傅里叶变换的性质及常用函数的傅里叶变换
- 格式:doc
- 大小:311.50 KB
- 文档页数:4
广义Fourier 变换:函数不严格满足存在条件,但是函数可定义另一函数 所组成的序列的极限,序列中的函数有F.T.;对组成序 列的每一个函数进行变换,就产生一个相应的变换序 列,该新序列的极限即为原函数的广义F.T.g ( x, y ) = lim f N ( x, y ) ℑ{ f N ( x, y )} = FN ( f x , f y )N →∞ N →∞lim FN ( f x , f y ) = ℑ{ g ( x, y )} = G ( f x , f y )ℑ{δ ( x, y )}lim ℑ{ N exp(−N π (x + y ))} = limexp(−2 2 2 2 N→∞π ( f x2 + f y 2 )2N→∞N fy ⎫ ⎧ 1 fx 1 2 lim ℑ{ N rect(Nx)rect(Ny)} = lim ⎨N ⋅ sin c( )N ⋅ sin c( )⎬ =1 N→∞ N→∞ N N N ⎭ ⎩ N fy ⎫ ⎧ 1 fx 1 lim ℑ{ N sin c(Nx)sin c(Ny)} = lim ⎨N ⋅ rect( )N ⋅ rect( )⎬ =1 N→∞ N→∞ N N N ⎭ ⎩ N2) =1δ−function Properties 1. 筛选性(定义性质)∞ −∞∫ g ( x)δ ( x − x ) dx = g ( x )0 0δ ( x − x0 ) = 0, x ≠ x02. 尺度缩放性质δ (ax) =3. 偶函数x 1 1 δ ( x), δ (ax − x0 ) = δ ( x − 0 ) a a aδ ( x ) = δ ( − x ) , δ ( − x + x 0 ) = δ ( x − x0 )3. 乘积性质g ( x)δ ( x − x0 ) = g ( x0 )δ ( x − x0 ); xδ ( x − x0 ) = x0δ ( x − x0 )4. 积分性质∞−∞∫ Aδ ( x − x ) dx = A0∞−∞∫ δ ( x − x ) dx = 105. 卷积性质g ( x) ∗ δ ( x − x0 ) = g ( x − x0 )卷积定义∞f ( x) ∗ h( x) =−∞∫ f (a)h(x − a)da反转,平移,相乘,积分卷积在光学中的应用卷积表示一输出,在光学上就表示成像系统的像分 布 ;对于线性空间不变光学系统,其输出的信息可 表示为输入信息g与系统脉冲响应函数h(系统对点 源的响应)的卷积 的响应x0处点源:I 0 Δξ 对应的像强度分布P( xi − x0 )输出像:I i ( xi ) = I 0 Δξ P ( xi ) + I 0 Δξ P( xi − ξ 1 ) +KΔξ → 0:I i ( xi ) = ∫ I 0 (ξ ) P( xi − ξ )d ξ二维:g(x, y)表示物(输入信息); h(x,y)表示系统对点源的响应(点扩散函数、脉冲响应函数)输出=g( x, y ) ∗ h(x,y)卷积的性质1. 符合交换律g ( x,y ) ∗ h( x, y ) = h( x, y ) ∗ g ( x,y )2.函数平移不变性f ( x, y ) ∗ h ( x, y ) = g ( x, y ) ↔ f ( x − x0 , y − y0 ) ∗ h( x, y ) = g ( x − x0 , y − y0 )3. 线性运算(af + bh) ∗ g = af ∗ g + bh ∗ g4.δ函数的卷积f ( x, y )* δ ( x, y ) = f ( x, y )δ 函数与任何函数卷积仅重新产生该函数严格再生 5. 光滑作用脉冲响应函数h是 对光学系统性能的 定量评价。
常用函数的傅里叶变换傅里叶变换是一种将时域信号转换为频域信号的方法,常用于信号处理、通信、图像处理等领域。
在实际应用中,有很多常用的函数需要进行傅里叶变换,本文将介绍一些常用函数的傅里叶变换公式。
1. 正弦函数和余弦函数正弦函数和余弦函数是最基本的周期函数,它们的傅里叶变换公式如下:$$begin{aligned}mathcal{F}(sin(omega_0t)) &= frac{j}{2}[delta(omega-omega_0)-delta(omega+omega_0)]mathcal{F}(cos(omega_0t)) &= frac{1}{2}[delta(omega-omega_0)+delta(omega+omega_0)]end{aligned}$$其中,$omega_0$表示正弦函数和余弦函数的基频,$delta(omega)$表示狄拉克脉冲函数,$j$表示虚数单位。
2. 矩形函数矩形函数是一个限制在有限区间的常数函数,它的傅里叶变换公式如下:$$mathcal{F}(mathrm{rect}(t/T)) = Tmathrm{sinc}(omega T) $$其中,$mathrm{sinc}(x)=frac{sin(pi x)}{pi x}$为正弦积分函数。
3. 三角函数三角函数包括正弦函数、余弦函数、正切函数等,它们的傅里叶变换公式如下:$$begin{aligned}mathcal{F}(sin^2(omega_0t)) &= frac{j}{4}[delta(omega-2omega_0)-delta(omega)-delta(omega+2omega_0)]mathcal{F}(cos^2(omega_0t)) &= frac{1}{4}[delta(omega-2omega_0)+2delta(omega)+delta(omega+2omega_0)]mathcal{F}(tan(omega_0t)) &= -jfrac{pi}{2}mathrm{sgn}(omega-omega_0)-jfrac{pi}{2}mathrm{sgn}(omega+omega_0)end{aligned}$$其中,$mathrm{sgn}(x)$为符号函数。
常用傅里叶变换Document number:NOCG-YUNOO-BUYTT-UU986-1986UT时域信号角频率表示的傅里叶变换弧频率表示的傅里叶变换注释1 线性2 时域平移3频域平移,变换2的频域对应4如果值较大,则会收缩到原点附近,而会扩散并变得扁平.当|?a?|?趋向无穷时,成为。
5傅里叶变换的二元性性质。
通过交换时域变量和频域变量得到.6傅里叶变换的微分性质7 变换6的频域对应8表示和的卷积—这就是9变换8的频域对应。
[]平方可积函数时域信号角频率表示的傅里叶变换弧频率表示的傅里叶变换注释10 和归一化的11变换10的频域对应。
矩形函数是理想的低通滤波器,是这类滤波器对冲击的响应。
12 tri?是13变换12的频域对应14 exp( ? αt2)的傅里叶变换是他本身.只有当Re(α) > 0时,这是可积的。
15 领域应用较多161718 a>019 变换本身就是一个公式20 J0(t)?是。
21 上一个变换的推广形式;?T n(t)?是。
22????U n?(t)是。
[]分布时域信号角频率表示的傅里叶变换弧频率表示的傅里叶变换注释23δ(ω)代表分布.这个变换展示了狄拉克δ函数的重要性:该函数是常函数的傅立叶变换24 变换23的频域对应25 由变换3和24得到.26由变换1和25得到,应用了:?cos(at) =(e iat?+?e???iat) / 2.27 由变换1和25得到28这里,?n是一个.δ(n)(ω)是狄拉克δ函数分布的n阶微分。
这个变换是根据变换7和24得到的。
将此变换与1结合使用,我们可以变换所有。
29 此处sgn(ω)为;注意此变换与变换7和24是一致的.30 变换29的推广.31 变换29的频域对应.32 此处u(t)是;此变换根据变换1和31得到.33 u(t)是,且a?> 0.34 ——有助于解释或理解从连续到的转变.[]二元函数时域信号角频率表示的傅里叶变换弧频率表示的傅里叶变换注释两个函数都是高斯函数,而且可能都没有单位体积.此圆有单位半径,如果把circ(t)认作阶梯函数u(1-t); Airy分布用J1?(1阶)表达; f r是频率矢量的量值{f x,f y}.三元函数时域信号角频率表示的傅里叶变换弧频率表示的傅里叶变换注释此球有单位半径;f r是频率矢量的量值{f x,f y,f z}.。