定性和稳定性理论简介
- 格式:doc
- 大小:313.50 KB
- 文档页数:7
稳定性 (stability)系统受到扰动后其运动能保持在有限边界的区域内或回复到原平衡状态的性能。
稳定性问题是自动控制理论研究的基本问题之一。
稳定性分为状态稳定性和有界输入-有界输出稳定性。
状态稳定性如果充分小的初始扰动只引起系统偏离平衡状态的充分小的受扰运动,则称系统是稳定的。
如果当时间趋于无穷大时,所有这些受扰运动均回复到原平衡状态,则称系统是渐近稳定的。
如果对任意初始扰动引起的受扰运动,系统都能随时间趋于无穷大而回复到平衡状态,则称系统是全局或大范围渐近稳定的。
有界输入-有界输出稳定性如果对应于每个有界的输入,系统的输出均是有界的,就称系统是有界输入-有界输出稳定的,简称BIBO稳定。
一个向量信号称为有界,是指组成信号的每一个分量的函数值都为有限值。
对于可用常系数线性微分方程描述的系统,在系统是联合能控和能观测时(见能控性和能观测性),BIBO稳定等价于全局渐近稳定。
在线性控制理论中,系统稳定即指其平衡状态是全局渐近稳定。
稳定性的判别判定系统稳定性主要有两种方法:①李雅普诺夫方法:它同时适用于线性系统和非线性系统,定常系统和时变系统。
对于线性定常系统,这种方法在使用上并不简便(见李雅普诺夫稳定性理论。
②基于对系统传递函数的极点分布的判别方法:只适用于线性定常系统。
传递函数的极点即是其分母多项式为零的代数方程的根。
这种方法在应用上比较简便。
其中按代数方法进行判别的为代数稳定判据,如劳思稳定判据和胡尔维茨稳定判据;按复变函数方法进行判别的有奈奎斯特稳定判据和米哈伊洛夫稳定判据;按图解方法通过研究极点随增益的变化关系来进行判别的为根轨迹法。
除此之外,在研究某些类型的稳定性问题时,也常采用波波夫稳定判据。
而泛函分析和微分几何的方法也已在研究稳定性问题中得到应用。
稳定性(stability)在一定条件下,物体在偏离平衡位置后能恢复到原来平衡位置的性能。
如塔式起重机一般要加适当的配重,使其承受各种载荷时重心始终在支承点周围的范围内而不翻倒。
微分方程定性与稳定性分析解析微分方程是描述自然界中变化规律的重要数学工具,在各个学科领域中都有广泛的应用。
微分方程的定性与稳定性分析是研究微分方程解行为的一种方法,通过分析解的性质和稳定性来了解方程的整体行为。
本文将介绍微分方程定性与稳定性分析的基本概念和方法,并通过具体的例子来阐述其应用。
一、微分方程定性分析微分方程定性分析是指通过对微分方程解的性质进行分析,得到关于解的定性描述。
在定性分析中,我们主要关注解的长期行为和整体趋势,而不是具体的解析形式。
1. 平衡解与稳定性在微分方程中,平衡解是指满足方程右端为零的解。
对于一阶微分方程dy/dx = f(x),平衡解即为使得f(x) = 0的x值。
平衡解的稳定性是指当初始条件接近平衡解时,解的行为是否趋于平衡解。
2. 等式右端的符号分析对于微分方程dy/dx = f(x),我们可以通过分析f(x)的符号来推断解的行为。
当f(x) > 0时,解呈现上升趋势;当f(x) < 0时,解呈现下降趋势;当f(x) = 0时,解为平衡解。
3. 相图分析相图是描述微分方程解的图形,横轴表示自变量x,纵轴表示因变量y。
在相图中,曲线表示解的轨迹,平衡解表示曲线与纵轴的交点。
通过绘制相图,我们可以直观地了解解的行为和稳定性。
二、微分方程稳定性分析微分方程稳定性分析是指通过分析微分方程解的稳定性来了解方程的整体行为。
稳定性分析可以分为局部稳定性和全局稳定性两个方面。
1. 局部稳定性局部稳定性是指当初始条件接近某个平衡解时,解的行为是否趋于该平衡解。
局部稳定性可以通过线性化的方法来分析,即将微分方程在平衡解附近进行泰勒展开,并分析展开式的特征根。
2. 全局稳定性全局稳定性是指当初始条件在整个定义域内变化时,解的行为是否趋于某个平衡解。
全局稳定性的分析较为复杂,通常需要借助于Lyapunov函数或者Poincaré-Bendixson定理等方法。
三、定性与稳定性分析的应用微分方程的定性与稳定性分析在各个学科领域中都有广泛的应用。
引言稳定一词的字面意思为坚持或保持。
形容词“稳定的” 的英语和法语stable 、德语stabil 均来源于拉丁语stbilis 。
最早见于罗马共和国末期的诗人和哲学家卢克莱修(Titus Lucretius Carus,约前99年-约前55年)所写的哲理长诗《物性论》([1] 140 页):因为水就是这样动的,一受到最微小的影响就波动,由于它是由会滚动的小形粒子所构成;但是相反地密的本性则是更稳定,它的液汁更富于懒性,它流动更迟缓;因为它的物质更牢结在一起,因为,实在说,构成它的粒子,不是这样地光滑,不是这样地小而圆。
在汉语中,“稳定”是舶来品,本土原先很少用,因此始编于1908年主要收录1840 年以前的汉语词汇的《辞源》都没有收入“稳定” 。
罕见的一个古代使用例子见于《清史稿•列传一百七》,其中收有1814年河东河道总督栗毓美(1778-1840) 上疏,论证用烧砖筑堤的必要性--- 能在水流冲击下不动,上年盛涨,较二年及十二年尤猛迅,砖坝均屹立不移。
仪睢、中河两厅,河水下卸,塌滩汇坝,抢镶埽段,旋即走失,用砖抛护,均能稳定([2]11656 页) 。
传统汉语中,与稳定意思接近的词是“安稳” ,意思是平安稳妥。
除去天下局势太平、人心所向的引申含义外,主要用于说明行舟的平稳无惊。
南朝宋临川王刘义庆(403-444)所撰《世说新语•排调》记载,东晋书法家、画家顾恺之(348-409)遇风浪后写信报平安,行人安稳,布帆无恙([3]438 页)。
这一故事也收入《晋书•列传第六十二》([4]2404 页)。
《宋史•志第一百四十八兵九》记载北宋抗金名臣李纲(1083-1140)的主张,水战之利,南方所宜。
沿河、淮、海、江帅府、要郡,宜效古制造战船,以运转轻捷安稳为良。
又习火攻,以焚敌舟([5]4869 页)。
《清史稿•列传七十九》记载1723年江西巡抚裴幰度(?-1740)上疏设关榷税事宜,九江旧关,上有龙开河、官牌夹,下有老鹤塘、白水港,地势宽平,泊舟安稳([6]10311 页)。
常微分方程习题答案第五章定性与稳定性理论简介教材习题同步解答习题5.21. 对于方程组41114221,,xx x x x x ⎧=-⎨=⎩ 试说明 441212(,)V x x x x =+是正定的,而dVdt是常负的。
证:易知(0,0)0V =,当22120x x +≠时,12(,)0V x x > 正定。
34344444121122211212124()4()440dV V V x x x x x x x x x x x x dt x x ∂∂=+=-+-=-+=∂∂ ,故dV dt是常负。
(0,0)0V =。
2. 讨论方程组312132124,3,xx x x x x ⎧=--⎨=-⎩ 零解的稳定性。
证:取 221212(,)V x x x x =+, 易知(0,0)0V =,当22120x x +≠时, 12(,)0V x x >即正定。
334411221212121212222(4)2(3)22()0dV x x x x x x x x x x x x x x dt=+=--+-=---< ,故方程的零解是渐进稳定的。
3. 讨论自治系统2111222212,,x Ax x x x Ax x x ⎧=-⎨=-⎩ 零解的稳定性。
证:证:取 221212(,)V x x x x =+, 易知(0,0)0V =,当22120x x +≠时,12(,)0V x x >即正定。
222211221112221212222()2()2()dV x x x x x Ax x x x Ax x x A x x dt=+=-+-=+ ,故方程的0A >,则零解是不稳定的;若0A <,则零解是渐进稳定的。
习题5.3通过求解,确定下列各方程的奇点类型,画出相图,并确定奇点的稳定性:(1)2,3;dx x dt dy y dt ⎧=-⎪⎪⎨⎪=-⎪⎩(2)3,3;dx x dt dy x y dt⎧=⎪⎪⎨⎪=+⎪⎩(3),;dx y dt dy x dt ⎧=⎪⎪⎨⎪=-⎪⎩(4)23,3;dxx y dtdy x y dt ⎧=+⎪⎪⎨⎪=+⎪⎩解:(1)方程的奇点为(0,0)O ,方程所对应的系数矩阵为2003A -⎡⎤=⎢⎥-⎣⎦,系数矩阵所对应的特征方程为20003λλ--=-- 或2560λλ++= ,特征根为 1220,30,λλ=-<=-<奇点(0,0)O 为稳定结点。
第三讲常微分方程发展简史——解析理论与定性理论阶段3、常微分方程解析理论阶段:19 世纪19 世纪为常微分方程发展的解析理论阶段. 作为微分方程向复数域的推广, 微分方程解析理论是由Cauchy 开创的. 在Cauchy 之后,重点转向大范围的研究。
级数解和特殊函数这一阶段的主要结果之一是运用幂级数和广义幂级数解法, 求出一些重要的二阶线性方程的级数解, 并得到极其重要的一些特殊函数.常微分方程是17、18 世纪在直接回答物理问题中兴起的. 在着手处理更为复杂的物理现象, 特殊是在弦振动的研究中, 数学家们得到了偏微分方程. 用变量分离法解偏微分方程的努力导致求解常微分方程的问题. 此外, 因为偏微分方程都是以各种不同的坐标系表出的, 所以得到的常微分方程是目生的, 并且不能用封闭形式解出. 为了求解应用分离变量法与偏微分方程后得到的常微分方程, 数学家们没有过分忧虑解的存在性和解应具有的形式, 而转向无穷级数的方法. 应用分离变量法解偏微分方程而得到的常微分方程中最重要的是Bessel 方程.x 2 y+ xy+ (x2 n2 )y = 0其中参数n 和x 都可以是复的.对Bessel 来说, n 和x 都是实的. 此方程的特殊情形早在1703 年BernoulliJacobi 给 Leibnitz 的信中就已提到, 后来 Bernoulli Daniel 、Euler 、Fourier 、 Poisson 等都讨论过此问题. 对此方程的解的最早的系统研究是由 Bessel 在研 究行星运动时作出的. 对每一个n , 此方程存在两个独立的基本解, 记作J (x) 和nY (x) , 分别称为第一类 Bessel 函数和第二类 Bessel 函数, 它们都是特殊函数 n或者广义函数(初等函数之外的函数) . Bessel 自 1816 年开始研究此方程, 首 先给出了积分关系式J (x) = q 2j 几 cos(nu 一 x sin u)du.n 2几 01818 年 Bessel 证明了 J (x) 有无穷多个零点. 1824 年, Bessel 对整数n 给出了n递推关系式xJ (x) 一 2nJ (x) + xJ (x) = 0n +1 n n 一1和其他的关于第一类 Bessel 函数的关系式.后来又有众多的数学家(研究天体力学的数学家)独立地得到了 Bessel 函数及其表达式和关系式. Bessel 为微分方程解析理论作出了巨大贡献。
微分方程的定性与稳定性分析微分方程是数学中的重要概念,用于描述自然界和社会现象中的许多现象和规律。
在研究微分方程的过程中,定性与稳定性分析是一项关键的工具和方法。
本文将介绍微分方程的定性与稳定性分析的基本概念和方法。
一、微分方程的定性分析1. 定性分析的概念定性分析是通过分析微分方程的特征和重要性质,来了解方程解的大致行为和特点的过程。
它主要关注方程解的长期行为和稳定性,而不是具体的解析形式。
2. 相图和关键点相图是微分方程解的图形表示,通常以自变量和因变量的关系进行绘制。
关键点是方程解在相图中具有特殊意义的点,如平衡点、周期点、奇点等。
3. 平衡点和稳定性分析平衡点是方程解中保持不变的点,即导数为零的点。
稳定性分析是判断平衡点的性质,包括稳定、不稳定和半稳定等。
二、微分方程的稳定性分析1. 稳定性的概念稳定性是指方程解在平衡点附近的行为趋势,包括渐近稳定、指数稳定、周期稳定等。
稳定性分析是研究方程解在不同情况下的稳定性质。
2. 稳定性分析的方法(1)线性稳定性分析:通过线性化微分方程,求得线性化方程的特征根,并根据特征根的实部和虚部来判断解的稳定性。
(2)李雅普诺夫稳定性分析:通过构造适当的李雅普诺夫函数,证明解的稳定性。
(3)数值稳定性分析:通过数值方法,如欧拉法、龙格-库塔法等,模拟方程解的行为和稳定性。
三、案例分析考虑一个常见的微分方程模型,如Logistic方程,描述了物种的增长和竞争过程。
通过定性与稳定性分析,可以了解方程解的行为特点。
具体的分析过程和结果省略。
四、结论微分方程的定性与稳定性分析是研究方程解行为和稳定性的重要方法。
通过相图、关键点、稳定性分析等工具和方法,可以揭示微分方程解的长期行为和稳定性质,为对实际问题的理解和解决提供基础。
总之,微分方程的定性与稳定性分析是研究方程解行为和稳定性的重要方法,在实际问题中有着广泛的应用。
通过本文的介绍,希望读者对微分方程的定性与稳定性分析有更深入的了解,并能在实际问题中灵活运用。
第5章定性和稳定性理论简介
在十九世纪中叶,通过Liouville等人的工作,人们已经知道绝大多数微分方程不能用初等积分法求解.这个结果对微分方程理论的发展产生了极大的影响,使微分方程的研究发生了一个转折.既然初等积分法有着不可克服的局限性,那么是否可以不求微分方程的解,而从微分方程本身来推断其性质呢?定性理论和稳定性理论正是在这种背景下发展起来的.前者由法国数学家Poincare(1854-1912)在19世纪80年代所创立,后者由俄国数学家Liapunov(1857-1918)在同年代所创立.它们共同的特点就是在不求出方程解的情况下,直接根据微分方程本身的结构与特点,来研究其解的性质.由于这种方法的有效性,近一百多年以来它们已经成为常微分方程发展的主流.本章对定性理论和稳定性理论的一些基本概念和基本方法作一简单介绍.
第一讲§5.1 稳定性(Stability)概念(5课时)
一、教学目的:理解稳定、渐近稳定和不稳定的概念;掌握零解的稳
定、渐近稳定的概念;学会判定一些简单微分方程零
解的稳定和渐近稳定性。
二、教学要求:理解稳定、渐近稳定和不稳定的概念;掌握简单微分
方程零解的稳定和渐近稳定性的判定。
三、教学重点:简单微分方程零解的稳定和渐近稳定性的判定。
四、教学难点:如何把一般解的稳定性转化为零解的稳定性。
五、教学方法:讲练结合教学法、提问式与启发式相结合教学法。
六、教学手段:传统板书与多媒体课件辅助教学相结合。
七、教学过程:
1.稳定性的定义 考虑微分方程组
(,)dx
f t x dt
= (5.1) 其中函数(,)f t x 对n x D R ∈⊆和(,)t ∈-∞+∞连续,对x 满足局部Lipschitz 条件。
设方程(5.1)对初值01(,)t x 存在唯一解01(,,)x t t x ϕ=,而其它解记作00(,,)x x t t x =。
现在的问题是:当01x x -很小是,差0001(,,)(,,)
x t t x t t x ϕ-的变化是否也很小?本章向量12(,,,)T n x x x x =的范数取12
21
n
i i x x =⎛⎫= ⎪⎝⎭
∑。
如果所考虑的解的存在区间是有限区间,那么这是解对初值的连续依赖性,在第二章的定理2.7已有结论。
现在要考虑的是解的存在区间是无穷区间,那么解对初值不一定有连续依赖性,这就产生了Liapunov 意义下的稳定性概念。
定义 5.1 如果对于任意给定的0ε>和00t ≥都存在0(,)0t δδε=>,使得只要01x x δ-<,就有0001(,,)(,,)x t t x t t x ϕε-< 对一切0t t ≥成立,则称(5.1)的解01(,,)x t t x ϕ=是稳定的。
否则是不稳定的。
定义5.2 假定01(,,)x t t x ϕ=是稳定的,而且存在11(0)δδδ<≤,使得只要011x x δ-< ,就有 0001lim((,,)(,,))0t x t t x t t x ϕ→∞-= ,则称(5.1)的解01(,,)x t t x ϕ=是渐近稳定的。
为了简化讨论,通常把解01(,,)x t t x ϕ=的稳定性化成零解的稳定性问题.下面记00()(,,)x t x t t x =01()(,,)t t t x ϕϕ=作如下变量代换. 作如下变量代换.
令 ()()y x t t ϕ=- (5.2) 则
()()(,())(,())dy dx t d t f t x t f t t dt dt dt
ϕϕ=-=- (,())(,())f t t y f t t ϕϕ=+-(,)F t y =于是在变换(5.2)下,将方程(5.1)化成
(,)dy
F t y dt
= (5.3) 其中(,)(,())(,())F t y f t t y f t t ϕϕ=+-。
这样关于(5.1)的解()x t ϕ=的稳定性问题就化为(5.3)的零解y =0的稳定性问题了。
因此,我们可以在下文中只考虑(5.1)的零解0x =的稳定性,即假设(,0)0f t ≡,并有如下定义: 定义5.3 若对任意0ε>和00t ≥,存在0(,)0t δδε=>,使当0x δ<时有 00(,,)x t t x ε< (5.4) 对所有的0t t ≥成立,则称(5.1)的零解是稳定的,反之是不稳定的。
定义5.4 若(5.1)的零解是稳定的,且存在
10( 5.1)δδδδ<<为定义中的,使当01x δ<时有
00lim (,,)0t x t t x →∞
= 则称(5.1)的零解是渐近稳定的。
例1 考察系统 dx
y dt dx x dt
⎧=⎪⎪
⎨⎪=-⎪⎩
的零解的稳定性。
解 不妨取初始时刻00t =,对于一切0t ≥,方程组满足初始条件
22
0000(0),(0)(0)x x y y x y ==+≠的解为
0000()cos sin ()sin cos x t x t y t
y t x t y t =+⎧⎨=-+⎩
对 任一0ε>,取δε=,则当1
2220
()x y δ+<时,有
1
12
2
2
2
2
20000()()(cos sin )(sin cos )x t y t x t y t x t y t ⎡⎤⎡⎤+=++-+⎣⎦⎣⎦
12220
()x y δε
=+<=
故该系统的零解是稳定的。
然而,由于
112
2
2
222
lim ()()()0t x t y t x y →∞⎡⎤+=+≠⎣
⎦ 所以该系统的零解不是渐近稳定的。
例2 考察系统
dx
x dt dx y dt
⎧=-⎪⎪
⎨⎪=-⎪⎩
的零解的稳定性.
解 在0t ≥上,取初值为00(0,,)x y 的解为:
00()()t
t
x t x e y t y e --⎧=⎨=-⎩
其中22000x y +≠
对任一0ε>,取 δε=,则当12
220
()x y δ+<时,有
1
12
2
222222
()()()t
t x t y t x e y e --⎡⎤+=+⎣⎦12220
()x y δε≤+<=(0)t ≥故该系的零解是稳定的. 又因为
1
12
2
222222
lim ()()()0t
t t x t y t x e y e --→∞⎡⎤+=+=⎣
⎦ 可见该系统的零解是渐近稳定的. 例3 考察系统
dx
x dt
dx y dt
⎧=⎪⎪⎨⎪=⎪⎩
的零解的稳定性.
解 方程组以00(0,,)x y 为初值的解为
00()()t
t
x t x e y t y e
⎧=⎨=-⎩ (0)t ≥ 其中 22000x y +≠
1
11
22222222222
00
00
()()()()t t t
x t y t x e y e x y e ⎡⎤+=+=+⎣⎦
由于函数t e 随t 的递增而无限地增大. 因此,对于任意0ε>,不
管12220
()x y +取得怎样小,只要t 取得适当大时,就不能保证
1
2
2
2
()()x t y t ⎡⎤+⎣⎦小于预先给定的正数ε,所以该系统的零解是不稳的.
例4 考虑常系数线性微分方程组
dx
Ax dt
= (5.5) 其中n x R ∈,A 是n ×n 阵.证明:若A 的所有特征根都具严格负实部,则(5.5)的零解是渐近稳定的.
证明 不失一般性,我们取初始时刻00t =,设Φ(t)是(5.5)的标准基
本解矩阵,由第3章内容知满足0(0)x x =的解()x t 可写成 0()()x t t x =Φ (5.6) 由A 的所有特征根都具负实部知
lim ()0t t →∞
Φ= (5.7)于是知存在10t >,使1t t >时()1t Φ<.从而对任意0ε>,取0δε=则当
00x δ<时,由(5.6)有
001()(),x t t x x t t ε≤Φ≤<≥
当[]10,t t ∈时,由解对初值的连续相依性,对上述0ε>,存在10δ>,当01x δ<时
()0x t ε-<
取{}01min ,δδδ=,综合上面讨论知,当0x δ<时有 (),x t ε< []0,t ∈+∞ 即0x =是稳定的.
由(5.7)知对任意0x 有0lim ()0t t x →+∞
Φ=,故0x =是渐近稳定的。