第3讲 傅里叶变换的基本概念及基本定理
- 格式:ppt
- 大小:941.00 KB
- 文档页数:54
傅里叶变换基础知识《傅里叶变换基础知识:一场充满惊喜的数学冒险》嘿,大家好啊!今天咱就来聊聊傅里叶变换基础知识,这可真是一个相当有趣又神奇的领域啊!想象一下,傅里叶变换就像是一把神奇的钥匙,能打开一个我们平时难以察觉到的神秘世界的大门。
它是数学中的一个小精灵,虽然有时候有点让人摸不着头脑,但一旦你懂它了,就会发现它带来的惊喜实在太多了!你知道吗?傅里叶变换就像是一个音乐大师,能把一段复杂的声音分解成各种不同的音符。
比如说,我们听到的美妙音乐,其实就是由各种不同频率的声波组合而成的。
而傅里叶变换呢,就能帮我们把这些复杂的声波给拆解开来,让我们清楚地看到到底都有哪些频率的声波在里面捣鼓。
是不是很厉害?刚开始接触傅里叶变换的时候,我那叫一个头大啊!看着那些公式和概念,感觉自己就像是掉进了一个数学的迷宫里,怎么转都转不出来。
但是,随着逐步深入学习,我慢慢找到了一些门道。
比如说,理解傅里叶变换就像是学骑自行车,一开始你可能会摇摇晃晃,甚至摔倒好几次,但只要你坚持,慢慢地你就能掌握平衡,然后骑着车到处跑啦!一开始那些复杂的概念和公式就像是眼前的小山坡,看着很难跨越,但当你不断努力,一点一点地爬上去,就会发现后面的路越来越平坦。
而且,一旦你掌握了傅里叶变换,你就会发现它在很多领域都大有用处。
不管是信号处理啦,图像处理啦,还是通信领域等等,都有它的身影。
就像你有了一把万能钥匙,可以打开很多不同的宝藏箱子。
我还记得我第一次用傅里叶变换解决了一个实际问题的时候,那心里别提多开心了!就像是自己突然变成了一个超级英雄,拯救了世界一样。
从那以后,我对傅里叶变换的兴趣就越来越浓厚,不断地去探索它的更多奥秘。
当然啦,学习傅里叶变换可不是一件容易的事儿,需要我们有足够的耐心和毅力。
但是,只要我们坚持下去,就一定能在这场充满惊喜的数学冒险中收获满满。
总之呢,傅里叶变换基础知识就像一个隐藏在数学世界里的宝藏,等着你去挖掘。
所以,别害怕那些复杂的概念和公式,勇敢地踏上这场冒险之旅吧!相信我,你一定会被它的神奇所吸引,收获到意想不到的惊喜和快乐!。
傅里叶变换常用公式1. 简介傅里叶变换是一种重要的数学工具,用于将一个信号从时域转换到频域。
它常被应用于信号处理、图像处理、通信等领域。
本文将介绍傅里叶变换的基本概念和常用公式。
2. 傅里叶级数傅里叶级数是傅里叶变换的基础,它用于将周期信号表示为一系列正弦和余弦函数的和。
傅里叶级数的公式如下:傅里叶级数公式傅里叶级数公式在上述公式中,f(t)表示周期为T的函数,a0是直流成分,ak和bk是傅里叶系数。
3. 傅里叶变换傅里叶变换是将非周期信号表示为一组连续的频谱的过程。
傅里叶变换的公式如下:傅里叶变换公式傅里叶变换公式在上述公式中,F(w)表示频域信号,f(t)表示时域信号,j是虚数单位。
4. 反傅里叶变换反傅里叶变换是将频域信号恢复为时域信号的过程。
反傅里叶变换的公式如下:反傅里叶变换公式反傅里叶变换公式在上述公式中,F(w)表示频域信号,f(t)表示时域信号。
5. 常见傅里叶变换公式下面列举了一些常见的傅里叶变换公式:5.1 正弦函数的傅里叶变换正弦函数的傅里叶变换的公式如下:正弦函数的傅里叶变换公式正弦函数的傅里叶变换公式在上述公式中,f(t)是正弦函数,F(w)是其频域信号。
5.2 余弦函数的傅里叶变换余弦函数的傅里叶变换的公式如下:余弦函数的傅里叶变换公式余弦函数的傅里叶变换公式在上述公式中,f(t)是余弦函数,F(w)是其频域信号。
5.3 矩形脉冲的傅里叶变换矩形脉冲的傅里叶变换的公式如下:矩形脉冲的傅里叶变换公式矩形脉冲的傅里叶变换公式在上述公式中,f(t)是矩形脉冲,F(w)是其频域信号。
5.4 高斯函数的傅里叶变换高斯函数的傅里叶变换的公式如下:高斯函数的傅里叶变换公式高斯函数的傅里叶变换公式在上述公式中,f(t)是高斯函数,F(w)是其频域信号。
6. 结论傅里叶变换是一种非常强大的数学工具,用于将信号从时域转换到频域。
本文介绍了傅里叶级数、傅里叶变换和反傅里叶变换的基本公式,并列举了一些常见的傅里叶变换公式。
第三章傅里叶变换3-1 概述对于一件复杂的事情,人们总是从简单的一步开始做起,富丽堂皇的高楼大厦,是人们一块砖一块砖垒起来的。
为了简化问题的求解,人们往往也使用“变换分析”这种技巧,所起“变换”大家可能会感到陌生,其实我们在中学时已经运用了“变换分析”技巧,大家一定还记得对数运算,它实际上也是一种数学变换,我们知道两个数的乘积的对数等于两个数的对数和,两个数的商的对数等于这两个数的对数差,利用对数这个运算规则我们可以将数的乘积运算转换(准确地说变换)为数的加法运算,可以将数的除法运算转换(变换)为数的减法运算,可见“变换分析”给我们解决问题带来了方便,傅里叶变换就是给我们分析问题和解决问题极为方便的数学工具。
线性非时变系统的卷积分析实际上是基于将输入信号分解为一组加权延时的单位冲激(或样值)激励的线性组合。
本章将讨论信号和系统的另一种表示,其基本观点还是将信号分解为一组简单函数的线性组合,但是这里用的简单函数不是单位冲激(或样值)而是三角函数(或复指数函数)。
用“三角函数和”表示信号的想法至少可以追溯到古代巴比伦时代,当时他们利用这一想法来预测天体运动。
这一问题的近代研究始于1748年,欧拉在振动弦的研究中发现:如果在某一时刻振动弦的形状是标准振动(谐波)模的线性组合,那么在其后任何时刻,振动弦的形状也是这些振动模的线性组合。
另外,欧拉还证明了在该线性组合中,其后的加权系数可以直接从前面时间的加权系数中导出。
欧拉的研究成果表明了:如果一个线性非时变系统输入可以表示为周期复指数或正弦信号的线性组合,则输出也一定能表示成这种形式。
现在大家已经认识到,很多有用的信号都能用复指数函数的线性组合来表示,但是在18世纪中期,这一观点还进行着激烈的争论。
1753年D.伯努利(D.Bernoulli)曾声称:一根弦的实际运动都可以用标准(谐波)振荡模的线性组合来表示。
而以J.L.拉格朗日(grange)为代表的学者强烈反对使用三角级数来研究振动弦运动的主张,他反对的论据就是基于他自己的信念,即不可能用三角级数来表示一个具有间断点的函数。
第三章离散时间信号的傅里叶变换课程:数字信号处理目录第三章离散时间信号的傅里叶变换 (3)教学目标 (3)3.1引言 (3)3.2傅里叶级数CFS (4)3.2.1傅里叶级数CFS定义 (4)3.2.2傅里叶级数CFS性质 (6)3.3傅里叶变换CFT (7)3.3.1傅里叶变换CFT定义 (7)3.3.2傅里叶变换CFT的性质 (8)3.4离散时间信号傅里叶变换DTFT (9)3.4.1离散时间信号傅里叶变换DTFT定义 (9)3.4.2离散时间信号傅里叶变换的性质 (10)3.5周期序列的离散傅里叶级数(DFS) (14)3.5.1周期序列的离散傅里叶级数的定义 (14)3.5.2周期序列的离散傅里叶级数的性质 (18)3.6离散傅里叶变换(DFT) (20)3.6.1离散傅里叶变换(DFT) (20)3.6.2离散傅里叶变换的性质 (23)3.7CFS、CFT、DTFT、DFS和DFT的区别与联系 (25)3.8用DFT计算模拟信号的傅里叶分析 (28)3.9实验 (30)本章小结 (32)习题 (33)参考文献: (36)第三章离散时间信号的傅里叶变换教学目标本章讲解由时域到频域的傅里叶变换,频域观察信号有助于进一步揭示系统的本质,对于某些系统可以极大的简化其设计和分析过程。
通过本章的学习,要理解连续时间信号的傅里叶级数和傅里叶变换的和离散时间信号基本概念、性质和应用;了解一些典型信号的傅里叶变换;理解连续时间信号的傅里叶级数(CFS)、连续时间信号的傅里叶变换(CFT)、离散时间傅里叶变换(DTFT)、离散时间傅里叶级数(DTFS)和离散傅里叶变换(DFT)它们相互间的区别与联系;掌握傅里叶变换的参数选择,以及这些参数对傅里叶变换性能的影响;了解信号处理中其它算法(卷积、相关等)可以通过离散傅里叶变换(DFT)来实现。
3.1引言一束白光透过三棱镜,可以分解为不同颜色的光,这些光再通过三棱镜,就会得到白光。
傅里叶变换的基本性质(一)傅里叶变换建立了时间函数和频谱函数之间转换关系。
在实际信号分析中,经常需要对信号的时域和频域之间的对应关系及转换规律有一个清楚而深入的理解。
因此有必要讨论傅里叶变换的基本性质,并说明其应用。
一、线性傅里叶变换是一种线性运算。
若则其中a和b均为常数,它的证明只需根据傅里叶变换的定义即可得出。
例3-6利用傅里叶变换的线性性质求单位阶跃信号的频谱函数。
解因由式(3-55)得二、对称性若则证明因为有将上式中变量换为x,积分结果不变,即再将t用代之,上述关系依然成立,即最后再将x用t代替,则得所以证毕若是一个偶函数,即,相应有,则式(3-56)成为可见,傅里叶变换之间存在着对称关系,即信号波形与信号频谱函数的波形有着互相置换的关系,其幅度之比为常数。
式中的表示频谱函数坐标轴必须正负对调。
例如:例3-7若信号的傅里叶变换为试求。
解将中的换成t,并考虑为的实函数,有该信号的傅里叶变换由式(3-54)可知为根据对称性故再将中的换成t,则得为抽样函数,其波形和频谱如图3-20所示。
三、折叠性若则四、尺度变换性若则证明因a>0,由令,则,代入前式,可得函数表示沿时间轴压缩(或时间尺度扩展)a倍,而则表示沿频率轴扩展(或频率尺度压缩)a倍。
该性质反映了信号的持续时间与其占有频带成反比,信号持续时间压缩的倍数恰好等于占有频带的展宽倍数,反之亦然。
例3-8已知,求频谱函数。
解前面已讨论了的频谱函数,且根据尺度变换性,信号比的时间尺度扩展一倍,即波形压缩了一半,因此其频谱函数两种信号的波形及频谱函数如图3-21所示。
五、时移性若则此性质可根据傅里叶变换定义不难得到证明。
它表明若在时域平移时间,则其频谱函数的振幅并不改变,但其相位却将改变。
例3-9求的频谱函数。
解:根据前面所讨论的矩形脉冲信号和傅里叶变换的时移性,有六、频移性若则证明证毕频移性说明若信号乘以,相当于信号所分解的每一指数分量都乘以,这就使频谱中的每条谱线都必须平移,亦即整个频谱相应地搬移了位置。