B 两点,如图所示.当ABO△毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------的面积为163时,求直线l 的解析式.23.(本小题满分11分)如图,已知AB 是圆O 的直径.弦CD AB ⊥,垂足为H .与AC 平行的圆O 的一条切线交CD 的延长线于点M ,交AB 的延长线于点E ,切点为F .连接AF 交CD 于点N . (1)求证:CA CN =;(2)连接DF ,若4cos 5DFA ∠=,AN =.求圆O 的直径的长度.24.(本小题满分12分)如图,已知抛物线2(0)y ax bx c a =++≠的图象的顶点坐标是(2,1),并且经过点(4,2).直线112y x =+与抛物线交于B ,D 两点.以BD 为直径作圆,圆心为点C .圆C 与直线m 交于对称轴右侧的点(t,1)M .直线m 上每一点的纵坐标都等于1. (1)求抛物线的解析式; (2)证明:圆C 与x 轴相切;(3)过点B 作BE m ⊥,垂足为E ,再过点D 作DF m ⊥,垂足为F .求:BE MF 的值.25.(本小题满分14分)如图,已知ABC △中,90C ∠=︒.点M 从点C 出发沿CB 方向以1cm/s 的速度匀速运动,到达点B 停止运动.在点M 的运动过程中,过点M 作直线MN 交AC 于点N ,且保持45NMC =︒∠.再过点N 作AC 的垂线交AB 于点F ,连接MF .将MNF △关于直线NF 对称后得到ENF △.已知8cm AC =,4cm BC =.设点M 运动时间为(s)t ,ENF △与ANF △重叠部分的面积为2)(cm y .(1)在点M 的运动过程中,能否使得四边形MNEF 为正方形?如果能,求出相应的t 值;如果不能,说明理由;(2)求y 关于t 的函数解析式及相应t 的取值范围; (3)当y 取最大值时,求sin NEF ∠的值.四川省绵阳市2017年高中阶段学校招生暨初中学业水平考试数学答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】解:0.5-的相反数是0.5,故选:A. 【提示】根据相反数的定义求解即可. 【考点】相反数的概念 2.【答案】A【解析】解:A ,此图案是轴对称图形,有5条对称轴,此选项符合题意;B.此图案不是轴对称图形,此选项不符合题意;C.此图案不是轴对称图形,而是旋转对称图形,不符合题意;D.此图案不是轴对称图形,不符合题意;故选:A.【提示】根据轴对称图形的定义求解可得. 【考点】轴对称图形的概念 3.【答案】B【解析】解:“960万”用科学记数法表示为69.610⨯,故选:B.2219111111132435461921a ++=+++++⨯⨯⨯⨯⨯11435461921++-⎪⎭222021840⎪⎝⎭【解析】解:画树状图为:4MA DN BD MD MD ==,∴114MA DN MD=12MD MD M A DN D M M +=+ ⎝3MD,即12MA DN有最4 MA DN MD=AH m∴16 m=14AC HG=∴HG tan4ACH HG∠2x y y ⎤-⎥⎦ 2x yy ⎫-⎪⎭2)x yy -谷粒颗数 175185x ≤< 185195x ≤< 195205x ≤< 205215x ≤< 215225x ≤<频数 3 8 10 6 3 对应扇形 图中区域 BDEAC如图所示:1116232223k k +=,解得1116232223k k +=,解方程即可解与O 相切,∴AB ,∴∠BOF OAF =∠+AC ,∴M ∠33圆的半径,∴圆C与x轴相切;10 EF5。
2017年四川省绵阳市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)中国人最早使用负数,可追溯到两千多年前的秦汉时期,﹣0.5的相反数是()A.0.5B.±0.5C.﹣0.5D.52.(3分)下列图案中,属于轴对称图形的是()A.B.C.D.3.(3分)中国幅员辽阔,陆地面积约为960万平方公里,“960万”用科学记数法表示为()A.0.96×107B.9.6×106C.96×105D.9.6×1024.(3分)如图所示的几何体的主视图正确的是()A.B.C.D.5.(3分)使代数式+√4−3x有意义的整数x有()√x+3A.5个B.4个C.3个D.2个6.(3分)为测量操场上旗杆的高度,小丽同学想到了物理学中平面镜成像的原理,她拿出随身携带的镜子和卷尺,先将镜子放在脚下的地面上,然后后退,直到她站直身子刚好能从镜子里看到旗杆的顶端E,标记好脚掌中心位置为B,测得脚掌中心位置B到镜面中心C的距离是50cm,镜面中心C距离旗杆底部D的距离为4m,如图所示.已知小丽同学的身高是1.54m,眼睛位置A距离小丽头顶的距离是4cm,则旗杆DE的高度等于()A.10m B.12m C.12.4m D.12.32m7.(3分)关于x的方程2x2+mx+n=0的两个根是﹣2和1,则n m的值为()A.﹣8B.8C.16D.﹣168.(3分)“赶陀螺”是一项深受人们喜爱的运动,如图所示是一个陀螺的立体结构图,已知底面圆的直径AB=8cm,圆柱体部分的高BC=6cm,圆锥体部分的高CD=3cm,则这个陀螺的表面积是()A.68πcm2B.74πcm2C.84πcm2D.100πcm29.(3分)如图,矩形ABCD的对角线AC与BD交于点O,过点O作BD的垂线分别交AD,BC于E,F两点.若AC=2√3,∠AEO=120°,则FC的长度为()A.1B.2C.√2D.√310.(3分)将二次函数y=x2的图象先向下平移1个单位,再向右平移3个单位,得到的图象与一次函数y=2x+b的图象有公共点,则实数b的取值范围是()A.b>8B.b>﹣8C.b≥8D.b≥﹣811.(3分)如图,直角△ABC中,∠B=30°,点O是△ABC的重心,连接CO并延长交AB于点E,过点E作EF⊥AB交BC于点F,连接AF交CE于点M,则MOMF的值为()A.12B.√54C.23D.√3312.(3分)如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为a1,第2幅图形中“●”的个数为a2,第3幅图形中“●”的个数为a3,…,以此类推,则1a1+1a2+1a3+…+1a19的值为()A.2021B.6184C.589840D.431760二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)分解因式:8a2﹣2=.14.(3分)关于x的分式方程2x−1−1x+1=11−x的解是.15.(3分)如图,将平行四边形ABCO放置在平面直角坐标系xOy中,O为坐标原点,若点A的坐标是(6,0),点C的坐标是(1,4),则点B的坐标是.16.(3分)同时抛掷两枚质地均匀的骰子,则事件“两枚骰子的点数和小于8且为偶数”的概率是.17.(3分)将形状、大小完全相同的两个等腰三角形如图所示放置,点D在AB边上,△DEF绕点D 旋转,腰DF 和底边DE 分别交△CAB 的两腰CA ,CB 于M ,N 两点,若CA=5,AB=6,AD :AB=1:3,则MD +12MA⋅DN的最小值为 .18.(3分)如图,过锐角△ABC 的顶点A 作DE ∥BC ,AB 恰好平分∠DAC ,AF 平分∠EAC 交BC 的延长线于点F .在AF 上取点M ,使得AM=13AF ,连接CM 并延长交直线DE 于点H .若AC=2,△AMH 的面积是112,则1tan∠ACH的值是 .三、解答题(本大题共7小题,共86分) 19.(16分)(1)计算:√0.04+cos 245°﹣(﹣2)﹣1﹣|﹣12| (2)先化简,再求值:(x−y x 2−2xy+y 2﹣x x 2−2xy)÷y x−2y,其中x=2√2,y=√2.20.(11分)红星中学课外兴趣活动小组对某水稻品种的稻穗谷粒数目进行调查,从试验田中随机抽取了30株,得到的数据如下(单位:颗): 182 195 201 179 208 204 186 192 210 204 175 193 200 203 188 197 212 207 185 206 188186198202221199219208187224(1)对抽取的30株水稻稻穗谷粒数进行统计分析,请补全下表中空格,并完善直方图: 谷粒颗数175≤x <185185≤x <195 195≤x <205 205≤x <215 215≤x <225 频数8103对应扇形图中区域D E C如图所示的扇形统计图中,扇形A对应的圆心角为度,扇形B对应的圆心角为度;(2)该试验田中大约有3000株水稻,据此估计,其中稻穗谷粒数大于或等于205颗的水稻有多少株?21.(11分)江南农场收割小麦,已知1台大型收割机和3台小型收割机1小时可以收割小麦1.4公顷,2台大型收割机和5台小型收割机1小时可以收割小麦2.5公顷.(1)每台大型收割机和每台小型收割机1小时收割小麦各多少公顷?(2)大型收割机每小时费用为300元,小型收割机每小时费用为200元,两种型号的收割机一共有10台,要求2小时完成8公顷小麦的收割任务,且总费用不超过5400元,有几种方案?请指出费用最低的一种方案,并求出相应的费用.22.(11分)如图,设反比例函数的解析式为y=3kx(k>0).(1)若该反比例函数与正比例函数y=2x的图象有一个交点的纵坐标为2,求k的值;(2)若该反比例函数与过点M(﹣2,0)的直线l:y=kx+b的图象交于A,B两点,如图所示,当△ABO的面积为163时,求直线l的解析式.23.(11分)如图,已知AB 是圆O 的直径,弦CD ⊥AB ,垂足为H ,与AC 平行的圆O 的一条切线交CD 的延长线于点M ,交AB 的延长线于点E ,切点为F ,连接AF 交CD 于点N . (1)求证:CA=CN ;(2)连接DF ,若cos ∠DFA=45,AN=2√10,求圆O 的直径的长度.24.(12分)如图,已知抛物线y=ax 2+bx +c (a ≠0)的图象的顶点坐标是(2,1),并且经过点(4,2),直线y=12x +1与抛物线交于B ,D 两点,以BD 为直径作圆,圆心为点C ,圆C 与直线m 交于对称轴右侧的点M (t ,1),直线m 上每一点的纵坐标都等于1. (1)求抛物线的解析式; (2)证明:圆C 与x 轴相切;(3)过点B 作BE ⊥m ,垂足为E ,再过点D 作DF ⊥m ,垂足为F ,求BE :MF 的值.25.(14分)如图,已知△ABC中,∠C=90°,点M从点C出发沿CB方向以1cm/s的速度匀速运动,到达点B停止运动,在点M的运动过程中,过点M作直线MN交AC于点N,且保持∠NMC=45°,再过点N作AC的垂线交AB于点F,连接MF,将△MNF关于直线NF对称后得到△ENF,已知AC=8cm,BC=4cm,设点M运动时间为t(s),△ENF与△ANF重叠部分的面积为y(cm2).(1)在点M的运动过程中,能否使得四边形MNEF为正方形?如果能,求出相应的t值;如果不能,说明理由;(2)求y关于t的函数解析式及相应t的取值范围;(3)当y取最大值时,求sin∠NEF的值.2017年四川省绵阳市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)(2017•绵阳)中国人最早使用负数,可追溯到两千多年前的秦汉时期,﹣0.5的相反数是()A.0.5B.±0.5C.﹣0.5D.5【考点】14:相反数.【分析】根据相反数的定义求解即可.【解答】解:﹣0.5的相反数是0.5,故选:A.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.(3分)(2017•绵阳)下列图案中,属于轴对称图形的是()A.B.C.D.【考点】P3:轴对称图形.【分析】根据轴对称图形的定义求解可得.【解答】解:A,此图案是轴对称图形,有5条对称轴,此选项符合题意;B、此图案不是轴对称图形,此选项不符合题意;C、此图案不是轴对称图形,而是旋转对称图形,不符合题意;D、此图案不是轴对称图形,不符合题意;故选:A.【点评】本题主要考查轴对称图形,掌握其定义是解题的关键:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.3.(3分)(2017•绵阳)中国幅员辽阔,陆地面积约为960万平方公里,“960万”用科学记数法表示为()A.0.96×107B.9.6×106C.96×105D.9.6×102【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:“960万”用科学记数法表示为9.6×106,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2017•绵阳)如图所示的几何体的主视图正确的是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】先细心观察原立体图形和正方体的位置关系,结合四个选项选出答案.【解答】解:由图可知,主视图由一个矩形和三角形组成.故选D.【点评】本题考查了学生的思考能力和对几何体三种视图的空间想象能力.5.(3分)(2017•绵阳)使代数式√x+3+√4−3x有意义的整数x有()A.5个B.4个C.3个D.2个【考点】72:二次根式有意义的条件.【分析】根据被开方数是非负数,分母不能为零,可得答案.【解答】解:由题意,得x+3>0且4﹣3x≥0,解得﹣3<x≤4 3,整数有﹣2,﹣1,0,1,故选:B.【点评】本题考查了二次根式有意义的条件,利用被开方数是非负数,分母不能为零得出不等式是解题关键.6.(3分)(2017•绵阳)为测量操场上旗杆的高度,小丽同学想到了物理学中平面镜成像的原理,她拿出随身携带的镜子和卷尺,先将镜子放在脚下的地面上,然后后退,直到她站直身子刚好能从镜子里看到旗杆的顶端E,标记好脚掌中心位置为B,测得脚掌中心位置B到镜面中心C的距离是50cm,镜面中心C距离旗杆底部D的距离为4m,如图所示.已知小丽同学的身高是1.54m,眼睛位置A距离小丽头顶的距离是4cm,则旗杆DE的高度等于()A.10m B.12m C.12.4m D.12.32m【考点】SA:相似三角形的应用.【分析】根据题意得出△ABC∽△EDC,进而利用相似三角形的性质得出答案.【解答】解:由题意可得:AB=1.5m,BC=0.4m,DC=4m,△ABC∽△EDC,则ABED=BCDC,即1.5DE=0.54,解得:DE=12,故选:B.【点评】此题主要考查了相似三角形的应用,正确得出相似三角形是解题关键.7.(3分)(2017•绵阳)关于x的方程2x2+mx+n=0的两个根是﹣2和1,则n m的值为()A.﹣8B.8C.16D.﹣16【考点】AB:根与系数的关系.【分析】由方程的两根结合根与系数的关系可求出m、n的值,将其代入n m中即可求出结论.【解答】解:∵关于x的方程2x2+mx+n=0的两个根是﹣2和1,∴﹣m2=﹣1,n2=﹣2 ∴m=2,n=﹣4,∴n m=(﹣4)2=16.故选C.【点评】本题考查了根与系数的关系,根据方程的两根结合根与系数的关系求出m、n的值是解题的关键.8.(3分)(2017•绵阳)“赶陀螺”是一项深受人们喜爱的运动,如图所示是一个陀螺的立体结构图,已知底面圆的直径AB=8cm,圆柱体部分的高BC=6cm,圆锥体部分的高CD=3cm,则这个陀螺的表面积是()A.68πcm2B.74πcm2C.84πcm2D.100πcm2【考点】MP:圆锥的计算;I4:几何体的表面积.【分析】圆锥的表面积加上圆柱的侧面积即可求得其表面积.【解答】解:∵底面圆的直径为8cm,高为3cm,∴母线长为5cm,∴其表面积=π×4×5+42π+8π×6=84πcm2,故选C.【点评】考查了圆锥的计算及几何体的表面积的知识,解题的关键是能够了解圆锥的有关的计算方法,难度不大.9.(3分)(2017•绵阳)如图,矩形ABCD的对角线AC与BD交于点O,过点O作BD的垂线分别交AD,BC于E,F两点.若AC=2√3,∠AEO=120°,则FC的长度为()A.1B.2C.√2D.√3【考点】LB:矩形的性质;KD:全等三角形的判定与性质;T7:解直角三角形.【分析】先根据矩形的性质,推理得到OF=CF,再根据Rt△BOF求得OF的长,即可得到CF 的长.【解答】解:∵EF⊥BD,∠AEO=120°,∴∠EDO=30°,∠DEO=60°,∵四边形ABCD是矩形,∴∠OBF=∠OCF=30°,∠BFO=60°,∴∠FOC=60°﹣30°=30°,∴OF=CF,又∵Rt△BOF中,BO=12BD=12AC=√3,∴OF=tan30°×BO=1,∴CF=1,故选:A.【点评】本题主要考查了矩形的性质以及解直角三角形的运用,解决问题的关键是掌握:矩形的对角线相等且互相平分.10.(3分)(2017•绵阳)将二次函数y=x2的图象先向下平移1个单位,再向右平移3个单位,得到的图象与一次函数y=2x+b的图象有公共点,则实数b的取值范围是()A.b>8B.b>﹣8C.b≥8D.b≥﹣8【考点】H6:二次函数图象与几何变换;F7:一次函数图象与系数的关系.【分析】先根据平移原则:上→加,下→减,左→加,右→减写出解析式,再列方程组,有公共点则△≥0,则可求出b的取值.【解答】解:由题意得:平移后得到的二次函数的解析式为:y=(x﹣3)2﹣1,则{y=(x−3)2−1 y=2x+b,(x﹣3)2﹣1=2x+b,x2﹣8x+8﹣b=0,△=(﹣8)2﹣4×1×(8﹣b)≥0,b≥﹣8,故选D.【点评】主要考查的是函数图象的平移和两函数的交点问题,两函数有公共点:说明两函数有一个交点或两个交点,可利用方程组→一元二次方程→△≥0的问题解决.11.(3分)(2017•绵阳)如图,直角△ABC中,∠B=30°,点O是△ABC的重心,连接CO并延长交AB于点E,过点E作EF⊥AB交BC于点F,连接AF交CE于点M,则MOMF的值为()A.12B.√54C.23D.√33【考点】K5:三角形的重心;S9:相似三角形的判定与性质.【分析】根据三角形的重心性质可得OC=23CE,根据直角三角形的性质可得CE=AE,根据等边三角形的判定和性质得到CM=12CE,进一步得到OM=16CE,即OM=16AE,根据垂直平分线的性质和含30°的直角三角形的性质可得EF=√33AE,MF=12EF,依此得到MF=√36AE,从而得到MOMF的值.【解答】解:∵点O是△ABC的重心,∴OC=23 CE,∵△ABC是直角三角形,∴CE=BE=AE ,∵∠B=30°,∴∠FAE=∠B=30°,∠BAC=60°,∴∠FAE=∠CAF=30°,△ACE 是等边三角形,∴CM=12CE , ∴OM=23CE ﹣12CE=16CE ,即OM=16AE , ∵BE=AE ,∴EF=√33AE , ∵EF ⊥AB ,∴∠AFE=60°,∴∠FEM=30°,∴MF=12EF , ∴MF=√36AE , ∴MO MF =16AE √36AE =√33. 故选:D .【点评】考查了三角形的重心,等边三角形的判定和性质,垂直平分线的性质,含30°的直角三角形的性质,关键是得到OM=16AE ,MF=√36AE . 12.(3分)(2017•绵阳)如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为a 1,第2幅图形中“●”的个数为a 2,第3幅图形中“●”的个数为a 3,…,以此类推,则1a 1+1a 2+1a 3+…+1a 19的值为( )A.2021B.6184C.589840D.431760【考点】38:规律型:图形的变化类.【分析】首先根据图形中“●”的个数得出数字变化规律,进而求出即可.【解答】解:a1=3=1×3,a2=8=2×4,a3=15=3×5,a4=24=4×6,…,a n=n(n+2);∴1a1+1a2+1a3+…+1a19=11×3+12×4+13×5+14×6+…+119×21=12(1﹣13+12﹣14+13﹣15+14﹣16+…+119﹣121)=12(1+12﹣120﹣121)=589840,故选C.【点评】此题考查图形的变化规律,找出图形之间的联系,找出规律解决问题.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)(2017•绵阳)分解因式:8a2﹣2=2(2a+1)(2a﹣1).【考点】55:提公因式法与公式法的综合运用.【分析】先提取公因式2,再根据平方差公式进行二次分解即可求得答案.【解答】解:8a2﹣2,=2(4a2﹣1),=2(2a+1)(2a﹣1).故答案为:2(2a+1)(2a﹣1).【点评】本题考查了提公因式法,公式法分解因式.注意分解要彻底.14.(3分)(2017•绵阳)关于x的分式方程2x−1−1x+1=11−x的解是﹣2.【考点】B3:解分式方程.【分析】把分式方程转化为整式方程即可解决问题.【解答】解:两边乘(x+1)(x﹣1)得到,2x+2﹣(x﹣1)=﹣(x+1),解得x=﹣2,经检验,x=﹣2是分式方程的解.∴x=﹣2.故答案为﹣2.【点评】本题考查分式方程的解,记住即为分式方程的步骤,注意解分式方程必须检验.15.(3分)(2017•绵阳)如图,将平行四边形ABCO放置在平面直角坐标系xOy中,O为坐标原点,若点A的坐标是(6,0),点C的坐标是(1,4),则点B的坐标是(7,4).【考点】L5:平行四边形的性质;D5:坐标与图形性质.【分析】根据平行四边形的性质及A点和C的坐标求出点B的坐标即可.【解答】解:∵四边形ABCO是平行四边形,O为坐标原点,点A的坐标是(6,0),点C的坐标是(1,4),∴BC=OA=6,6+1=7,∴点B的坐标是(7,4);故答案为:(7,4).【点评】本题考查了平行四边形的性质、坐标与图形性质;熟练掌握平行四边形的性质是解决问题的关键.16.(3分)(2017•绵阳)同时抛掷两枚质地均匀的骰子,则事件“两枚骰子的点数和小于8且为偶数”的概率是14.【考点】X6:列表法与树状图法.【专题】11 :计算题.【分析】画树状图展示所有36种等可能的结果数,再找出“两枚骰子的点数和小于8且为偶数”的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有36种等可能的结果数,其中“两枚骰子的点数和小于8且为偶数”的结果数为9,所以“两枚骰子的点数和小于8且为偶数”的概率=936=14. 故答案为14. 【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式求事件A 或B 的概率.17.(3分)(2017•绵阳)将形状、大小完全相同的两个等腰三角形如图所示放置,点D 在AB 边上,△DEF 绕点D 旋转,腰DF 和底边DE 分别交△CAB 的两腰CA ,CB 于M ,N 两点,若CA=5,AB=6,AD :AB=1:3,则MD +12MA⋅DN的最小值为 2√3 .【考点】S9:相似三角形的判定与性质;KH :等腰三角形的性质;R2:旋转的性质.【分析】先求出AD=2,BD=4,根据三角形的一个外角等于与它不相邻的两个内角的和可得∠AMD +∠A=∠EDF +∠BDN ,然后求出∠AMD=∠BDN ,从而得到△AMD 和△BDN 相似,根据相似三角形对应边成比例可得MA BD =MD DN,求出MA•DN=4MD ,再将所求代数式整理出完全平方的形式,然后根据非负数的性质求出最小值即可.【解答】解:∵AB=6,AD :AB=1:3,∴AD=6×13=2,BD=6﹣2=4, ∵△ABC 和△FDE 是形状、大小完全相同的两个等腰三角形,∴∠A=∠B=∠FDE ,由三角形的外角性质得,∠AMD +∠A=∠EDF +∠BDN ,∴∠AMD=∠BDN ,∴△AMD ∽△BDN ,∴MA BD =MD DN =AD BN, ∴MA•DN=BD•MD=4MD ,∴1MA⋅DN =14MD ,∴MD +12MA⋅DN =MD +3MD=(√MD )2+(√3MD )2﹣2√3+2√3=(√MD ﹣√3MD )2+2√3, ∴√MD =√3MD ,即MD=√3, 如图,连接CD ,过点C 作CG ⊥AB 于G ,∵AC=BC=5,AB=6,∴AG=3,CG=4,∴DG=AG ﹣AD=3﹣2=1,在Rt △CDG 中,根据勾股定理得,CD=√DG 2+CG 2=√17当点M 和点C 重合时,DM 最大,即:DM 最大=√17当DM ⊥AC 时,DM 最小,过点D 作DH ⊥AC 于H ,即:DM 最小=DH ,在Rt △ACG 中,sin ∠A=CG AC =45, 在Rt △ADH 中,sin ∠A=DH AD ,∴DH=ADsin ∠A=2×45=85, ∵85≤DM ≤√17, ∴DM=√3时,MD +12MA⋅DN有最小值为2√3. 故答案为:2√3.【点评】本题考查了相似三角形的判定与性质,等腰三角形的性质,旋转变换,难点在于将所求代数式整理出完全平方的形式从而判断出最小值.18.(3分)(2017•绵阳)如图,过锐角△ABC 的顶点A 作DE ∥BC ,AB 恰好平分∠DAC ,AF平分∠EAC 交BC 的延长线于点F .在AF 上取点M ,使得AM=13AF ,连接CM 并延长交直线DE 于点H .若AC=2,△AMH 的面积是112,则1tan∠ACH的值是 8﹣√15 .【考点】S9:相似三角形的判定与性质;T7:解直角三角形.【分析】过点H 作HG ⊥AC 于点G ,由于AF 平分∠CAE ,DE ∥BF ,∠HAF=∠AFC=∠CAF ,从而AC=CF=2,利用△AHM ∽△FCM ,AM MF =AH CF ,从而可求出AH=1,利用△AMH 的面积是112,从而可求出HG ,利用勾股定理即可求出CG 的长度,所以1tan∠ACH =CG HG. 【解答】解:过点H 作HG ⊥AC 于点G ,∵AF 平分∠CAE ,DE ∥BF ,∴∠HAF=∠AFC=∠CAF ,∴AC=CF=2,∵AM=13AF , ∴AM MF =12, ∵DE ∥CF ,∴△AHM ∽△FCM ,∴AM MF =AH CF, ∴AH=1,设△AHM 中,AH 边上的高为m , △FCM 中CF 边上的高为n , ∴m n =AM MF =12, ∵△AMH 的面积为:112, ∴112=12AH•m ∴m=16, ∴n=13, 设△AHC 的面积为S ,∴SS △AHM =m+n m =3,∴S=3S △AHM =14, ∴12AC•HG=14, ∴HG=14, ∴由勾股定理可知:AG=√154, ∴CG=AC ﹣AG=2﹣√154∴1tan∠ACH =CGHG=8﹣√15故答案为:8﹣√15【点评】本题考查相似三角形综合问题,解题的关键是通过相似三角形的性质求出HG 、CG 、AH 长度,本题属于难题.三、解答题(本大题共7小题,共86分) 19.(16分)(2017•绵阳)(1)计算:√0.04+cos 245°﹣(﹣2)﹣1﹣|﹣12| (2)先化简,再求值:(x−y x 2−2xy+y2﹣x x 2−2xy)÷y x−2y,其中x=2√2,y=√2.【考点】6D :分式的化简求值;2C :实数的运算;6F :负整数指数幂;T5:特殊角的三角函数值.【分析】(1)根据特殊角的三角函数值、负整数指数幂、绝对值可以解答本题;(2)根据分式的减法和除法可以化简题目中的式子,然后将x 、y 的值代入化简后的式子即可解答本题.【解答】解:(1)√0.04+cos 245°﹣(﹣2)﹣1﹣|﹣12| =0.2+(√22)2−(−12)−12=0.2+12+12−12=0.7;(2)(x−yx −2xy+y ﹣xx −2xy )÷yx−2y=[x−y (x−y)2−x x(x−2y)]⋅x−2y y =(1x−y −1x−2y )⋅x−2yy=x−2y−x+y (x−y)(x−2y)⋅x−2y y=−y y(x−y)=1y−x,当x=2√2,y=√2时,原式=√2−2√2=−√2=−√22. 【点评】本题考查分式的化简求值、特殊角的三角函数值、负整数指数幂、绝对值,解答本题的关键是明确它们各自的计算方法.20.(11分)(2017•绵阳)红星中学课外兴趣活动小组对某水稻品种的稻穗谷粒数目进行调查,从试验田中随机抽取了30株,得到的数据如下(单位:颗): 182 195 201 179 208 204 186 192 210 204 175 193 200 203 188 197 212 207 185 206 188186198202221199219208187224(1)对抽取的30株水稻稻穗谷粒数进行统计分析,请补全下表中空格,并完善直方图: 谷粒颗数175≤x <185185≤x <195 195≤x <205 205≤x <215 215≤x <225 频数 3 8 10 6 3 对应扇形 图中区域BDEAC如图所示的扇形统计图中,扇形A 对应的圆心角为 72 度,扇形B 对应的圆心角为 36 度;(2)该试验田中大约有3000株水稻,据此估计,其中稻穗谷粒数大于或等于205颗的水稻有多少株?【考点】V8:频数(率)分布直方图;V5:用样本估计总体;V7:频数(率)分布表;VB :扇形统计图.【分析】(1)根据表格中数据填表画图即可,利用360°×其所占的百分比求出扇形对应的圆心角度数;(2)用360°乘以样本中稻穗谷粒数大于或等于205颗的水稻所占百分比即可. 【解答】解:(1)填表如下: 谷粒颗数175≤x <185185≤x <195 195≤x <205 205≤x <215 215≤x <225 频数 3 8 10 6 3 对应扇形 图中区域 BDEAC如图所示:如图所示的扇形统计图中,扇形A 对应的圆心角为:360°×630=72度,扇形B 对应的圆心角为360°×330=36度.故答案为3,6,B ,A ,72,36;(2)3000×6+330=900.即据此估计,其中稻穗谷粒数大于或等于205颗的水稻有900株.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了利用样本估计总体.21.(11分)(2017•绵阳)江南农场收割小麦,已知1台大型收割机和3台小型收割机1小时可以收割小麦1.4公顷,2台大型收割机和5台小型收割机1小时可以收割小麦2.5公顷. (1)每台大型收割机和每台小型收割机1小时收割小麦各多少公顷?(2)大型收割机每小时费用为300元,小型收割机每小时费用为200元,两种型号的收割机一共有10台,要求2小时完成8公顷小麦的收割任务,且总费用不超过5400元,有几种方案?请指出费用最低的一种方案,并求出相应的费用.【考点】CE :一元一次不等式组的应用;9A :二元一次方程组的应用.【分析】(1)设每台大型收割机1小时收割小麦x 公顷,每台小型收割机1小时收割小麦y 公顷,根据“1台大型收割机和3台小型收割机1小时可以收割小麦1.4公顷,2台大型收割机和5台小型收割机1小时可以收割小麦2.5公顷”,即可得出关于x 、y 的二元一次方程组,解之即可得出结论;(2)设大型收割机有m 台,总费用为w 元,则小型收割机有(10﹣m )台,根据总费用=大型收割机的费用+小型收割机的费用,即可得出w 与m 之间的函数关系式,由“要求2小时完成8公顷小麦的收割任务,且总费用不超过5400元”,即可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围,依此可找出各方案,再结合一次函数的性质即可解决最值问题. 【解答】解:(1)设每台大型收割机1小时收割小麦x 公顷,每台小型收割机1小时收割小麦y 公顷,根据题意得:{x +3y =1.42x +5y =2.5,解得:{x =0.5y =0.3.答:每台大型收割机1小时收割小麦0.5公顷,每台小型收割机1小时收割小麦0.3公顷. (2)设大型收割机有m 台,总费用为w 元,则小型收割机有(10﹣m )台, 根据题意得:w=300×2m +200×2(10﹣m )=200m +4000. ∵2小时完成8公顷小麦的收割任务,且总费用不超过5400元, ∴{2×0.5m +2×0.3(10−m)≥8200m +4000≤5400,解得:5≤m ≤7, ∴有三种不同方案.∵w=200m +4000中,200>0, ∴w 值随m 值的增大而增大,∴当m=5时,总费用取最小值,最小值为5000元.答:有三种方案,当大型收割机和小型收割机各5台时,总费用最低,最低费用为5000元. 【点评】本题考查了二元一次方程组的应用、一次函数的性质以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,列出二元一次方程组;(2)根据总费用=大型收割机的费用+小型收割机的费用,找出w 与m 之间的函数关系式. 22.(11分)(2017•绵阳)如图,设反比例函数的解析式为y=3k x(k >0).(1)若该反比例函数与正比例函数y=2x 的图象有一个交点的纵坐标为2,求k 的值; (2)若该反比例函数与过点M (﹣2,0)的直线l :y=kx +b 的图象交于A ,B 两点,如图所示,当△ABO 的面积为163时,求直线l 的解析式.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)由题意可得A (1,2),利用待定系数法即可解决问题;(2)把M (﹣2,0)代入y=kx +b ,可得b=2k ,可得y=kx +2k ,由{y =3kx y =kx +2k消去y 得到x 2+2x ﹣3=0,解得x=﹣3或1,推出B (﹣3,﹣k ),A (1,3k ),根据△ABO 的面积为163,可得12•2•3k +12•2•k=163,解方程即可解决问题;【解答】解:(1)由题意A (1,2),把A (1,2)代入y=3kx ,得到3k=2,∴k=23.(2)把M (﹣2,0)代入y=kx +b ,可得b=2k , ∴y=kx +2k ,由{y =3k x y =kx +2k消去y 得到x 2+2x ﹣3=0,解得x=﹣3或1, ∴B (﹣3,﹣k ),A (1,3k ),∵△ABO 的面积为163,∴12•2•3k +12•2•k=163, 解得k=43,∴直线l 的解析式为y=43x +83.【点评】本题考查一次函数与反比例函数图象的交点、待定系数法、二元一次方程组等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.(11分)(2017•绵阳)如图,已知AB 是圆O 的直径,弦CD ⊥AB ,垂足为H ,与AC 平行的圆O 的一条切线交CD 的延长线于点M ,交AB 的延长线于点E ,切点为F ,连接AF 交CD 于点N .(1)求证:CA=CN ;(2)连接DF ,若cos ∠DFA=45,AN=2√10,求圆O 的直径的长度.【考点】MC:切线的性质;KQ:勾股定理;M5:圆周角定理;T7:解直角三角形.【分析】(1)连接OF,根据切线的性质结合四边形内角和为360°,即可得出∠M+∠FOH=180°,由三角形外角结合平行线的性质即可得出∠M=∠C=2∠OAF,再通过互余利用角的计算即可得出∠CAN=90°﹣∠OAF=∠ANC,由此即可证出CA=CN;(2)连接OC,由圆周角定理结合cos∠DFA=45、AN=2√10,即可求出CH、AH的长度,设圆的半径为r,则OH=r﹣6,根据勾股定理即可得出关于r的一元一次方程,解之即可得出r,再乘以2即可求出圆O直径的长度.【解答】(1)证明:连接OF,则∠OAF=∠OFA,如图所示.∵ME与⊙O相切,∴OF⊥ME.∵CD⊥AB,∴∠M+∠FOH=180°.∵∠BOF=∠OAF+∠OFA=2∠OAF,∠FOH+∠BOF=180°,∴∠M=2∠OAF.∵ME∥AC,∴∠M=∠C=2∠OAF.∵CD⊥AB,∴∠ANC+∠OAF=∠BAC+∠C=90°,∴∠ANC=90°﹣∠OAF,∠BAC=90°﹣∠C=90°﹣2∠OAF,∴∠CAN=∠OAF+∠BAC=90°﹣∠OAF=∠ANC,∴CA=CN .(2)连接OC ,如图2所示.∵cos ∠DFA=45,∠DFA=∠ACH ,∴CH AC =45. 设CH=4a ,则AC=5a ,AH=3a , ∵CA=CN , ∴NH=a ,∴AN=√AH 2+NH 2=√(3a)2+a 2=√10a=2√10, ∴a=2,AH=3a=6,CH=4a=8. 设圆的半径为r ,则OH=r ﹣6,在Rt △OCH 中,OC=r ,CH=8,OH=r ﹣6, ∴OC 2=CH 2+OH 2,r 2=82+(r ﹣6)2,解得:r=253,∴圆O 的直径的长度为2r=503.【点评】本题考查了切线的性质、勾股定理、解直角三角形、圆周角定理以及解一元一次方程,解题的关键是:(1)通过角的计算找出∠CAN=90°﹣∠OAF=∠ANC;(2)利用解直角三角形求出CH、AH的长度.24.(12分)(2017•绵阳)如图,已知抛物线y=ax2+bx+c(a≠0)的图象的顶点坐标是(2,1),并且经过点(4,2),直线y=12x+1与抛物线交于B,D两点,以BD为直径作圆,圆心为点C,圆C与直线m交于对称轴右侧的点M(t,1),直线m上每一点的纵坐标都等于1.(1)求抛物线的解析式;(2)证明:圆C与x轴相切;(3)过点B作BE⊥m,垂足为E,再过点D作DF⊥m,垂足为F,求BE:MF的值.【考点】HF:二次函数综合题.【分析】(1)可设抛物线的顶点式,再结合抛物线过点(4,2),可求得抛物线的解析式;(2)联立直线和抛物线解析式可求得B、D两点的坐标,则可求得C点坐标和线段BD的长,可求得圆的半径,可证得结论;(3)过点C作CH⊥m于点H,连接CM,可求得MH,利用(2)中所求B、D的坐标可求得FH,则可求得MF和BE的长,可求得其比值.【解答】解:(1)∵已知抛物线y=ax2+bx+c(a≠0)的图象的顶点坐标是(2,1),∴可设抛物线解析式为y=a(x﹣2)2+1,∵抛物线经过点(4,2),∴2=a(4﹣2)2+1,解得a=1 4,∴抛物线解析式为y=14(x ﹣2)2+1=14x 2﹣x +2;(2)联立直线和抛物线解析式可得{y =14x 2−x +2y =12x +1,解得{x =3−√5y =52−√52或{x =3+√5y =52+√52, ∴B (3﹣√5,52﹣√52),D (3+√5,52+√52),∵C 为BD 的中点,∴点C 的纵坐标为52−√52+52+√522=52, ∵BD=√[(3−√5)−(3+√5)]+[(52−52)−(52+52)]=5, ∴圆的半径为52,∴点C 到x 轴的距离等于圆的半径, ∴圆C 与x 轴相切;(3)如图,过点C 作CH ⊥m ,垂足为H ,连接CM ,由(2)可知CM=52,CH=52﹣1=32,在Rt △CMH 中,由勾股定理可求得MH=2,∵HF=3+√5−(3−√5)2=√5,∴MF=HF ﹣MH=√5﹣2,。
2017年四川省绵阳市中考数学试卷(含答案)一、选择题(本大题共12小题,每小题3分,共36分)1.中国人最早使用负数,可追溯到两千多年前的秦汉时期,﹣0.5的相反数是()A.0.5B.±0.5C.﹣0.5D.5【答案】A.【解析】试题分析:﹣0.5的相反数是0.5,故选A.考点:相反数.2.下列图案中,属于轴对称图形的是()A.B.C.D.【答案】A.考点:轴对称图形.3.中国幅员辽阔,陆地面积约为960万平方公里,“960万”用科学记数法表示为()A.0.96×107B.9.6×106C.96×105D.9.6×102【答案】B.【解析】试题分析:“960万”用科学记数法表示为9.6×106,故选B.考点:科学记数法—表示较大的数.4.如图所示的几何体的主视图正确的是()A .B .C .D .【答案】D .考点:简单组合体的三视图. 5.使代数式x x 3431-++有意义的整数x 有( )A .5个B .4个C .3个D .2个 【答案】B . 【解析】试题分析:由题意,得x +3>0且4﹣3x ≥0,解得﹣3<x ≤43,整数有﹣2,﹣1,0,1,故选B .学.科.网 考点:二次根式有意义的条件.6.为测量操场上旗杆的高度,小丽同学想到了物理学中平面镜成像的原理,她拿出随身携带的镜子和卷尺,先将镜子放在脚下的地面上,然后后退,直到她站直身子刚好能从镜子里看到旗杆的顶端E ,标记好脚掌中心位置为B ,测得脚掌中心位置B 到镜面中心C 的距离是50cm ,镜面中心C 距离旗杆底部D 的距离为4m ,如图所示.已知小丽同学的身高是1.54m ,眼睛位置A 距离小丽头顶的距离是4cm ,则旗杆DE 的高度等于( )A .10mB .12mC .12.4mD .12.32m 【答案】B . 【解析】试题分析:由题意可得:AB =1.5m ,BC =0.4m ,DC =4m ,△ABC ∽△EDC ,则AB BC ED DC =,即1.50.54DE =,解得:DE =12,故选B . 考点:相似三角形的应用.7.关于x 的方程022=++n mx x 的两个根是﹣2和1,则mn 的值为( ) A .﹣8 B .8 C .16 D .﹣16 【答案】C .考点:根与系数的关系.8.“赶陀螺”是一项深受人们喜爱的运动,如图所示是一个陀螺的立体结构图,已知底面圆的直径AB =8cm ,圆柱体部分的高BC =6cm ,圆锥体部分的高CD =3cm ,则这个陀螺的表面积是( )A .68πcm 2B .74πcm 2C .84πcm 2D .100πcm 2 【答案】C . 【解析】试题分析:∵底面圆的直径为8cm ,高为3cm ,∴母线长为5cm ,∴其表面积=π×4×5+42π+8π×6=84πcm 2,故选C .考点:圆锥的计算;几何体的表面积.9.如图,矩形ABCD 的对角线AC 与BD 交于点O ,过点O 作BD 的垂线分别交AD ,BC 于E ,F 两点.若AC =23,∠AEO =120°,则FC 的长度为( )A .1B .2C .2D .3 【答案】A .考点:矩形的性质;全等三角形的判定与性质;解直角三角形.10.将二次函数2x y =的图象先向下平移1个单位,再向右平移3个单位,得到的图象与一次函数y =2x +b 的图象有公共点,则实数b 的取值范围是( )A .b >8B .b >﹣8C .b ≥8D .b ≥﹣8 【答案】D . 【解析】试题分析:由题意得:平移后得到的二次函数的解析式为:2(3)1y x =-- ,则2(3)12y x y x b⎧=--⎨=+⎩,2(3)12x x b --=+,2880x x b -+-=,△=(﹣8)2﹣4×1×(8﹣b )≥0,b ≥﹣8,故选D .考点:二次函数图象与几何变换;一次函数图象与系数的关系.11.如图,直角△ABC 中,∠B =30°,点O 是△ABC 的重心,连接CO 并延长交AB 于点E ,过点E 作EF ⊥AB 交BC 于点F ,连接AF 交CE 于点M ,则MOMF的值为( )A.12B.54C.23D.33【答案】D.考点:三角形的重心;相似三角形的判定与性质;综合题.12.如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为a1,第2幅图形中“●”的个数为a2,第3幅图形中“●”的个数为a3,…,以此类推,则193211111aaaa++++Λ的值为()A.2120B.8461C.840589D.760421【答案】C.【解析】试题分析:a1=3=1×3,a2=8=2×4,a3=15=3×5,a4=24=4×6,…,a n=n(n+2);∴193211111aaaa++++Λ=11111...132435461921+++++⨯⨯⨯⨯⨯=1111111111(1...)232435461921-+-+-+-++-=1111(1)222021+--=840589,故选C.考点:规律型:图形的变化类;综合题.二、填空题(本大题共6小题,每小题3分,共18分)13.分解因式:282a-= .【答案】2(2a+1)(2a﹣1).【解析】试题分析:282a-=22(41)a- =2(2a+1)(2a﹣1).故答案为:2(2a+1)(2a﹣1).考点:提公因式法与公式法的综合运用.14.关于x的分式方程xxx-=+--111112的解是.【答案】x=﹣2.考点:解分式方程.15.如图,将平行四边形ABCO放置在平面直角坐标系xOy中,O为坐标原点,若点A的坐标是(6,0),点C的坐标是(1,4),则点B的坐标是.【答案】(7,4).【解析】试题分析:∵四边形ABCO是平行四边形,O为坐标原点,点A的坐标是(6,0),点C的坐标是(1,4),∴BC=OA=6,6+1=7,∴点B的坐标是(7,4);故答案为:(7,4).考点:平行四边形的性质;坐标与图形性质.16.同时抛掷两枚质地均匀的骰子,则事件“两枚骰子的点数和小于8且为偶数”的概率是.【答案】14.考点:列表法与树状图法.17.将形状、大小完全相同的两个等腰三角形如图所示放置,点D在AB边上,△DEF绕点D旋转,腰DF和底边DE分别交△CAB的两腰CA,CB于M,N两点,若CA=5,AB=6,AB=1:3,则MD+12MA DN⋅的最小值为.【答案】3.【解析】试题分析:∵AB=6,AB=1:3,∴AD=6×13=2,BD=6﹣2=4,∵△ABC和△FDE是形状、大小完全相同的两个等腰三角形,∴∠A=∠B=∠FDE,由三角形的外角性质得,∠AMD+∠A=∠EDF+∠BDN,∴∠AMD=∠BDN,∴△AMD∽△BDN,∴MA MDBD DN=,∴MA•DN=BD•MD=4MD,∴MD+12MA DN⋅=MD+3MD=223))233MDMD+-=23()3MDMD+,∴当3MD MD =,即MD =3时MD +12MA DN⋅有最小值为23.故答案为:23.学&科.网 考点:相似三角形的判定与性质;等腰三角形的性质;旋转的性质;最值问题;综合题.18.如图,过锐角△ABC 的顶点A 作DE ∥BC ,AB 恰好平分∠DAC ,AF 平分∠EAC 交BC 的延长线于点F .在AF 上取点M ,使得AM =13AF ,连接CM 并延长交直线DE 于点H .若AC =2,△AMH 的面积是112,则ACH∠tan 1的值是 .【答案】815-.815-.考点:相似三角形的判定与性质;解直角三角形;综合题.三、解答题(本大题共7小题,共86分)19.(1)计算:|21|)2(45cos 04.012----+-; (2)先化简,再求值:y x yxyx x y xy x y x 2)22(222-÷--+--,其中x =22y 2.【答案】(1)0.7;(2)1 yx-,22-.=22()(2)x y x y x yx y x y y--+-⋅--=()yy x y--=1y x-当x=22y2222-2-=2考点:分式的化简求值;实数的运算;负整数指数幂;特殊角的三角函数值.20.红星中学课外兴趣活动小组对某水稻品种的稻穗谷粒数目进行调查,从试验田中随机抽取了30株,得到的数据如下(单位:颗):182195201179208204186192210204175193200203188197212207185206188186198202221199219208187224(1)对抽取的30株水稻稻穗谷粒数进行统计分析,请补全下表中空格,并完善直方图:谷粒颗数175≤x<185185≤x<195195≤x<205205≤x<215215≤x<225频数8103对应扇形图中区域D E C如图所示的扇形统计图中,扇形A对应的圆心角为度,扇形B对应的圆心角为度;(2)该试验田中大约有3000株水稻,据此估计,其中稻穗谷粒数大于或等于205颗的水稻有多少株?【答案】(1)3,6,B,A,72,36;(2)900.试题解析:(1)填表如下:谷粒颗数175≤x<185185≤x<195195≤x<205205≤x<215215≤x<225频数3810 6 3对应扇形图中区域B D E AC 如图所示:如图所示的扇形统计图中,扇形A对应的圆心角为:360°×630=72度,扇形B对应的圆心角为360°×330=36度.故答案为:3,6,B,A,72,36;(2)3000×6330+=900.即据此估计,其中稻穗谷粒数大于或等于205颗的水稻有900株.考点:频数(率)分布直方图;用样本估计总体;频数(率)分布表;扇形统计图.21.江南农场收割小麦,已知1台大型收割机和3台小型收割机1小时可以收割小麦1.4公顷,2台大型收割机和5台小型收割机1小时可以收割小麦2.5公顷.(1)每台大型收割机和每台小型收割机1小时收割小麦各多少公顷?(2)大型收割机每小时费用为300元,小型收割机每小时费用为200元,两种型号的收割机一共有10台,要求2小时完成8公顷小麦的收割任务,且总费用不超过5400元,有几种方案?请指出费用最低的一种方案,并求出相应的费用.【答案】(1)每台大型收割机1小时收割小麦0.5公顷,每台小型收割机1小时收割小麦0.3公顷;(2)有三种方案,当大型收割机和小型收割机各5台时,总费用最低,最低费用为5000元.试题解析:(1)设每台大型收割机1小时收割小麦x公顷,每台小型收割机1小时收割小麦y公顷,根据题意得:3 1.425 2.5x yx y+=⎧⎨+=⎩,解得:0.50.3xy=⎧⎨=⎩.答:每台大型收割机1小时收割小麦0.5公顷,每台小型收割机1小时收割小麦0.3公顷.(2)设大型收割机有m台,总费用为w元,则小型收割机有(10﹣m)台,根据题意得:w=300×2m+200×2(10﹣m)=200m+4000.∵2小时完成8公顷小麦的收割任务,且总费用不超过5400元,∴20.520.3(10)8 20040005400m mm⨯+⨯-≥⎧⎨+≤⎩,解得:5≤m≤7,∴有三种不同方案.∵w=200m+4000中,200>0,∴w值随m值的增大而增大,∴当m=5时,总费用取最小值,最小值为5000元.答:有三种方案,当大型收割机和小型收割机各5台时,总费用最低,最低费用为5000元.考点:一元一次不等式组的应用;二元一次方程组的应用;方案型;最值问题.22.如图,设反比例函数的解析式为3k yx=(k>0).(1)若该反比例函数与正比例函数y=2x的图象有一个交点的纵坐标为2,求k的值;(2)若该反比例函数与过点M(﹣2,0)的直线l:y=kx+b的图象交于A,B两点,如图所示,当△ABO 的面积为163时,求直线l的解析式.【答案】(1)23k=;(2)4833y x=+.方程即可解决问题;试题解析:(1)由题意A(1,2),把A(1,2)代入3kyx=,得到3k=2,∴23k=.(2)把M(﹣2,0)代入y=kx+b,可得b=2k,∴y=kx+2k,由32kyxy kx k⎧=⎪⎨⎪=+⎩消去y得到2230x x+-=,解得x=﹣3或1,∴B(﹣3,﹣k),A(1,3k),∵△ABO的面积为163,∴12•23k+12•2k=163,解得k=43,∴直线l的解析式为4833y x=+.考点:反比例函数与一次函数的交点问题.23.如图,已知AB 是圆O 的直径,弦CD ⊥AB ,垂足为H ,与AC 平行的圆O 的一条切线交CD 的延长线于点M ,交AB 的延长线于点E ,切点为F ,连接AF 交CD 于点N . (1)求证:CA =CN ; (2)连接DF ,若cos ∠DF A =45,AN =210,求圆O 的直径的长度.【答案】(1)证明见解析;(2)503. 的长度.试题解析:(1)证明:连接OF ,则∠OAF =∠OF A ,如图所示. ∵ME 与⊙O 相切,∴OF ⊥ME .∵CD ⊥AB ,∴∠M +∠FOH =180°. ∵∠BOF =∠OAF +∠OF A =2∠OAF ,∠FOH +∠BOF =180°,∴∠M =2∠OAF . ∵ME ∥AC ,∴∠M =∠C =2∠OAF .∵CD ⊥AB ,∴∠ANC +∠OAF =∠BAC +∠C =90°,∴∠ANC =90°﹣∠OAF ,∠BAC =90°﹣∠C =90°﹣2∠OAF ,∴∠CAN =∠OAF +∠BAC =90°﹣∠OAF =∠ANC ,∴CA =CN . (2)连接OC ,如图2所示. ∵cos ∠DF A =45,∠DF A =∠ACH ,∴CH AC =45.设CH =4a ,则AC =5a ,AH =3a ,∵CA =CN ,∴NH =a ,∴AN 22AH NH +22(3)a a +10a =10,∴a =2,AH =3a =6,CH =4a =8.设圆的半径为r ,则OH =r ﹣6,在Rt △OCH 中,OC =r ,CH =8,OH =r ﹣6,∴OC 2=CH 2+OH 2,r 2=82+(r ﹣6)2,解得:r =253,∴圆O 的直径的长度为2r =503.考点:切线的性质;勾股定理;圆周角定理;解直角三角形.24.如图,已知抛物线2y ax bx c =++(a ≠0)的图象的顶点坐标是(2,1),并且经过点(4,2),直线121+=x y 与抛物线交于B ,D 两点,以BD 为直径作圆,圆心为点C ,圆C 与直线m 交于对称轴右侧的点M (t ,1),直线m 上每一点的纵坐标都等于1. (1)求抛物线的解析式; (2)证明:圆C 与x 轴相切;(3)过点B 作BE ⊥m ,垂足为E ,再过点D 作DF ⊥m ,垂足为F ,求MF 的值.【答案】(1)2124y x x =-+ ;(2)证明见解析;(3)51+ .(3)过点C 作CH ⊥m 于点H ,连接CM ,可求得MH ,利用(2)中所求B 、D 的坐标可求得FH ,则可求得MF 和BE 的长,可求得其比值. 试题解析:学.科*网(1)∵已知抛物线2y ax bx c =++(a ≠0)的图象的顶点坐标是(2,1),∴可设抛物线解析式为2(2)1y a x =-+ ,∵抛物线经过点(4,2),∴22(42)1a =-+,解得a =14,∴抛物线解析式为21(2)14y x =-+,即2124y x x =-+;(2)联立直线和抛物线解析式可得2124112y x x y x ⎧=-+⎪⎪⎨⎪=+⎪⎩,解得:35552x y ⎧=-⎪⎨=-⎪⎩或35552x y ⎧=+⎪⎨=+⎪⎩,∴B (35-,552-),D (35+,552+),∵C 为BD 的中点,∴点C 的纵坐标为555522222-++=52,∵BD =225555[(35)(35)][()()]2222--++--+ =5,∴圆的半径为52,∴点C 到x 轴的距离等于圆的半径,∴圆C 与x 轴相切;考点:二次函数综合题;压轴题.25.如图,已知△ABC 中,∠C =90°,点M 从点C 出发沿CB 方向以1c m /s 的速度匀速运动,到达点B 停止运动,在点M的运动过程中,过点M作直线MN交AC于点N,且保持∠NMC=45°,再过点N作AC 的垂线交AB于点F,连接MF,将△MNF关于直线NF对称后得到△ENF,已知AC=8cm,BC=4cm,设点M运动时间为t(s),△ENF与△ANF重叠部分的面积为y(cm2).(1)在点M的运动过程中,能否使得四边形MNEF为正方形?如果能,求出相应的t值;如果不能,说明理由;(2)求y关于t的函数解析式及相应t的取值范围;(3)当y取最大值时,求sin∠NEF的值.【答案】(1)85;(2)2212 (02)41416(24)1233t t tyt t t⎧-+<<⎪⎪=⎨⎪-+≤≤⎪⎩;(3)310.②当2<t≤4时,作GH⊥NF于H,由(1)得:NF=12(8﹣t),GH=NH,GH=2FH,得出GH=23NF=13(8﹣t),由三角形面积得出21(8)12y t=-(2<t≤4);(3)当点E在AB边上时,y取最大值,连接EM,则EF=BF,EM=2CN=2CM=2t,EM=2BM,得出方程,解方程求出CN=CM=2,AN=6,得出BM=2,NF=12AN=3,因此EM=2BM=4,作FD⊥NE于D,由勾股定理求出EB =22EM BM +=25,求出EF =12EB =5,由等腰直角三角形的性质和勾股定理得出DF =22HF =322,在Rt △DEF 中,由三角函数定义即可求出sin ∠NEF 的值.(2)分两种情况:①当0<t ≤2时,y =12×12(8﹣t )×t =2124t t -+,即2124y t t =-+(0<t ≤2);②当2<t ≤4时,如图2所示:作GH ⊥NF 于H ,由(1)得:NF =12(8﹣t ),GH =NH ,GH =2FH ,∴GH =23NF =13(8﹣t ),∴y =12NF ′GH =12×12(8﹣t )×13(8﹣t )=21(8)12t -,即21(8)12y t =-(2<t ≤4); 综上所述:2212 (02)41416(24)1233t t t y t t t ⎧-+<<⎪⎪=⎨⎪-+≤≤⎪⎩ .(3)当点E 在AB 边上时,y 取最大值,连接EM ,如图3所示:则EF =BF ,EM =2CN =2CM =2t ,EM =2BM ,∵BM =4﹣t ,∴2t =2(4﹣t ),解得:t =2,∴CN =CM =2,AN =6,∴BM =4﹣2=2,NF =12AN =3,∴EM =2BM =4,作FD ⊥NE 于D ,则EB 22EM BM +2242+25△DNF 是等腰直角三角形,∴EF =12EB 5DF =22 HF =322,在Rt △DEF 中,sin ∠NEF =DF EF 3225=31010.考点:四边形综合题;最值问题;动点型;存在型;分类讨论;压轴题.。
2017年四川省绵阳市中考数学试卷第Ⅰ卷 (选择题,共36分)一、选择题:本大题共12小题,每小题3分,共36分.)1.(2017年四川绵阳)中国人最早使用负数,可追溯到两千多年前的秦汉时期,-0.5的相反数是A .0.5 B.5 C .﹣0.5 D .5答案:A 解析:根据相反数的定义求解即可.2.(2017年四川绵阳)下列图案中,属于轴对称的是答案:A 解析:本题考查轴对称图形的识别,判断一个图形是否是轴对称图形,就是看是否可以存在一条直线,使得这个图形的一部分沿着这条直线折叠,能够和另一部分互相重合.3.(2017年四川绵阳)中国幅员辽阔,陆地面积约为960万平方公里.“960万”用科学计数法表示为A .0.96×107B .9.6×106C .96×105D .9.6×102答案:B 解析:科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.4.(2017年四川绵阳)如图所示的几何体的主视图正确的是答案:D 解析:考查画几何体的三视图;用到的知识点为:主视图,左视图与俯视图分别是从物体的正面,左面,上面看得到的图形.5.(2017年四川绵阳) 使代数式x x 3431-++有意义的整数x 有 A .5个 B .4个C .3个D .2个 答案:B 解析:根据被开方数是非负数,分母不能为零,可得答案.6.(2017年四川绵阳)为测量操场上旗杆的高度,效力同学想到了物理学(第4题图)ABDC中平面镜成像的原理.她拿出随身携带的镜子和卷尺.先将镜子放在脚下的地面上,然后后退,直到她站直身子刚好能从镜子里看到旗杆的顶端E ,标记好脚掌中心位置为B .测得脚掌中心位置B 到镜面中心C 的距离是50cm ,镜面中心C 距旗杆底部D 的距离为4m ,如图所示,已知小丽同学的身高是1.54cm ,眼睛位置A 距离小丽头顶的距离是4cm ,则旗杆的高度等于A .10mB .12mC .12.4mD .12.32m答案:B 解析:根据题意得出△ABC ∽△EDC ,进而利用相似三角形的性质得出答案.7.关于x 的方程2x 2+mx +n =0的两根为-2和1,则n m 的值为A .-8B .8C .16D .-16答案:C 解析:利用根与系数的关系求解即可.8.(2017年四川绵阳)“赶陀螺”是一项深受人们喜爱的运动.如图所示是一个陀螺的立体结构图.已知底面圆的直径AB=8cm ,圆柱部分的高BC=6cm ,圆锥体部分的高CD=3cm ,则这个陀螺的表面积是A .68πcm 2B .74πcm 2C .84πcm 2D .100πcm 2答案:C 解析:圆锥的表面积加上圆柱的侧面积即可求得其表面积.9.(2017年四川绵阳)如图,矩形ABCD 的对角线AC 与BD 交于点O ,过点O 作BD 的垂线分别交AD ,BC 于E ,F 两点.若AC =23,∠AEO =120°,则FC 的长度为A .1B .2C .2D .3答案:A 解析:10.(2017年四川绵阳)将二次函数y =x 2的图象先向下平移1个单位,再向右平移3个单位,得到的图象与一次函数y =2x +b 的图象有公共点,则实数b 的取值范围是A .b >8B .b >-8C .b ≥8D .b ≥-8答案:D 解析:二次函数向下平移1个单位,再向右平移3个单位后,得到y =(x -3)2+1,再结合与一次函数y =2x +b 有公共点,联立方程组,建立关于x 的一元二次方程,利用一元二次方程有解的条件△≥0,可求出b 的范围.11.(2017年四川绵阳)如图,直角△ABC 中,∠B =30°,点O 是△ABC 的重心,连接CO 并延长交AB 于点E ,过点E 作EF ⊥AB 交BC 于点F ,连接AF 交CE 于点E .则MFMO 的值为 (第8题图) D CBA AB C D E F O(第9题图) (第11题图)BA .21B .45C .32D .33答案:D 解析:根据三角形的重心性质可得OC =32CE ,根据直角三角形的性质可得CE =AE ,根据等边三角形的判定和性质得到CM =21CE ,进一步得到OM =61CE ,即OM =61AE ,根据垂直平分线的性质和含30°的直角三角形的性质可得EF =33AE ,MF =21EF ,依此得到MF =63AE ,从而得到MFMO 的值. 12.(2017年四川绵阳)如图所示,将形状、大小完全相同的“形,第1幅图形中“a 1,第2a 2,第3幅图形中“为a 3,…,以此类推,则193211111a a a a +⋯+++的值为A .2120B .8461C .840589D .760431答案:C 解析:首先根据图形中“●”的个数得出数字变化规律, a 1=3=1×3,a 2=8=2×4,a 3=15=3×5,a 4=24=4×6,…,a n =n (n +2);进而求出即可.第Ⅱ卷(非选择题,共104分)二、填空题:(本大题共6个小题,每小题3分,共18分.将答案填写在答题卡相应的横线上)13.(2017年四川绵阳)因式分解:8a 2-2= .答案:)12)(12(2-+n n 解析:首先提取公因式2,进而利用平方差公式进行分解即可.14.(2017年四川绵阳)关于x 的分式方程xx x -=+--111112的解是 . 答案:2-=x 解析:观察可得最简公分母是(x +1)(x -1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.15.(2017年四川绵阳)如图,将平行四边形ABCO 放置在平面直角坐标系xOy 中,O 为坐标原点.若点A 的坐标是(6,0),点C 的坐标是(1,4),则点B 的坐标是 .答案:(7,4) 解析:根据平行四边形的性质及A 点和C 的坐标求出点B 的坐标即可.:∵四边形ABCO 是平行四边形,O 为坐标原点,点A 的坐标是(6,0),点C 的坐标是(1,4),∴BC =OA =6,6+1=7,∴点B 的坐标是(7,4). 第1幅图 第2幅图 第3幅图 第4幅图。
绵阳市高2014级第二次诊断性考试数学(文史类)参考解答及评分标准一、选择题:本大题共12小题,每小题5分,共60分. CABCA DBCDD CB二、填空题:本大题共4小题,每小题5分,共20分.13.1422=-y x 14.24 15.3216.25- 三、解答题:本大题共6小题,共70分.17.解 :(Ⅰ)设{a n }的公差为d ,则由题意可得 ⎪⎩⎪⎨⎧+=+++-=⨯+,,d a d a d a d a 453922331111……………………………………………………3分 解得a 1=-4,d =1, ……………………………………………………………5分 ∴ a n =-4+1×(n -1)=n -5. ……………………………………………………6分 (Ⅱ)T n =a 1+a 2+a 3+…+a n +n a a a 22221+⋅⋅⋅++ =2)54(-+-n n +)222(32121n +⋅⋅⋅++ ………………………………10分 =21)21(23212)9(--⋅+-n n n =16122)9(-+-n n n .……………………………………………………12分 18.解:(Ⅰ) ∵a c 2=, ∴ 由正弦定理有sin C =2sin A . …………………………………………2分 又C =2A ,即sin2A =2sin A ,于是2sin A cos A =2sin A , …………………………………………………4分 在△ABC 中,sin A ≠0,于是cos A =22, ∴ A =4π. ……………………………………………………………………6分 (Ⅱ)根据已知条件可设21+=+==n c n b n a ,,, n ∈N *. 由C =2A ,得sin C =sin2A =2sin A cos A ,∴ ac A C A 2sin 2sin cos ==. ……………………………………………………8分 由余弦定理得ac bc a c b 22222=-+, 代入a ,b ,c 可得 nn n n n n n 22)2)(1(2)2()1(222+=++-+++, ……………………………………………10分 解得n =4,∴ a =4,b =5,c =6,从而△ABC 的周长为15,即存在满足条件的△ABC ,其周长为15. ………………………………12分19.解:(Ⅰ)由已知有 1765179181176174170=++++=x , 6656870666462=++++=y , 2222)176179()176181()176174()176170()6668)(176179()6670)(176181()6664)(176174()6662)(176170(ˆ-+-+-+---+--+--+--=b =3727≈0.73, 于是17673.066ˆˆ⨯-=-=x b y a=-62.48, ∴ 48.6273.0ˆˆˆ-=+=x a x b y.………………………………………………10分 (Ⅱ) x =185,代入回归方程得48.6218573.0ˆ-⨯=y≈72.57, 即可预测M 队的平均得分为72.57. ………………………………………12分20.解:(Ⅰ) 点A (0,2)在椭圆C 上,于是122=b ,即b 2=2. 设椭圆C 的焦半距为c ,则由题意有23=a c ,即2243a c =, 又a 2=b 2+c 2,代入解得a 2=8, ∴ 椭圆C 的标准方程为12822=+y x . ……………………………………4分 (Ⅱ)设直线PQ :1+=ty x ,)()(2211y x Q y x P ,,,.联立直线与椭圆方程: ⎪⎩⎪⎨⎧+==+,,112822ty x y x 消去x 得:072)4(22=-++ty y t , 显然Δ=4t 2+28(t 2+4)>0,∴ y 1+y 2=422+-t t ,y 1y 2=472+-t . ………………………………………7分 于是482)(22121+=++=+t y y t x x , 故P ,Q 的中点)444(22+-+t t t D ,. ………………………………………8分 设)1(0y N ,-, 由NQ NP =,则1-=⋅PQ ND k k , 即t t t ty -=+--++4414220,整理得4320++=t t t y ,得)431(2++-t t t N ,. 又△NPQ 是等边三角形, ∴ PQ ND 23=,即2243PQ ND =, 即]474)42)[(1(43)44()144(22222222+-⋅-+-+=+++++t t t t t t t t , 整理得22222)4(8424)144(++=++t t t , 即222222)4(8424)48(++=++t t t t ,解得 102=t ,10±=t , …………………………………………………11分∴ 直线l 的方程是110+±=y x . ………………………………………12分 21.解:(Ⅰ)∵ xe ax xf -=2)(在)0(∞+,上有两个零点, ∴ 方程2x e a x =有两个根,等价于y =a 与2xe y x=有两个交点. 令2)(xe x h x =,则3)2()(x x e x h x -=',……………………………………………3分 于是x ∈(0,2)时,0)(<'x h ,即h (x )在(0,2)上单调递减; 当x ∈(2,+∞)时,0)(>'x h ,即h (x )在(2,+∞)上单调递增,∴ h (x )mi n =h (2)=42e , ∴ a 的取值范围为(42e ,+∞). ……………………………………………5分 (Ⅱ)∵)(2121x x x x <,是x e ax xf -=2)(在)0(∞+,上的零点, ∴ 121x e ax =,222x e ax =, 两式相除可得12212)(x x e x x -=. ………………………………………………7分 令)1(12>=t t x x , ① 上式变为122x x e t -=,即t t x x ln 2ln 212==-, ② 联立①②解得:1ln 21-=t t x ,1ln 22-=t t t x . …………………………………9分 要证明421>+x x , 即证明41ln 21ln 2>-+-t t t t t , 即证明22ln ln ->+t t t t . 令22ln ln )(+-+=t t t t t h ,则1ln 1)(-+='t tt h . …………………………10分 令0111)(1ln 1)(22>-=-='-+=tt t t t t t t ϕϕ,, 故)(t ϕ在)1(∞+,上单调递增,故0)1()(=>ϕϕt , 即0)(>'t h , 故)(t h 在)1(∞+,上单调递增,故0)1()(=>h t h ,即22ln ln ->+t t t t ,得证. ………………………………………………12分22.解:(Ⅰ)消去参数得1322=+y x . …………………………………………5分(Ⅱ)将直线l 的方程化为普通方程为0323=++y x .设Q (ααsin cos 3,),则M (ααsin 211cos 23+,), ∴ 233)4sin(26232sin 233cos 23++=+++=παααd ,∴ 最小值是4636-.………………………………………………………10分 23.解:(Ⅰ) 当t =2时,21)(-+-=x x x f . 若x ≤1,则x x f 23)(-=,于是由2)(>x f 解得x <21.综合得x <21. 若1<x <2,则1)(=x f ,显然2)(>x f 不成立 . 若x ≥2,则32)(-=x x f ,于是由2)(>x f 解得x >25.综合得x >25. ∴ 不等式2)(>x f 的解集为{x | x <21,或x >25}. …………………………5分 (Ⅱ))(x f ≥x a +等价于a ≤f (x )-x .令g (x )= f (x )-x . 当-1≤x ≤1时,g (x )=1+t -3x ,显然g (x )min =g (1)=t -2. 当1<x <t 时,g (x )=t -1-x ,此时g (x )>g (1)=t -2. 当t ≤x ≤3时,g (x )=x -t -1,g (x )min =g (1)=t -2. ∴ 当x ∈[1,3]时,g (x )min = t -2.又∵ t ∈[1,2],∴ g (x )min ≤-1,即a ≤-1.综上,a 的取值范围是a ≤-1. …………………………………。
2017年绵阳市数学中考模拟试题(总分140分 时间120分钟完卷)一、 选择题。
(每小题3分,共36分)、下列运算正确的是( ) . B . C .D .. B . C .D .D . 平行四边形的对角线可以互相垂直 4、如果(a ,b 为有理数),那么a+b 等于( )A.5B.3 C -1 D.1. a 是方程x ﹣8=0的一个解 .a 满足不等式组 6、近年来,全国各地房价不断上涨,我市2010年12月份的房价平均每平方米为4200元,比2008年同期的房价平均每平方米上涨了1800元.假设这两年我市房价A .B .C .D .2 ) A.31≤≤-x B.1-≤x C.1≥x D.1-≤x 或3≥x9、有一种摸“良心”的游戏,是指在一只不透明口袋里,装有四只相同 的球,分别写有“良”、“心”、“善”、“良”的字样,从中随机摸出两个球, 看是否能组成词语“良心”.根据此游戏规则,在一次游戏中恰好能组成 . B . C . D . 分别在两圆上,若∠ADB=100°,则∠ACB 的度数为( )A .35°B .40°C .50°D .8011、已知AD∥BC,AB⊥AD,点E,点F分别在射线AD,射线BC上.若点E与点B关于AC对称,点E与点F关于BD对称,AC与BD相交于点G,则().1+tan∠ADB=B.2BC=5CF.∠AEB+22°=∠DEF D.4cos∠AGB=.:2 D.:13、计算:﹣=_________14、如图,把五角星绕着它的中心按逆时针方向旋转,要使旋转后的图形和原图形重合,则旋转的最小角度是_________度.15、已知关于x的方程x2﹣nx+m=0有一个根是m(m≠0),则m﹣n=_________.16、将一块三角板和半圆形量角器按图中方式叠放,点A、O在三角板上所对应的刻度分别是8cm、2cm,重叠阴影部分的量角器弧所对的扇形圆心角∠AOB=120°,若用该扇形AOB围成一个圆锥的侧面(接缝处不重叠),则该圆锥的底面半径为_____cm.17、如图,矩形ABCD中,AB=8,点E是AD上的一点,有AE=4,BE的垂直平分线交BC的延长线于点F,连结EF交CD于点G.若G是CD的中点,则BC的长是.18、点A,B,C都在半径为r的圆上,直线AD⊥直线BC,垂足为D,直线BE⊥直线AC,垂足为E,直线AD与BE相交于点H.若BH=AC,则∠ABC所对的弧长等于(长度单位).三、解答题。
2017年四川省绵阳市中考真题数学一、选择题(本大题共12小题,每小题3分,共36分)1.中国人最早使用负数,可追溯到两千多年前的秦汉时期,-0.5的相反数是( )A.0.5B.±0.5C.-0.5D.5解析:-0.5的相反数是0.5.答案:A2.下列图案中,属于轴对称图形的是( )A.B.C.D.解析:A,此图案是轴对称图形,有5条对称轴,此选项符合题意;B、此图案不是轴对称图形,此选项不符合题意;C、此图案不是轴对称图形,而是旋转对称图形,不符合题意;D、此图案不是轴对称图形,不符合题意.答案:A3.中国幅员辽阔,陆地面积约为960万平方公里,“960万”用科学记数法表示为( )A.0.96×107B.9.6×106C.96×105D.9.6×102解析:“960万”用科学记数法表示为9.6×106.答案:B4. 如图所示的几何体的主视图正确的是( )A.B.C.D.解析:由图可知,主视图一个矩形和三角形组成.答案:D5.x有( )A.5个B.4个C.3个D.2个解析:由题意,得x+3>0且4-3x≥0,解得-3<x≤43,整数有-2,-1,0,1.答案:B6. 为测量操场上旗杆的高度,小丽同学想到了物理学中平面镜成像的原理,她拿出随身携带的镜子和卷尺,先将镜子放在脚下的地面上,然后后退,直到她站直身子刚好能从镜子里看到旗杆的顶端E,标记好脚掌中心位置为B,测得脚掌中心位置B到镜面中心C的距离是50cm,镜面中心C距离旗杆底部D的距离为4m,如图所示.已知小丽同学的身高是1.54m,眼睛位置A距离小丽头顶的距离是4cm,则旗杆DE的高度等于( )A.10mB.12mC.12.4mD.12.32m解析:由题意可得:AB=1.5m ,BC=0.4m ,DC=4m ,△ABC ∽△EDC ,则AB BC ED DC =,即1.50.54DE =,解得:DE=12. 答案:B7.关于x 的方程2x 2+mx+n=0的两个根是-2和1,则n m 的值为( )A.-8B.8C.16D.-16解析:∵关于x 的方程2x 2+mx+n=0的两个根是-2和1,∴-2m =-1,2n =-2,∴m=2,n=-4,∴n m =(-4)2=16. 答案:C8.“赶陀螺”是一项深受人们喜爱的运动,如图所示是一个陀螺的立体结构图,已知底面圆的直径AB=8cm ,圆柱体部分的高BC=6cm ,圆锥体部分的高CD=3cm ,则这个陀螺的表面积是( )A.68πcm 2B.74πcm 2D.100πcm 2解析:∵底面圆的直径为8cm ,高为3cm ,∴母线长为5cm ,∴其表面积=π×4×5+42π+8π×6=84πcm 2.答案:C9.如图,矩形ABCD 的对角线AC 与BD 交于点O ,过点O 作BD 的垂线分别交AD ,BC 于E ,F 两点.若AC=23,∠AEO=120°,则FC 的长度为( )A.1B.2解析:∵EF ⊥BD ,∠AEO=120°,∴∠EDO=30°,∠DEO=60°,∵四边形ABCD 是矩形,∴∠OBF=∠OCF=30°,∠BFO=60°,∴∠FOC=60°-30°=30°,∴OF=CF ,又∵Rt △BOF 中,BO=1122BD AC ==,∴OF=tan30°×BO=1,∴CF=1. 答案:A10.将二次函数y=x 2的图象先向下平移1个单位,再向右平移3个单位,得到的图象与一次函数y=2x+b 的图象有公共点,则实数b 的取值范围是( )A.b >8C.b≥8D.b≥-8解析:由题意得:平移后得到的二次函数的解析式为:y=(x-3)2-1,则()2312y xy x b⎧=--⎪⎨=+⎪⎩,,(x-3)2-1=2x+b,x2-8x+8-b=0,△=(-8)2-4×1×(8-b)≥0,b≥-8.答案:D11.如图,直角△ABC中,∠B=30°,点O是△ABC的重心,连接CO并延长交AB于点E,过点E作EF⊥AB交BC于点F,连接AF交CE于点M,则MOMF的值为( )A.1 2B.C.2 3D.解析:∵点O是△ABC的重心,∴OC=23 CE,∵△ABC是直角三角形,∴CE=BE=AE,∵∠B=30°,∴∠FAE=∠B=30°,∠BAC=60°,∴∠FAE=∠CAF=30°,△ACE是等边三角形,∴CM=12 CE,∴OM=211326CE CE CE-=,即OM=16AE,∵BE=AE,∴,∵EF⊥AB,∴∠AFE=60°,∴∠FEM=30°,∴MF=12EF,∴MF=6AE,∴16AEMOMF==.答案:D12.如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为a1,第2幅图形中“●”的个数为a2,第3幅图形中“●”的个数为a3,…,以此类推,则123191111a a a a+++⋯+的值为( )A.2021B.6184C.589840D.431760解析:a1=3=1×3,a2=8=2×4,a3=15=3×5,a4=24=4×6,…,a n=n(n+2);∴12319111111111132435461921a a a a+++⋯+=++++⋯+⨯⨯⨯⨯⨯=1111111111111589112243546191()21222021840 3-+-+-+-+⋯+-=⎛⎫⎪⎝=⎭+--.答案:C二、填空题(本大题共6小题,每小题3分,共18分)13.分解因式:8a2-2= .解析:8a2-2=2(4a2-1)=2(2a+1)(2a-1).答案:2(2a+1)(2a-1)14.关于x的分式方程211111x x x-=-+-的解是 .解析:两边乘(x+1)(x-1)得到,2x+2-(x-1)=-(x+1),解得x=-32,经检验,x=-32是分式方程的解.∴x=-32.答案:-3 215.如图,将平行四边形ABCO放置在平面直角坐标系xOy中,O为坐标原点,若点A的坐标是(6,0),点C的坐标是(1,4),则点B的坐标是 .解析:∵四边形ABCO是平行四边形,O为坐标原点,点A的坐标是(6,0),点C的坐标是(1,4),∴BC=OA=6,6+1=7,∴点B的坐标是(7,4);答案:(7,4)16.同时抛掷两枚质地均匀的骰子,则事件“两枚骰子的点数和小于8且为偶数”的概率是 .解析:画树状图为:共有36种等可能的结果数,其中“两枚骰子的点数和小于8且为偶数”的结果数为9,所以“两枚骰子的点数和小于8且为偶数”的概率=91 364=.答案:1 417.将形状、大小完全相同的两个等腰三角形如图所示放置,点D在AB边上,△DEF绕点D 旋转,腰DF和底边DE分别交△CAB的两腰CA,CB于M,N两点,若CA=5,AB=6,AD:AB=1:3,则MD+12MA DN⋅的最小值为 .解析:∵AB=6,AD:AB=1:3,∴AD=6×13=2,BD=6-2=4,∵△ABC和△FDE是形状、大小完全相同的两个等腰三角形,∴∠A=∠B=∠FDE,由三角形的外角性质得,∠AMD+∠A=∠EDF+∠BDN,∴∠AMD=∠BDN,∴△AMD∽△BDN,∴MA MDBD DN=,∴MA·DN=BD·MD=4MD,∴MD+222123222 MDMA DN MD=+=+-+=+⋅,=时,MD+12MA DN⋅有最小值为2.答案:218.如图,过锐角△ABC的顶点A作DE∥BC,AB恰好平分∠DAC,AF平分∠EAC交BC的延长线于点F.在AF上取点M,使得AM=13AF,连接CM并延长交直线DE于点H.若AC=2,△AMH 的面积是112,则1tan ACH∠的值是 .解析:过点H作HG⊥AC于点G,∵AF平分∠CAE,DE∥BF,∴∠HAF=∠AFC=∠CAF,∴AC=CF=2,∵AM=13AF,∴12AMMF=,∵DE∥CF,∴△AHM∽△FCM,∴AM AHMF CF=,∴AH=1,设△AHM中,AH边上的高为m,△FCM中CF边上的高为n,∴12m AMn MF==,∵△AMH的面积为:112,∴11122=AH·m∴m=16,∴n=13,设△AHC的面积为S,∴3AHMS m nS m+==V,∴S=3S△AHM=14,∴1124AC HG⋅=,∴HG=14,∴由勾股定理可知:AG=4,∴CG=AC-AG=2-4,∴18tanCGACH HG==∠.答案:8-三、解答题(本大题共7小题,共86分)19.计算:(1)+cos245°-(-2)-1-|-12|.(2)先化简,再求值:222222x y x yx xy yx xy x y --÷-+-⎫⎪⎭-⎛⎝,其中,. 解析:(1)根据特殊角的三角函数值、负整数指数幂、绝对值可以解答本题;(2)根据分式的减法和除法可以化简题目中的式子,然后将x 、y 的值代入化简后的式子即可解答本题.答案:+cos 245°-(-2)-1-|-12|=2110.222+--⎛⎫⎪⎝⎭-⎝⎭ =0.2+111222+- =0.7;(2)222222x y x yx xy y x xy x y --÷-+-⎫⎪⎭-⎛⎝ =()()222x y xx y x x y y x y ⎡⎤⎢⎥⎢⎥⎣⎦---⋅-- =1122x yx y x y y ⎛⎫⎪⎝⋅⎭---- =()()222x y x y x yx y x y y --+-⋅--=()yy x y --=1y x-, 当,时,原式2==-. 20.红星中学课外兴趣活动小组对某水稻品种的稻穗谷粒数目进行调查,从试验田中随机抽取了30株,得到的数据如下(单位:颗):(1)对抽取的30株水稻稻穗谷粒数进行统计分析,请补全下表中空格,并完善直方图:如图所示的扇形统计图中,扇形A对应的圆心角为度,扇形B对应的圆心角为度;(2)该试验田中大约有3000株水稻,据此估计,其中稻穗谷粒数大于或等于205颗的水稻有多少株?解析:(1)根据表格中数据填表画图即可,利用360°×其所占的百分比求出扇形对应的圆心角度数;(2)用360°乘以样本中稻穗谷粒数大于或等于205颗的水稻所占百分比即可.答案:(1)填表如下:如图所示:如图所示的扇形统计图中,扇形A对应的圆心角为:360°×630=72度,扇形B对应的圆心角为360°×330=36度.(2)3000×6330=900.即据此估计,其中稻穗谷粒数大于或等于205颗的水稻有900株.21.江南农场收割小麦,已知1台大型收割机和3台小型收割机1小时可以收割小麦1.4公顷,2台大型收割机和5台小型收割机1小时可以收割小麦2.5公顷.(1)每台大型收割机和每台小型收割机1小时收割小麦各多少公顷?(2)大型收割机每小时费用为300元,小型收割机每小时费用为200元,两种型号的收割机一共有10台,要求2小时完成8公顷小麦的收割任务,且总费用不超过5400元,有几种方案?请指出费用最低的一种方案,并求出相应的费用.解析:(1)设每台大型收割机1小时收割小麦x公顷,每台小型收割机1小时收割小麦y公顷,根据“1台大型收割机和3台小型收割机1小时可以收割小麦1.4公顷,2台大型收割机和5台小型收割机1小时可以收割小麦2.5公顷”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设大型收割机有m台,总费用为w元,则小型收割机有(10-m)台,根据总费用=大型收割机的费用+小型收割机的费用,即可得出w与m之间的函数关系式,由“要求2小时完成8公顷小麦的收割任务,且总费用不超过5400元”,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,依此可找出各方案,再结合一次函数的性质即可解决最值问题. 答案:(1)设每台大型收割机1小时收割小麦x公顷,每台小型收割机1小时收割小麦y公顷,根据题意得:3 1.425 2.5x yx y+=⎧⎨+=⎩,,解得:0.50.3xy=⎧⎨=⎩,.答:每台大型收割机1小时收割小麦0.5公顷,每台小型收割机1小时收割小麦0.3公顷.(2)设大型收割机有m台,总费用为w元,则小型收割机有(10-m)台,根据题意得:w=300×2m+200×2(10-m)=200m+4000.∵2小时完成8公顷小麦的收割任务,且总费用不超过5400元,∴()20.520.3108 20040005400m mm⨯+⨯-≥⎧⎪⎨+≤⎪⎩,,解得:5≤m≤7,∴有三种不同方案.∵w=200m+4000中,200>0,∴w值随m值的增大而增大,∴当m=5时,总费用取最小值,最小值为5000元.答:有三种方案,当大型收割机和小型收割机各5台时,总费用最低,最低费用为5000元.22.如图,设反比例函数的解析式为y=3kx(k>0).(1)若该反比例函数与正比例函数y=2x 的图象有一个交点的纵坐标为2,求k 的值; (2)若该反比例函数与过点M(-2,0)的直线l :y=kx+b 的图象交于A ,B 两点,如图所示,当△ABO 的面积为163时,求直线l 的解析式. 解析(1)由题意可得A(1,2),利用待定系数法即可解决问题;(2)把M(-2,0)代入y=kx+b ,可得b=2k ,可得y=kx+2k ,由32k y xy kx k⎧=⎪⎨⎪=+⎩,消去y 得到x 2+2x-3=0,解得x=-3或1,推出B(-3,-k),A(1,3k),根据△ABO 的面积为163,可得1116232223k k ⋅⋅+⋅⋅=,解方程即可解决问题. 答案:(1)由题意A(1,2),把A(1,2)代入y=3kx,得到3k=2,∴k=23.(2)把M(-2,0)代入y=kx+b ,可得b=2k ,∴y=kx+2k ,由32k y x y kx k ⎧=⎪⎨⎪=+⎩,消去y 得到x 2+2x-3=0,解得x=-3或1,∴B(-3,-k),A(1,3k), ∵△ABO 的面积为163,∴1116232223k k ⋅⋅+⋅⋅=,解得k=43, ∴直线l 的解析式为y=4833x +.23.如图,已知AB 是圆O 的直径,弦CD ⊥AB ,垂足为H ,与AC 平行的圆O 的一条切线交CD 的延长线于点M ,交AB 的延长线于点E ,切点为F ,连接AF 交CD 于点N.(1)求证:CA=CN ;(2)连接DF ,若cos ∠DFA=45,O 的直径的长度. 解析:(1)连接OF ,根据切线的性质结合四边形内角和为360°,即可得出∠M+∠FOH=180°,由三角形外角结合平行线的性质即可得出∠M=∠C=2∠OAF ,再通过互余利用角的计算即可得出∠CAN=90°-∠OAF=∠ANC ,由此即可证出CA=CN ;(2)连接OC ,由圆周角定理结合cos ∠DFA=45、CH 、AH 的长度,设圆的半径为r ,则OH=r-6,根据勾股定理即可得出关于r 的一元一次方程,解之即可得出r ,再乘以2即可求出圆O 直径的长度.答案:(1)连接OF ,则∠OAF=∠OFA ,如图所示.∵ME 与⊙O 相切,∴OF ⊥ME. ∵CD ⊥AB ,∴∠M+∠FOH=180°.∵∠BOF=∠OAF+∠OFA=2∠OAF ,∠FOH+∠BOF=180°,∴∠M=2∠OAF. ∵ME ∥AC ,∴∠M=∠C=2∠OAF.∵CD ⊥AB ,∴∠ANC+∠OAF=∠BAC+∠C=90°,∴∠ANC=90°-∠OAF,∠BAC=90°-∠C=90°-2∠OAF,∴∠CAN=∠OAF+∠BAC=90°-∠OAF=∠ANC,∴CA=CN.(2)连接OC,如图2所示.∵cos∠DFA=45,∠DFA=∠ACH,∴45CHAC=.设CH=4a,则AC=5a,AH=3a,∵CA=CN,∴NH=a,∴===∴a=2,AH=3a=6,CH=4a=8.设圆的半径为r,则OH=r-6,在Rt△OCH中,OC=r,CH=8,OH=r-6,∴OC2=CH2+OH2,r2=82+(r-6)2,解得:r=253,∴圆O的直径的长度为2r=503.24.如图,已知抛物线y=ax2+bx+c(a≠0)的图象的顶点坐标是(2,1),并且经过点(4,2),直线y=12x+1与抛物线交于B,D两点,以BD为直径作圆,圆心为点C,圆C与直线m交于对称轴右侧的点M(t,1),直线m上每一点的纵坐标都等于1.(1)求抛物线的解析式;(2)证明:圆C与x轴相切;(3)过点B作BE⊥m,垂足为E,再过点D作DF⊥m,垂足为F,求BE:MF的值.解析:(1)可设抛物线的顶点式,再结合抛物线过点(4,2),可求得抛物线的解析式;(2)联立直线和抛物线解析式可求得B、D两点的坐标,则可求得C点坐标和线段BD的长,可求得圆的半径,可证得结论;(3)过点C作CH⊥m于点H,连接CM,可求得MH,利用(2)中所求B、D的坐标可求得FH,则可求得MF和BE的长,可求得其比值.答案:(1)∵已知抛物线y=ax2+bx+c(a≠0)的图象的顶点坐标是(2,1),∴可设抛物线解析式为y=a(x-2)2+1,∵抛物线经过点(4,2),∴2=a(4-2)2+1,解得a=14,∴抛物线解析式为y=14(x-2)2+1=14x2-x+2;(2)联立直线和抛物线解析式可得2124112y x xy x⎧=-+⎪⎪⎨⎪=+⎪⎩,,解得352xy⎧=⎪⎨=⎪⎩或352xy⎧=+⎪⎨=+⎪⎩,∴522-),522+),∵C 为BD 的中点,∴点C的纵坐标为555222222-++=, ∵,∴圆的半径为52, ∴点C 到x 轴的距离等于圆的半径,∴圆C 与x 轴相切; (3)如图,过点C 作CH ⊥m ,垂足为H ,连接CM ,由(2)可知CM=52,CH=53122-=,在Rt △CMH 中,由勾股定理可求得MH=2,∵HF=(332=,∵BE=53122--=3BE MF ==.25.如图,已知△ABC 中,∠C=90°,点M 从点C 出发沿CB 方向以1cm/s 的速度匀速运动,到达点B 停止运动,在点M 的运动过程中,过点M 作直线MN 交AC 于点N ,且保持∠NMC=45°,再过点N 作AC 的垂线交AB 于点F ,连接MF ,将△MNF 关于直线NF 对称后得到△ENF ,已知AC=8cm ,BC=4cm ,设点M 运动时间为t(s),△ENF 与△ANF 重叠部分的面积为y(cm 2).(1)在点M 的运动过程中,能否使得四边形MNEF 为正方形?如果能,求出相应的t 值;如果不能,说明理由;(2)求y 关于t 的函数解析式及相应t 的取值范围; (3)当y 取最大值时,求sin ∠NEF 的值.解析:(1)由已知得出CN=CM=t ,FN ∥BC ,得出AN=8-t ,由平行线证出△ANF ∽△ACB ,得出对应边成比例求出NF=1122AN =(8-t),由对称的性质得出∠ENF=∠MNF=∠NMC=45°,MN=NE ,OE=OM=CN=t ,由正方形的性质得出OE=ON=FN ,得出方程,解方程即可; (2)分两种情况:①当0<t ≤2时,由三角形面积得出y=-14t 2+2t ; ②当2<t ≤4时,作GH ⊥NF 于H ,由(1)得:NF=12(8-t),GH=NH ,GH=2FH ,得出GH=2313NF =(8-t),由三角形面积得出y=112(8-t)2(2<t ≤4); (3)当点E 在AB 边上时,y 取最大值,连接EM ,则EF=BF ,EM=2CN=2CM=2t ,EM=2BM ,得出方程,解方程求出CN=CM=2,AN=6,得出BM=2,NF=12AN=3,因此EM=2BM=4,作FD ⊥NE 于D ,由勾股定理求出=EF=12EB =,由等腰直角三角形的性质和勾股定理得出DF=22HF =,在Rt △DEF 中,由三角函数定义即可求出sin ∠NEF 的值.答案:(1)能使得四边形MNEF 为正方形;理由如下:连接ME 交NF 于O ,如图1所示:∵∠C=90°,∠NMC=45°,NF⊥AC,∴CN=CM=t,FN∥BC,∴AN=8-t,△ANF∽△ACB,∴824AN ACNF BC===,∴NF=1122AN=(8-t),由对称的性质得:∠ENF=∠MNF=∠NMC=45°,MN=NE,OE=OM=CN=t,∵四边形MNEF是正方形,∴OE=ON=FN,∴t=1122⨯(8-t),解得:t=85;即在点M的运动过程中,能使得四边形MNEF为正方形,t的值为85;(2)分两种情况:①当0<t≤2时,y=1122⨯(8-t)×t=-14t2+2t,即y=-14t2+2t(0<t≤2);②当2<t≤4时,如图所示:作GH⊥NF于H,由(1)得:NF=12(8-t),GH=NH,GH=2FH,∴GH=2313NF=(8-t),∴y=()()()211118882221132NF GH t t t'=⨯-⨯-=-,即y=112(8-t)2(2<t≤4);(3)当点E在AB边上时,y取最大值,连接EM,如图所示:则EF=BF,EM=2CN=2CM=2t,EM=2BM,∵BM=4-t,∴2t=2(4-t),解得:t=2,∴CN=CM=2,AN=6,∴BM=4-2=2,NF=12AN=3,∴EM=2BM=4,作FD⊥NE于D,则==DNF是等腰直角三角形,∴EF=12EB=DF=22HF=,在Rt△DEF中,sin∠NEF=10DFEF==.考试考高分的小窍门1、提高课堂注意力2、记好课堂笔记3、做家庭作业4、消除焦虑、精中精力、5、不忙答题,先摸卷情、不要畏惧考试。
2017年四川省绵阳市中考数学二模试卷一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)如果代数式在实数范围内有意义,则x的取值范围是()A.x≥3且x≠﹣1 B.x>3且x≠﹣1 C.x>﹣1 D.x≥32.(3分)若下列选项中的图形均为正多边形,则哪一个图形恰有4条对称轴?()A.B.C.D.3.(3分)在亚欧商博会重点项目推介会暨签约仪式上,某公司和绵阳市政府正式签署了一个生态农牧产业园项目.该项目计划总投资21.75亿元,计划自2017年起五年内分三期建设,把21.75亿元用科学记数法表示为()A.2.175×108元B.2.175×107元C.2.175×109元D.2.175×106元4.(3分)将一副常规的三角尺按如图方式放置,则图中∠AOB的度数为()A.75°B.95°C.105° D.120°5.(3分)下列各式计算正确的是()A.m2•m3=m6B.C.D.(a<1)6.(3分)由四个相同的小正方体搭建了一个积木,它的三视图如图所示,则这个积木可能是()A.B.C.D.7.(3分)九年级一班和二班每班选8名同学进行投篮比赛,每名同学投篮10次,对每名同学投中的次数进行统计,甲说:“一班同学投中次数为6个的最多”乙说:“二班同学投中次数最多与最少的相差6个.”上面两名同学的议论能反映出的统计量是()A.平均数和众数B.众数和极差C.众数和方差D.中位数和极差8.(3分)小张同学去展览馆看展览,该展览馆有2个验票口A、B(可进出),另外还有2个出口C、D(不许进).小张不从同一个验票口进出的概率是多少()A.B.C.D.9.(3分)某数学兴趣小组同学进行测量大树CD高度的综合实践活动,如图,在点A处测得直立于地面的大树顶端C的仰角为36°,然后沿在同一剖面的斜坡AB行走13米至坡顶B处,然后再沿水平方向行走6米至大树脚底点D处,斜面AB的坡度(或坡比)i=1:2.4,那么大树CD的高度约为(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)()A.8.1米B.17.2米C.19.7米D.25.5米10.(3分)如图,在一个三角点阵中,从上向下数有无数多行,其中各行点数依次为2,4,6,…,2n,…,请你探究出前n行的点数和所满足的规律、若前n 行点数和为930,则n=()A.29 B.30 C.31 D.3211.(3分)如图,将一张边长为3的正方形纸片按虚线裁剪后,恰好围成一个底面是正三角形的棱柱,这个棱柱的侧面积为()A.9 B.9﹣3C.D.12.(3分)如图,在正方形ABCD中,点O为对角线AC的中点,过点0作射线OG、ON分别交AB、BC于点E、F,且∠EOF=90°,BO、EF交于点P.则下列结论中:(1)图形中全等的三角形只有两对;(2)正方形ABCD的面积等于四边形OEBF面积的4倍;(3)BE+BF=OA;(4)AE2+CF2=2OP•OB.正确的结论有()个.A.1 B.2 C.3 D.4二、填空题(本题有6个小题,每小题3分,共18分.)13.(3分)因式分解:16x4﹣4y2=.14.(3分)如图,AB∥CD,∠A=60°,∠C=25°,G、H分别为CF、CE的中点,则∠1=度.15.(3分)新定义:[a,b]为一次函数y=ax+b(a≠0,a,b为实数)的“关联数”.若“关联数”[1,m﹣2]的一次函数是正比例函数,则关于x的方程的解为.16.(3分)甲乙两地相距50千米.星期天上午8:00小聪同学在父亲陪同下骑山地车从甲地前往乙地.2小时后,小明的父亲骑摩托车沿同一路线也从甲地前往乙地,他们行驶的路程y(千米)与小聪行驶的时间x(小时)之间的函数关系如图所示,小明父亲出发小时时,行进中的两车相距8千米.17.(3分)把△ABC绕点A按逆时针方向旋转θ度,并使各边长变为原来的n 倍,得到△AB′C′,即如图,∠BAB′=θ,===n,我们将这种变换记为[θ,n].△ABC中,AB=AC,∠BAC=36°,BC=1,对△ABC作变换[θ,n]得△AB′C′,使点B、C、B′在同一直线上,且四边形ABB′C′为平行四边形,那么θ=,n=.18.(3分)二次函数y=ax2﹣bx+b(a>0,b>0)图象的顶点的纵坐标不大于,且图象与x轴交于A,B两点,则线段AB长度的最小值是.三、解答题(共7小题,满分86分)19.(16分)(1)计算:()﹣2+(﹣)0+(﹣1)1001+(﹣3)×tan30°(2)先化简,再求值:﹣(﹣a2+b2),其中a=3﹣2,b=3﹣3.20.(11分)为深化义务教育课程改革,满足学生的个性化学习需求,某校就“学生对知识拓展,体育特长、艺术特长和实践活动四类选课意向”进行了抽样调查(每人选报一类),绘制了如图所示的两幅统计图(不完整),请根据图中信息,解答下列问题:(1)求扇形统计图中m的值,并补全条形统计图;(2)在被调查的学生中,随机抽一人,抽到选“体育特长类”或“艺术特长类”的学生的概率是多少?(3)已知该校有800名学生,计划开设“实践活动类”课程每班安排20人,问学校开设多少个“实践活动类”课程的班级比较合理?21.(11分)如图,在Rt△ABC中,∠ACB=90°,AO是△ABC的角平分线.以O 为圆心,OC为半径作⊙O.AO交⊙O于点E,延长AO交⊙O于点D,tanD=,(1)求的值.(2)设⊙O的半径为3,求AB的长.22.(11分)如图,已知A是双曲线y=(k>0)在第一象限内的一点,O为坐标原点,直线OA交双曲线于另一点C,当OA在第一象限的角平分线上时,将OA向上平移个单位后,与双曲线在第一象限交于点M,交y轴于点N,若=2,(1)求直线MN的解析式;(2)求k的值.23.(11分)某服装公司招工广告承诺:熟练工人每月工资至少3000元.每天工作8小时,一个月工作25天.月工资底薪800元,另加计件工资.加工1件A型服装计酬16元,加工1件B型服装计酬12元.在工作中发现一名熟练工加工1件A型服装和2件B型服装需4小时,加工3件A型服装和1件B型服装需7小时.(工人月工资=底薪+计件工资)(1)一名熟练工加工1件A型服装和1件B型服装各需要多少小时?(2)一段时间后,公司规定:“每名工人每月必须加工A,B两种型号的服装,且加工A型服装数量不少于B型服装的一半”.设一名熟练工人每月加工A型服装a件,工资总额为W元.请你运用所学知识判断该公司在执行规定后是否违背了广告承诺?24.(12分)如图,边长为4的等边三角形AOB的顶点O在坐标原点,点A在x 轴的正半轴上,点B在第一象限.点P从点O出发,沿x轴以每秒1个单位长的速度向点A匀速运动,当点P到达点A时停止运动,设点P运动的时间是t 秒.将线段BP的中点绕点P按顺时针方向旋转60°得点C,点C随点P的运动而运动,连接CP、CA.过点P作PD⊥OB于D点(1)直接写出BD的长并求出点C的坐标(用含t的代数式表示)(2)在点P从O向A运动的过程中,△PCA能否成为直角三角形?若能,求t 的值.若不能,请说明理由;(3)点P从点O运动到点A时,点C运动路线的长是多少?25.(14分)已知在平面直角坐标系xOy中,O为坐标原点,线段AB的两个端点A(0,2),B(1,0)分别在y轴和x轴的正半轴上,点C为线段AB的中点,现将线段BA绕点B按顺时针方向旋转90°得到线段BD,抛物线y=ax2+bx+c(a ≠0)经过点D.(1)如图1,若该抛物线经过原点O,且a=﹣.①求点D的坐标及该抛物线的解析式;②连结CD,问:在抛物线上是否存在点P,使得∠POB与∠BCD互余?若存在,请求出所有满足条件的点P的坐标,若不存在,请说明理由;(2)如图2,若该抛物线y=ax2+bx+c(a≠0)经过点E(1,1),点Q在抛物线上,且满足∠QOB与∠BCD互余.若符合条件的Q点的个数是3个,请直接写出a的值.2017年四川省绵阳市中考数学二模试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)如果代数式在实数范围内有意义,则x的取值范围是()A.x≥3且x≠﹣1 B.x>3且x≠﹣1 C.x>﹣1 D.x≥3【解答】解:∵代数式在有意义,∴x﹣3≥0,x+1≠0,解得:x≥3且x≠﹣1,故答案为:x≥3.故选D.2.(3分)若下列选项中的图形均为正多边形,则哪一个图形恰有4条对称轴?()A.B.C.D.【解答】解:A、正三角形有3条对称轴,故此选项错误;B、正方形有4条对称轴,故此选项正确;C、正六边形有6条对称轴,故此选项错误;D、正八边形有8条对称轴,故此选项错误.故选:B.3.(3分)在亚欧商博会重点项目推介会暨签约仪式上,某公司和绵阳市政府正式签署了一个生态农牧产业园项目.该项目计划总投资21.75亿元,计划自2017年起五年内分三期建设,把21.75亿元用科学记数法表示为()A.2.175×108元B.2.175×107元C.2.175×109元D.2.175×106元【解答】解:21.75亿=21 7500 0000=2.175×109,故选:C.4.(3分)将一副常规的三角尺按如图方式放置,则图中∠AOB的度数为()A.75°B.95°C.105° D.120°【解答】解:∠ACO=45°﹣30°=15°,∴∠AOB=∠A+∠ACO=90°+15°=105°.故选:C.5.(3分)下列各式计算正确的是()A.m2•m3=m6B.C.D.(a<1)【解答】解:A、m2•m3=m5,故选项错误;B、==,故选项错误;C、=,故选项错误;D、正确.故选:D.6.(3分)由四个相同的小正方体搭建了一个积木,它的三视图如图所示,则这个积木可能是()A.B.C.D.【解答】解:从主视图上可以看出左面有两层,右面有一层;从左视图上看分前后两层,后面一层上下两层,前面只有一层,从俯视图上看,底面有3个小正方体,因此共有4个小正方体组成,故选:A.7.(3分)九年级一班和二班每班选8名同学进行投篮比赛,每名同学投篮10次,对每名同学投中的次数进行统计,甲说:“一班同学投中次数为6个的最多”乙说:“二班同学投中次数最多与最少的相差6个.”上面两名同学的议论能反映出的统计量是()A.平均数和众数B.众数和极差C.众数和方差D.中位数和极差【解答】解:一班同学投中次数为6个的最多反映出的统计量是众数,二班同学投中次数最多与最少的相差6个能反映出的统计量极差,故选:B.8.(3分)小张同学去展览馆看展览,该展览馆有2个验票口A、B(可进出),另外还有2个出口C、D(不许进).小张不从同一个验票口进出的概率是多少()A.B.C.D.【解答】解:如图所示:小张从进入到离开共有8种可能的进出方式,不从同一个验票口进出的情况有6种,∴P(小张不从同一个验票口进出)==.故选:D.9.(3分)某数学兴趣小组同学进行测量大树CD高度的综合实践活动,如图,在点A处测得直立于地面的大树顶端C的仰角为36°,然后沿在同一剖面的斜坡AB行走13米至坡顶B处,然后再沿水平方向行走6米至大树脚底点D处,斜面AB的坡度(或坡比)i=1:2.4,那么大树CD的高度约为(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)()A.8.1米B.17.2米C.19.7米D.25.5米【解答】解:作BF⊥AE于F,如图所示:则FE=BD=6米,DE=BF,∵斜面AB的坡度i=1:2.4,∴AF=2.4BF,设BF=x米,则AF=2.4x米,在Rt△ABF中,由勾股定理得:x2+(2.4x)2=132,解得:x=5,∴DE=BF=5米,AF=12米,∴AE=AF+FE=18米,在Rt△ACE中,CE=AE•tan36°=18×0.73=13.14米,∴CD=CE﹣DE=13.14米﹣5米≈8.1米;故选:A.10.(3分)如图,在一个三角点阵中,从上向下数有无数多行,其中各行点数依次为2,4,6,…,2n,…,请你探究出前n行的点数和所满足的规律、若前n 行点数和为930,则n=()A.29 B.30 C.31 D.32【解答】解:设前n行的点数和为s.则s=2+4+6+…+2n==n(n+1).若s=930,则n(n+1)=930.∴(n+31)(n﹣30)=0.∴n=﹣31或30.故选:B.11.(3分)如图,将一张边长为3的正方形纸片按虚线裁剪后,恰好围成一个底面是正三角形的棱柱,这个棱柱的侧面积为()A.9 B.9﹣3C.D.【解答】解:∵将一张边长为3的正方形纸片按虚线裁剪后,恰好围成一个底面是正三角形的棱柱,∴这个正三角形的底面边长为1,高为=,∴侧面积为长为3,宽为3﹣的长方形,面积为9﹣3.故选:B.12.(3分)如图,在正方形ABCD中,点O为对角线AC的中点,过点0作射线OG、ON分别交AB、BC于点E、F,且∠EOF=90°,BO、EF交于点P.则下列结论中:(1)图形中全等的三角形只有两对;(2)正方形ABCD的面积等于四边形OEBF面积的4倍;(3)BE+BF=OA;(4)AE2+CF2=2OP•OB.正确的结论有()个.A.1 B.2 C.3 D.4【解答】解:(1)错误.△ABC≌△ADC,△AOB≌△COB,△AOE≌△BOF,△BOE≌△COF;(2)正确.∵△AOE≌△BOF,∴四边形BEOF的面积=△ABO的面积=正方形ABCD的面积;(3)正确.BE+BF=AB=OA;(4)正确.AE2+CF2=BE2+BF2=EF2=(OF)2=2OF2,在△OPF与△OFB中,∠OBF=∠OFP=45°,∠POF=∠FOB,∴△OPF∽△OFB,OP:OF=OF:OB,OF2=OP•OB,AE2+CF2=20P•OB.另法:AE2+CF2=BF2+BE2=EF2=(PF+PE)2=PE2+PF2+2PE•PF.作OM⊥EF,M为垂足.∵OE=OF,∴OM=ME=MF.PE2+PF2=(ME﹣MP)2+(MF+MP)2=2(MO2+MP2)=2OP2.∵O、E、B、F四点共圆,∴PE•PF=OP•PB,∴AE2+CF2=2OP2+2OP•PB=2OP(OP+PB)=2OP•OB.故选C.二、填空题(本题有6个小题,每小题3分,共18分.)13.(3分)因式分解:16x4﹣4y2=4(2x2+y)(2x2﹣y).【解答】解:原式4(4x4﹣y2)=4(2x2+y)(2x2﹣y),故答案为:4(2x2+y)(2x2﹣y).14.(3分)如图,AB∥CD,∠A=60°,∠C=25°,G、H分别为CF、CE的中点,则∠1=145度.【解答】解:∵AB∥CD,∠A=60°,∴∠AFC=∠A=60°.又∠C=25°,∴∠E=35°,∵G、H分别为CF、CE的中点,∴GH∥EF,∴∠1+∠E=180°,∴∠1=145°.15.(3分)新定义:[a,b]为一次函数y=ax+b(a≠0,a,b为实数)的“关联数”.若“关联数”[1,m﹣2]的一次函数是正比例函数,则关于x的方程的解为x=3.【解答】解:根据题意可得:y=x+m﹣2,∵“关联数”[1,m﹣2]的一次函数是正比例函数,∴m﹣2=0,解得:m=2,则关于x的方程变为+=1,解得:x=3,检验:把x=3代入最简公分母2(x﹣1)=4≠0,故x=3是原分式方程的解,故答案为:x=3.16.(3分)甲乙两地相距50千米.星期天上午8:00小聪同学在父亲陪同下骑山地车从甲地前往乙地.2小时后,小明的父亲骑摩托车沿同一路线也从甲地前往乙地,他们行驶的路程y(千米)与小聪行驶的时间x(小时)之间的函数关系如图所示,小明父亲出发或小时时,行进中的两车相距8千米.【解答】解:由图可知,小聪及父亲的速度为:36÷3=12千米/时,小明的父亲速度为:36÷(3﹣2)=36千米/时设小明的父亲出发x小时两车相距8千米,则小聪及父亲出发的时间为(x+2)小时根据题意得,12(x+2)﹣36x=8或36x﹣12(x+2)=8,解得x=或x=,所以,出发或小时时,行进中的两车相距8千米.故答案为:或.17.(3分)把△ABC绕点A按逆时针方向旋转θ度,并使各边长变为原来的n 倍,得到△AB′C′,即如图,∠BAB′=θ,===n,我们将这种变换记为[θ,n].△ABC中,AB=AC,∠BAC=36°,BC=1,对△ABC作变换[θ,n]得△AB′C′,使点B、C、B′在同一直线上,且四边形ABB′C′为平行四边形,那么θ=72°,n=.【解答】解:∵四边形ABB′C′是平行四边形,∴AC′∥BB′,又∵∠BAC=36°,∴θ=∠CAC′=∠ACB=72°,∴∠C′AB′=∠ABB′=∠BAC=36°,而∠B=∠B,∴△ABC∽△B′BA,∴AB2=CB•B′B=CB•(BC+CB′),而CB′=AC=AB=B′C′,BC=1,∴AB2=1•(1+AB),∴AB=,∵AB>0,∴n==.故答案为:72°,.18.(3分)二次函数y=ax2﹣bx+b(a>0,b>0)图象的顶点的纵坐标不大于,且图象与x轴交于A,B两点,则线段AB长度的最小值是2.【解答】解:∵抛物线顶点横坐标为x=﹣=,代入得:y=a﹣+b≤﹣,化简得:≥3,即b≥6a,(此时△>0,符合题意)∵当y=ax2﹣bx+b=0,时,x1=,x2=,∴AB=,∵a、b均大于0,∴当b=6a时,AB有最小值为2,故答案为2.三、解答题(共7小题,满分86分)19.(16分)(1)计算:()﹣2+(﹣)0+(﹣1)1001+(﹣3)×tan30°(2)先化简,再求值:﹣(﹣a2+b2),其中a=3﹣2,b=3﹣3.【解答】解:(1)原式=9+1﹣1+(2﹣3)×=9﹣×=9﹣3=6,(2)当a=3﹣2,b=3﹣3时,原式=﹣[﹣(a2﹣b2)]=﹣[﹣(a﹣b)(a+b)]=﹣+a+b=a+b=3﹣2+3﹣3=20.(11分)为深化义务教育课程改革,满足学生的个性化学习需求,某校就“学生对知识拓展,体育特长、艺术特长和实践活动四类选课意向”进行了抽样调查(每人选报一类),绘制了如图所示的两幅统计图(不完整),请根据图中信息,解答下列问题:(1)求扇形统计图中m的值,并补全条形统计图;(2)在被调查的学生中,随机抽一人,抽到选“体育特长类”或“艺术特长类”的学生的概率是多少?(3)已知该校有800名学生,计划开设“实践活动类”课程每班安排20人,问学校开设多少个“实践活动类”课程的班级比较合理?【解答】解:(1)总人数=15÷25%=60(人).A类人数=60﹣24﹣15﹣9=12(人).∵12÷60=0.2=20%,∴m=20.条形统计图如图;(2)抽到选“体育特长类”或“艺术特长类”的学生的概率==;(3)∵800×25%=200,200÷20=10,∴开设10个“实验活动类”课程的班级数比较合理.21.(11分)如图,在Rt△ABC中,∠ACB=90°,AO是△ABC的角平分线.以O 为圆心,OC为半径作⊙O.AO交⊙O于点E,延长AO交⊙O于点D,tanD=,(1)求的值.(2)设⊙O的半径为3,求AB的长.【解答】(1)如图,过点O作OF⊥AB于点F,∵AO平分∠CAB,OC⊥AC,OF⊥AB,∴OC=OF,∴AB是⊙O的切线;连接CE,∵ED是⊙O的直径,∴∠ECD=90°,∴∠ECO+∠OCD=90°,∵∠ACB=90°,∴∠ACE+∠ECO=90°,∴∠ACE=∠OCD,∵OC=OD,∴∠OCD=∠ODC,∴∠ACE=∠ODC,∵∠CAE=∠CAE,∴△ACE∽△ADC,∴=,∵tan∠D=,∴=,∴=;(2)由(1)可知:=,∴设AE=x,AC=2x,∵△ACE∽△ADC,∴=,∴AC2=AE•AD,∴(2x)2=x(x+6),解得:x=2或x=0(不合题意,舍去),∴AE=2,AC=4,由(1)可知:AC=AF=4,∠OFB=∠ACB=90°,∵∠B=∠B,∴△OFB∽△ACB,∴=,设BF=a,∴BC=,∴BO=BC﹣OC=﹣3,在Rt△BOF中,BO2=OF2+BF2,∴(﹣3)2=32+a2,∴解得:a=或a=0(不合题意,舍去),∴AB=AF+BF=.22.(11分)如图,已知A是双曲线y=(k>0)在第一象限内的一点,O为坐标原点,直线OA交双曲线于另一点C,当OA在第一象限的角平分线上时,将OA向上平移个单位后,与双曲线在第一象限交于点M,交y轴于点N,若=2,(1)求直线MN的解析式;(2)求k的值.【解答】解:(1)∵OA在第一象限的角平分线上,∴直线OA的解析式为y=x,∴将OA向上平移个单位后,N(0,),可设直线MN的解析式为y=x+b,把N(0,)代入,可得b=,∴直线MN的解析式为y=x+;(2)如图所示,过A作AB⊥y轴于B,过M作MD⊥y轴于D,则∠MDN=∠ABO=90°,由平移可得,∠MND=∠AOB=45°,∴△MDN∽△ABO,∴==2,设A(a,a),则AB=a,∴MD=a=DN,∴DO=a+,∴M(a,a+),∵双曲线经过点A,M,∴k=a×a=a×(a+),解得a=1,∴k=1.23.(11分)某服装公司招工广告承诺:熟练工人每月工资至少3000元.每天工作8小时,一个月工作25天.月工资底薪800元,另加计件工资.加工1件A型服装计酬16元,加工1件B型服装计酬12元.在工作中发现一名熟练工加工1件A型服装和2件B型服装需4小时,加工3件A型服装和1件B型服装需7小时.(工人月工资=底薪+计件工资)(1)一名熟练工加工1件A型服装和1件B型服装各需要多少小时?(2)一段时间后,公司规定:“每名工人每月必须加工A,B两种型号的服装,且加工A型服装数量不少于B型服装的一半”.设一名熟练工人每月加工A型服装a件,工资总额为W元.请你运用所学知识判断该公司在执行规定后是否违背了广告承诺?【解答】解:(1)设熟练工加工1件A型服装需要x小时,加工1件B型服装需要y小时.由题意得:,解得:答:熟练工加工1件A型服装需要2小时,加工1件B型服装需要1小时.(2)当一名熟练工一个月加工A型服装a件时,则还可以加工B型服装(25×8﹣2a)件.∴W=16a+12(25×8﹣2a)+800,∴W=﹣8a+3200,又∵a≥,解得:a≥50,∵﹣8<0,∴W随着a的增大则减小,∴当a=50时,W有最大值2800.∵2800<3000,∴该服装公司执行规定后违背了广告承诺.24.(12分)如图,边长为4的等边三角形AOB的顶点O在坐标原点,点A在x 轴的正半轴上,点B在第一象限.点P从点O出发,沿x轴以每秒1个单位长的速度向点A匀速运动,当点P到达点A时停止运动,设点P运动的时间是t 秒.将线段BP的中点绕点P按顺时针方向旋转60°得点C,点C随点P的运动而运动,连接CP、CA.过点P作PD⊥OB于D点(1)直接写出BD的长并求出点C的坐标(用含t的代数式表示)(2)在点P从O向A运动的过程中,△PCA能否成为直角三角形?若能,求t 的值.若不能,请说明理由;(3)点P从点O运动到点A时,点C运动路线的长是多少?【解答】解:(1)∵△AOB是等边三角形,∴OB=OA=AB=4,∠BOA=∠OAB=∠ABO=60°.∵PD⊥OB,∴∠PDO=90°,∴∠OPD=30°,∴OD=OP.∵OP=t,∴OD=t,∴BD=4﹣t.在Rt△OPD中,由勾股定理,得PD=t,如图1,过C作CE⊥OA于E,则∠PEC=90°,∵线段BP的中点绕点P按顺时针方向旋转60°得点C,∴∠BPC=60°.∵∠OPD=30°,∴∠BPD+∠CPE=90°.∴∠DBP=∠CPE∴△PCE∽△BPD,∴==,∴==,∴CE=,PE=2﹣,∴OE=OP+PE=2+,∴C(2+,).(2)如图3,当∠PCA=90度时,作CF⊥PA,∴△PCF∽△ACF,∴=,∴CF2=PF•AF,∵PF=2﹣t,AF=4﹣OF=2﹣t,CF=t,∴(t)2=(2﹣t)(2﹣t),解得t=2,此时P是OA的中点.如图2,当∠CAP=90°时,C的横坐标就是4,∴2+t=4,解得t=;(3)设C(x,y),∴x=2+t,y=t,∴y=x﹣,∴C点的运动痕迹是一条线段(0≤t≤4).当t=0时,C1(2,0),当t=4时,C2(5,),∴由两点间的距离公式得:C1C2=2.故点C运动路线的长为:2.25.(14分)已知在平面直角坐标系xOy中,O为坐标原点,线段AB的两个端点A(0,2),B(1,0)分别在y轴和x轴的正半轴上,点C为线段AB的中点,现将线段BA绕点B按顺时针方向旋转90°得到线段BD,抛物线y=ax2+bx+c(a ≠0)经过点D.(1)如图1,若该抛物线经过原点O,且a=﹣.①求点D的坐标及该抛物线的解析式;②连结CD,问:在抛物线上是否存在点P,使得∠POB与∠BCD互余?若存在,请求出所有满足条件的点P的坐标,若不存在,请说明理由;(2)如图2,若该抛物线y=ax2+bx+c(a≠0)经过点E(1,1),点Q在抛物线上,且满足∠QOB与∠BCD互余.若符合条件的Q点的个数是3个,请直接写出a的值.【解答】解:(1)①过点D作DF⊥x轴于点F,如图1,∵∠DBF+∠ABO=90°,∠BAO+∠ABO=90°,∴∠DBF=∠BAO,又∵∠AOB=∠BFD=90°,AB=BD,∴△AOB≌△BFD(AAS)∴DF=BO=1,BF=AO=2,∴D的坐标是(3,1),根据题意,得a=﹣,c=0,且a×32+b×3+c=1,∴b=,∴该抛物线的解析式为y=﹣x2+x;②∵点A(0,2),B(1,0),点C为线段AB的中点,∴C(,1),∵C、D两点的纵坐标都为1,∴CD∥x轴,∴∠BCD=∠ABO,∴∠BAO与∠BCD互余,要使得∠POB与∠BCD互余,则必须∠POB=∠BAO,设P的坐标为(x,﹣x2+x),(Ⅰ)当P在x轴的上方时,过P作PG⊥x轴于点G,如图2,则tan∠POB=tan∠BAO,即=,∴=,解得x1=0(舍去),x2=,∴﹣x2+x=,∴P点的坐标为(,);(Ⅱ)当P在x轴的下方时,过P作PG⊥x轴于点G,如图3则tan∠POB=tan∠BAO,即=,∴=,解得x1=0(舍去),x2=,∴﹣x2+x=﹣,∴P点的坐标为(,﹣);综上,在抛物线上是否存在点P(,)或(,﹣),使得∠POB与∠BCD 互余.(2)如图3,∵D(3,1),E(1,1),抛物线y=ax2+bx+c过点E、D,代入可得,解得,所以y=ax2﹣4ax+3a+1.分两种情况:①当抛物线y=ax2+bx+c开口向下时,若满足∠QOB与∠BCD互余且符合条件的Q 点的个数不可能是3个②当抛物线y=ax2+bx+c开口向上时,(i)当点Q在x轴的上方时,直线OQ与抛物线y=ax2+bx+c必有两个交点,符合条件的点Q必定有2个;(ii)当点Q在x轴的下方时,要使直线OQ与抛物线y=ax2+bx+c只有1个交点,才能使符合条件的点Q共3个.根据(2)可知,要使得∠QOB与∠BCD互余,则必须∠QOB=∠BAO,∴tan∠QOB=tan∠BAO==,此时直线OQ的解析式为y=﹣x,要使直线OQ 与抛物线y=ax2+bx+c有一个交点,所以方程ax2﹣4ax+3a+1=﹣x有两个相等的实数根,所以△=(﹣4a+)2﹣4a(3a+1)=0,即4a2﹣8a+=0,解得a=,∵抛物线的顶点在x轴下方∴<0,∴a>1,∴a=舍去综上所述,a的值为a=.。