4高级稳定性理论
- 格式:ppt
- 大小:608.00 KB
- 文档页数:23
Lyapunov稳定性理论概述Lyapunov Lyapunov稳定性理论概述稳定性理论概述稳定性理论概述稳定性理论是19 世纪80 年代由俄国数学家Lyapunov创建的,它在自动控制、航空技术、生态生物、生化反应等自然科学和工程技术等方面有着广泛的应用,其概念和理念也发展得十分迅速。
通过本学期“力学中的数学方法”课程的学习,我对此理论的概况有了一些认识和体会,总结于本文中。
一,稳定性的概念稳定性的概念初始值的微分变化对不同系统的影响不同,例如初始值问题ax dtdx= ,x(0)=x 0 , t≥0,x 0≥0 (1) 的解为ex att x 0)(=,而x=0 是(1)式的一个解。
当a f 0时,无论|x 0|多小,只要|x 0| ≠ 0 ,在t→+∞时,总有x(t)→ ∞,即初始值的微小变化会导致解的误差任意大,而当a ?0时,ex att x 0)(=。
与零解的误差不会超过初始误差x 0,且随着t 值的增加很快就会消失,所以,当|x 0|很小时,x(t)与零解的误差也很小。
这个例子表明a f 0时的零解是“稳定”的。
下面,我们就给出微分方程零解稳定的严格定义。
设微分方程),(x t f dtdx =,x(t 0)=x 0 , x ∈R n(2) 满足解存在唯一定理的条件,其解x(t)=x(t,t 0,x 0)的存在区间是),(+∞?∞,f(t,x)还满足条件:f (t ,0)=0 (3)(3)式保证了x(t) = 0 是(2)式的解,我们称它为零解。
这里给出定义1:若对任意给定的ε > 0,都能找到δ=δ(ε,t 0),使得当||x 0||<δ时的解满足x ( t,x 0 , x 0 ) || x ( t, t 0 , x 0 ) || <ε, t ≥ t 0 , 则称(2)式的零解是稳定的,否则称(2)式的零解是不稳定的。
二,Lyapunov稳定性定理Lyapunov稳定性定理稳定性定理Lyapunov第二法(即直接法)探讨了一个二维自治系统的稳定性,并在这些原始几何思想的基础之上,经由分析语言的提炼概括,给出了1条稳定性定理,1条渐近稳定性定理和2条不稳定性定理,这几条定理被誉为稳定性的基本定理,为稳定性理论奠定了牢固的基础。
04第四章李雅普诺夫稳定性理论汇总李雅普诺夫稳定性理论是数学中一项重要的稳定性理论,对于研究动力系统的稳定性具有重要的指导意义。
该理论由俄罗斯数学家李雅普诺夫于19世纪末和20世纪初提出,后经实践证明,被广泛应用于不同领域的研究中。
李雅普诺夫稳定性理论的核心思想是通过构造李雅普诺夫函数来分析系统的稳定性。
李雅普诺夫函数是一个满足一定条件的实数函数,它能够度量系统中各个状态的变化情况,并通过数学分析得出系统状态的稳定性。
在李雅普诺夫稳定性理论中,一般使用正定函数来构造李雅普诺夫函数。
对于一个动力系统,假设其状态空间为n维实数向量,系统的演化过程可以表示为一个关于状态变量的微分方程。
为了判断系统在其中一状态的稳定性,需要构造一个函数V(x),其中x表示状态变量。
如果函数V(x)满足以下两个条件:1.V(x)是正定函数,即对于所有的x,都有V(x)>0,且只有在x=0时,V(x)=0成立。
2.对于系统中任意两个状态x1和x2,如果V(x2)>V(x1),则在系统演化的过程中,x2的状态比x1更不稳定。
那么,可以推导出系统在状态x=0附近的稳定性。
如果对于所有的状态x,有V(x)>V(x=0),那么系统就是在x=0处的稳定点。
如果只有在x=0附近,存在一个圆盘区域,使得对于所有的状态x,有V(x)>V(x=0),那么系统就是局部稳定的。
通过构造李雅普诺夫函数,可以得出系统的稳定性信息。
对于局部稳定性,可以通过计算雅普诺夫函数的导数来得到更详细的信息。
如果导数小于零,则系统是渐进稳定的;如果导数等于零,则系统是边界稳定的;如果导数大于零,则系统是不稳定的。
李雅普诺夫稳定性理论不仅适用于连续系统,也适用于离散系统。
对于离散系统,李雅普诺夫函数的构造和分析方式与连续系统类似,只是微分方程变为差分方程。
总结起来,李雅普诺夫稳定性理论是一种基于构造李雅普诺夫函数来分析系统稳定性的方法。
通过构造正定函数,可以得出系统的稳定性信息,并通过李雅普诺夫函数的导数来得到更详细的稳定性判断。
微分方程的稳定性理论简介一阶方程的平衡点及稳定性设有微分方程()()t f x x •= (1)右端方程不显含自变量t ,称为自治方程。
代数方程()0f x =的实根0x x =称为方程(1)的平衡点(或齐点)它也是方程(1)的解(齐解)。
如果存在某个邻域,使方程(1)的解()x t 从这个邻域内的某个(0)x 出发,满足0lim ()t x t x →∞= (3)则称平衡点0x 是稳定的(稳定性理论中称渐近稳定);否则,称0x 是不稳定的(不渐近稳定)判断平衡点0x 是否稳定点通常有两种方法。
利用定义即(3)式称间接法。
不求方程(1)的解()x t ,因而不利用(3)式的方法称直接法。
下面介绍直接法。
将()f x 在0x 点做Taylor 展开,只取一次项,方程(1)近似为'00()x t f x x x •=-()() (4) (4)称为(1)的近似方程,0x 也是方程(4)的平衡点。
关于0x 点稳定性有如下结论:若'0f x ()<0, 则0x 对于方程(4)和(1)都是稳定的; 若'0f x ()>0,则0x 对于方程(4)和(1)都是不稳定的。
0x 对于方程(4)的稳定性很容易由定义(3)式证明,因为若记'0()f x a =,则(4)的一般解是0()at x t ce x =+其中c 是由初始条件决定的常数,显然,当0a <时(3)式成立。
二阶方程的平衡点和稳定性二阶方程可用两个一阶方程表示为112212()(,)()(,)x t f x x x t g x x ⎧=⎪⎨⎪=⎩gg(6)右端不显含t ,是自治方程。
代数方程组 1212(,)0(,)0f x xg x x =⎧⎨=⎩ (7)的实根011x x =,022x x =称为方程(6)的平衡点,记做00012(,)P x x 。
如果存在某个邻域,使方程(6)的解1()x t ,2()x t 从这个邻域内的某个12((0),(0))x x 出发,满足011lim ()t x t x →∞= ,022lim ()t x t x →∞= (8)则称平衡点0P 是稳定的(渐近稳定);否则,称0P 是不稳定的(不渐近稳定)。