第十三章 积分变换法求解定解问题
- 格式:ppt
- 大小:419.50 KB
- 文档页数:28
数学物理方程及数值解 复习提要一、偏微分方程的建立 CH1 典型方程和定解条件 【内容提要】1. 方程的建立(步骤:确定物理量;微元法建立等式;化简得方程)主要方法:微元法; 泛定方程:(1) 波动方程(双曲型):弦振动方程:222222(,)(,)(),()u x t u x t F a a txρ∂∂==∂∂张力单位长度弦质量 传输线方程:222222222221,00i a LCi a a t x t x νν∂∂∂∂-=-=∂∂∂=∂;, 电磁场方程:22222211,,H E H E t t εμεμ∂∂=∇=∇∂∂22222222221(),με标量函数形式:∂∂∂∂=++∂∂∂=∂u u u z a u a t x y (2) 热传导方程/扩散方程(抛物型):ρ,其中22u Fa u f f t c ∂=∇+=∂ 导热杆(无热源)222u u a t x ∂∂=∂∂, 导热片(无热源)22222()u u u a t x y ∂∂∂=+∂∂∂ (3) 稳恒方程(椭圆型):Poisson 方程:,2u f ∇= Laplace 方程:,20u ∇=2.定解条件:初始条件及边界条件边界条件(1)第一类边界条件(Dirichlet 条件): 1(,)(,)D u M t f M t ∂=(2) 第二类边界条件(Neumann 条件):2Duf n ∂∂=∂ (3) 第三类边界条件(Robin 条件): 3()Duu f n σ∂∂+=∂ 3.定解问题的提法:⎧⎪⎧⎨⎨⎪⎩⎩偏微分方程(泛定方程)定解问题初始条件定解条件边界条件()Cauchy ⎧⎨⎩泛定方程(1)初始问题初始条件 ⎧⎨⎩泛定方程(2)边界问题(第一,二,三)边界条件⎧⎪⎨⎪⎩泛定方程(3)混合问题初始条件边界条件4.线性偏微分方程的基本性质(1).线性迭加原理212,11,,,,,,,:nnij i ij i n i j i i j iL a b c a b c f x x x x x x ==∂∂=++∂∂∂∑∑其中是算子的函数111(1,2)(),nnni i ii ii i i i i i L u f in L c u c L u c f=====⇒==∑∑∑命题:21110(1,2),,()0,nnii i i i i i i i i i k j u Lu i c u c L c u x x ∞===∂==⇒=∂∂∑∑∑一致敛命收题:(2.) 齐次化原理(冲量原理)Duhamel 原理:设(,,)x t ωτ是方程22222,,(,)(,)0,(,),a x t t x x x f x x t ωτωτωττω⎧∂∂=-∞<<+∞>⎪∂∂⎪⎨∂⎪==-∞<<+∞⎪∂⎩的解,⇒0(,,)d ,()t x t u x t ωττ=⎰是方程22222(,),,0(,0)(,0)0,0,u u a f x t x t tx u x u x x t ⎧∂∂=+-∞<<+∞>⎪∂∂⎪⎨∂⎪==-∞<<+∞⎪∂⎩的解。
1-1之袁州冬雪创作1.试证:若()f t 知足Fourier 积分定理中的条件,则有 其中()()()()d d ππ11cos ,sin .a f b f ωτωττωτωττ+∞+∞-∞-∞==⎰⎰分析:由Fourier 积分的复数形式和三角形式都可以证明此题,请读者试用三角形式证明.证明:操纵Fourier 积分的复数形式,有由于()()()(),,a a b b ωωωω=-=--所以 2.求下列函数的Fourier 积分:1)()2221,10,1t t f t t ⎧-≤⎪=⎨>⎪⎩; 2) ()0,0;e sin 2,0tt f t t t -⎧<⎪=⎨≥⎪⎩ 3)()0,11,101,010,1t t f t t t ⎧-∞<<-⎪--<<⎪=⎨<<⎪⎪<<+∞⎩分析:由Fourier 积分的复数形式和三角形式都可以解此题,请读者试用三角形式解.解:1)函数()2221,10,1t t f t t ⎧-≤⎪=⎨>⎪⎩为持续的偶函数,其Fourier变换为12233sin 2cos 2sin sin 4(sin cos )2t t t t t t ωωωωωωωωωωωω⎡⎤⎛⎫-=--+=⎢⎥ ⎪⎝⎭⎣⎦(偶函数)f(t)的Fourier 积分为2)所给函数为持续函数,其Fourier 变换为()224252j j 1121(2)j 1(2)j 256ωωωωωω⎡⎤--⎛⎫⎣⎦=+=⎪-+-+--+⎝⎭(实部为偶函数,虚数为奇函数) f (t)的Fourier 变换为 这里用到奇偶函数的积分性质.3)所给函数有间断点-1,0,1且f(-t)= -f(t)是奇函数,其Fourier 变换为12j(cos 1)2j 1sin d 0t t ωωω-=-⋅=⎰(奇函数) f(t)的Fourier 积分为其中t ≠-1,0,1(在间断点0t 处,右边f(t)应以()()00002f t f t ++-代替).3.求下列函数的Fourier 变换,并推证下列积分成果: 1)()e (0),t f t ββ-=>证明:22cos πd e ;02tt βωωβωβ-+∞=+⎰2)()e cos tf t t -=,证明:242πcos d e cos ;042tt t ωωωω-+∞+=+⎰ 3)sin ,π()0,πt t f t t ⎧≤⎪=⎨>⎪⎩,证明:2πsin ,πsin πsin 2d 010,πt t t t ωωωω⎧≤+∞⎪=⎨-⎪>⎩⎰ 证明:1)函数()e t f t β-=为持续的偶函数,其Fourier 变换为再由Fourier 变换得 即2)函数()e cos t f t t -=为持续的偶函数,其Fourier 变换为 再由Fourier 变换公式得 即 242πcos d e cos 042tt t ωωωω-+∞+=+⎰3)给出的函数为奇函数,其Fourier 变换为 故()()e 0,0t f t t ββ-=>≥的Fourier 正弦积分表达式和Fourier 余弦积分表达式.解:根据Fourier 正弦积分公式,并用分部积分法,有根据Fourier 余弦积分公式,用分部积分法,有1-21.求矩形脉冲函数,0()0,A t f t τ⎧≤≤⎪=⎨⎪⎩其他的Fourier 变换.解:()F ω是函数()f t 的Fourier 变换,证明()F ω与()f t 有相同的奇偶性.证明:()F ω与()f t 是一个Fourier 变换对,即()()j e d t F f t t ωω-+∞=-∞⎰,()()j 1e d 2πtf t F ωωω+∞=-∞⎰ 如果()F ω为奇函数,即()()F F ωω-=-,则 (令u ω-=)()j 1e d 2πutF u u -∞=+∞⎰(换积分变量u 为ω)()()j 1e d 2πt F f t ωωω+∞=-=--∞⎰所以()f t 亦为奇函数.如果()f t 为奇函数,即()()f t f t -=-,则(令t u -=)()j e d u f u u ω--∞=+∞⎰(换积分变量u 为t )()()j e d t f t t F ωω-+∞=-=--∞⎰所以()F ω亦为奇函数.同理可证()f t 与()F ω同为偶函数.4.求函数()()e 0t f t t -=≥的Fourier 正弦变换,并推证 解:由Fourier 正弦变换公式,有 由Fourier 正弦逆变换公式,有 由此,当0t α=>时,可得5.设()()f t F ω⎡⎤=⎣⎦F,试证明:1)()f t 为实值函数的充要条件是()()F F ωω-=; 2)()f t 为虚值函数的充要条件是()()F F ωω-=-.证明: 在一般情况下,记()()()r i f t f t f t =+j 其中()r f t 和()i f t 均为t 的实值函数,且分别为()f t 的实部与虚部. 因此其中()()()Re cos sin d r i F f t t f t t t ωωω+∞⎡⎤⎡⎤=+⎣⎦⎣⎦-∞⎰, ()a1)若()f t 为t 的实值函数,即()()(),0r i f t t f f t ==.此时,()a 式和()b 式分别为 所以反之,若已知()()F F ωω-=,则有此即标明()F ω的实部是关于ω的偶函数;()F ω的虚部是关于ω的奇函数.因此,必定有亦即标明()()r f t f t =为t 的实值函数.从而结论1)获证.2)若()f t 为t 的虚值函数,即()()()j ,0i r f t f f t t ==.此时,()a 式和()b 式分别为 所以反之,若已知()()F F ωω-=-,则有此即标明()F ω的实部是关于ω的奇函数;()F ω的虚部是关于ω的偶函数.因此,必定有()()()sin d j cos d i i F f t t t f t t t ωωω+∞+∞==+-∞-∞⎰⎰,亦即标明()()j i f t f t =为t 的虚值函数.从而结论2)获证.sin ()F ωωω=,求该函数()f t .解:sin ()F ωωω=为持续的偶函数,由公式有但由于当0a >时 当0a <时当0a =时,sin d 0,0a ωωω+∞=⎰所以得()11211401t f t t t ⎧<⎪⎪⎪==⎨⎪⎪>⎪⎩,,,7.已知某函数的Fourier 变换为()()()00πδδF ωωωωω⎡⎤=++-⎣⎦,求该函数()f t .解:由函数()()()00δd t t g t t g t -=,易知8.求符号函数(又称正负号函数)()1,0sgn 1,0t t t -<⎧=⎨>⎩的Fourier 变换. 解:容易看出()()()sgn t u t u t =--,而1[()]()πδ().j u t F ωωω=-+F 9.求函数()()()1δδδδ222a a t a t a t f t t ⎡⎤⎛⎫⎛⎫=++-+++- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的Fourier 变换.解 :cos cos 2aa ωω=+.10 .求函数()cos sin t f t t =的Fourier 变换. 解: 已知由()1cos sin sin 22f t t t t ==有()()()πjδ2δ22f t ωω⎡⎤⎡⎤=+--⎣⎦⎣⎦F()3sin f t t =的Fourier 变换.解:已知()0j 0e 2πδtωωω⎡⎤=-⎣⎦F,由即得()πsin 53t t f ⎛⎫=+ ⎪⎝⎭的Fourier 变换.解: 由于故()()()()()πjδ5δ55δ52f t ωωωω⎤⎡⎤⎡⎤=+--+++-⎥⎣⎦⎣⎦⎣⎦F. 14.证明:若()()j e t F ϕω⎡⎤=⎣⎦F,其中()t ϕ为一实数,则其中()F ω-为()F ω的共轭函数.证明:因为 ()()j j e e d t t F t ϕωω+∞--∞=⋅⎰()()()()()()j j j j 1e e ed cose d cos 22t t tt F F t t t t ϕϕωωωωϕϕ-+∞+∞---∞-∞+⎡⎤⎡⎤+-===⎣⎦⎣⎦⎰⎰F 同理可证另外一等式.17.求作如图的锯齿形波的频谱图.(图形见教科书).解 :02π,T ω=()1,00,ht t T f t T ⎧≤≤⎪=⎨⎪⎩其他1-31.若1122()[()],()[()],F f t F f t ωω== F F ,αβ是常数,证明(线性性质):分析:根据Fourier 变换的定义很容易证明. 证明:根据Fourier 变换与逆变换的公式分别有 6.若()[()]F f t ω= F,证明(翻转性质):()[()]F f t ω-=- F分析:根据Fourier 变换的定义,再停止变量代换即可证明.证明:()[()]t f t f t t ω+∞--∞-=-⎰Fj e d(令t u -=)()()u f u u ω+∞---∞=⎰j e d (换u 为t )()()t f t t ω+∞---∞=⎰j e d9.设函数()1,10,1t f t t ⎧<⎪=⎨>⎪⎩,操纵对称性质,证明:π ,1sin .0,1t t ωω⎧<⎪⎡⎤=⎨⎢⎥>⎣⎦⎪⎩F 证明:()[()]t f t f t t ω+∞--∞=⎰Fj e d 11t t ω--=⎰j e d由对称性质:()[()]f t F ω= F,则()[()]2,F t f ω=-F π有12.操纵能量积分()()2212f t t F ωω+∞+∞-∞-∞⎡⎤=⎣⎦⎰⎰d d π,求下列积分的值:1)21cos xx x +∞-∞-⎰d ; 2)42sin x x x +∞-∞⎰d ;3)()2211x x +∞-∞+⎰d ;4)()2221x x x +∞-∞+⎰d .解:1)2222sin 1cos 2xxx x xx +∞+∞-∞-∞-=⎰⎰d d(令2x t =)2sin t t t +∞-∞⎛⎫= ⎪⎝⎭⎰d 2)()22422sin 1cos sin x x xx x x x +∞+∞-∞-∞-=⎰⎰d d3)()22221111x t t x +∞+∞-∞-∞⎛⎫= ⎪+⎝⎭+⎰⎰d d 221121t ω+∞-∞⎡⎤=⎢⎥+⎣⎦⎰F d π,其中 从而4)()()2222221111x x x x x x +∞+∞-∞-∞+-=++⎰⎰d d ()2221111x x x x +∞+∞-∞-∞=-++⎰⎰d d 1-41.证明下列各式:2)()1f t ()()()()()23123f tf t f t f t f t ⎡⎤⎡⎤=⎣⎦⎣⎦;6)()()()()()()121212ddd;d d d f t f t f tf t f t f t t t t⎡⎤==⎣⎦ 10)()()()d t f t u t f ττ-∞=⎰分析:根据卷积的定义证明. 证明: 2)()()()123f t f t f t ⎡⎤⎣⎦()()()123d f f t f t ττττ+∞-∞⎡⎤=--⎣⎦⎰6)()()()()1212dd d d d f t f t f f t t t τττ+∞-∞⎡⎤⎡⎤=⋅-⎢⎥⎣⎦⎣⎦⎰()()()()1212ddd d d f f t f t f t t t τττ+∞-∞⎡⎤=⋅-=⎣⎦⎰, ()()()()1212d d d d d f t f f t f t t t τττ+∞-∞⎡⎤=-⋅=⎢⎥⎣⎦⎰.10)()()()()d f t u t f u t τττ+∞-∞=-⎰()1,0,t u t t τττ⎛⎫⎧<⎪-= ⎪⎨ ⎪>⎪⎩⎝⎭()d t f ττ-∞=⎰. 2.若()()()()12e ,sin t f t u t f t tu t α-==,求()()12f t f t .注意:不克不及随意调换()1f t 和()2f t 的位置. 解:由()()1e ,0e0,0t tt f t u t t αα--⎧>⎪==⎨<⎪⎩,()()2sin ,0sin 0,0t t f t tu t t >⎧==⎨<⎩,所以 ()()()()1221f t f t f t f t =()()21d f f t τττ+∞-∞=-⎰要确定()()210f f t ττ-≠()()210,0;0,0f t f t ττττ>≠->-≠.即必须知足 00t ττ>⎧⎨->⎩, 即0tττ>⎧⎨<⎩, 因此 (分部积分法)()2e sin cos e 10ttατααττα-⎡⎤-=⎢⎥+⎣⎦ 4 .若()()()()1122,F f t F f t ωω⎡⎤⎡⎤==⎣⎦⎣⎦FF ,证明:证明:()()()()121211d 2π2πF F F u F u u ωωω+∞-∞=⋅-⎰5.求下列函数的Fourier 变换: 1)()()0sin f t t u t ω=⋅; 2)()()0e sin t f t t u t βω-=⋅; 5)()()0j 0e t f t u t t ω=-;解: 1)已知()()1πδj u t ωω⎡⎤=+⎣⎦F,又 ()()()()()00j j 01sin e e 2jtt f t t u t u t u t ωωω-=⋅=-.由位移性质有()()000220πδδ2j ωωωωωωω⎡⎤=--+-⎣⎦-. 2)由Fourier 变换的定义,有5)操纵位移性质及()u t 的Fourier 变换,有再由象函数的位移性质,有7.已知某信号的相关函数()21e 4a R ττ-=,求它的能量谱密度()S ω,其中0a >.解 由定义知9.求函数()()()e ,0t f t u t αα-=>的能量谱密度. 解: 因为()()e ,0e 0,0ttt f t u t t αα--⎧>⎪==⎨<⎪⎩,当0τ>时,()()0f t f t τ+≠的区间为()0,+∞,所以 当0τ<时,()()0f t f t τ+≠的区间为(),τ-+∞,所以因此,()1e 2R αττα-=,现在可以求得()f t 的能量谱密度,即1-51.求微分方程()()(),()x t x t t t δ'+=-∞<<+∞的解. 分析:求解微分、积分方程的步调:1)对微分、积分方程取Fourier 变换得象函数的代数方程;2)解代数方程得象函数;3)取Fourier 逆变换得象原函数(方程的解). 解:设()(),x t X ω⎡⎤=⎣⎦F对方程双方取Fourier 变换,得即 其逆变换为()0,0.e ,0tt x t t -⎧<⎪=⎨≥⎪⎩4.求解下列积分方程: 1)()()()222210;y a b t b t aτττ+∞-∞=<<+-+⎰d 2)()222t t y τττ+∞----∞=⎰e d πe.解:1)操纵卷积定理可以求解此类积分方程.显然,方程的左端是未知函数()y t 与221t a +的卷积,即()221y t t a +.设()(),y t Y ω⎡⎤=⎣⎦F 对方程双方取Fourier 变换,有即 易知:22cos 2tt βωωβωβ+∞-=+⎰πd e ,有即所以()()22b b a a a b Y baωωωω----==πee πe 由上可知222201cos π2d e a t t t a t a a ωω+∞-⎡⎤=⎢⎦=⎥++⎣⎰F ,()()22--a b a b t b a =⎡⎤+⎣⎦π.2)设()(),y t Y ω⎡⎤=⎣⎦F对方程双方取Fourier 变换,同理可得操纵钟形脉冲函数的Fourier变换224e et A ωββ--⎡⎤=⎣⎦F 及由Fourier 变换的定义可求得:222e t βββω-⎡⎤=⎣⎦+F ,从而即 从而()()222-1-122y t ωωω--⎡⎤⎡⎤=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦πe πj e F F , 其中,记()22ef t ω-⎡⎤=⎣⎦F,则()22t f t -=,上式中第二项可操纵微分性质()()()()2222f t f t ωωω-''⎡⎤⎡⎤==⎣⎦⎣⎦F F j j e,则因此()22222t t y t --=-π22221t t -⎫=-⎪⎭e .()x t :其中()(),f t h t 为已知函数,,,a b c 均为已知常数.解:设()()()()()(),,.f t F h t H x t X ωωω⎡⎤⎡⎤⎡⎤===⎣⎦⎣⎦⎣⎦F F F 对方程双方取Fourier 变换,可得 即 从而2-11.求下列函数的Laplace 变换,并给出其收敛域,再用查表的方法来验证成果.1)()sin 2t f t =.分析:用Laplace 变换的定义解题.解: j j 22001sin sin d d 222j e e e st s t s t t t t t ⎛⎫⎛⎫+∞+∞--+- ⎪ ⎪⎝⎭⎝⎭⎛⎫⎡⎤==+ ⎪⎢⎥⎣⎦⎝⎭-⎰⎰L ()21112Re()0j j 2j 4122s s s s ⎡⎤⎢⎥=-=⎢⎥+⎢⎥-+⎣⎦>. 2)()2e t f t -=.解:()()d d Re()e e e e t t st s t t t s s >-22220012+∞+∞----+⎡⎤===⎣⎦+⎰⎰L . 3)()2f t t =. 解:2220000112e d d(e )2e d e st stst st t t t t s s t tt -+∞+∞+∞--+∞-⎡⎤⎡⎤==-=--⎣⎦⎢⎥⎣⎦⎰⎰⎰L ∣()022300222d(e )e e d Re()0st st st t t t s s s s+∞+∞--+∞-⎡⎤=-=--=⎢⎥⎣⎦⎰⎰∣ >.4)()sin cos f t t t =. 解:[]0sin cos sin cos e d st t t t t t +∞-=⎰L22121244s s =⋅=++. 7)()2cos f t t =. 解 :22001cos 2cos cos e d e d 2ststt t t t t +∞+∞--+⎡⎤==⎣⎦⎰⎰L()2211112242j 2j 4s s s s s s ⎡⎤+=++=⎢⎥-++⎣⎦. 2.求下列函数的Laplace 变换: 1)()3,021,2 4.0,4t f t t t ⎧≤<⎪=-≤<⎨⎪≥⎩解: ()()24002d 3d d e e e stststf t f t t t t +∞---⎡⎤==-⎣⎦⎰⎰⎰L2)()π3,2.πcos ,2t f t t t ⎧<⎪⎪=⎨⎪>⎪⎩解:()()π2π02e d 3e d cos e d stst stf t f t t t t t +∞+∞---⎡⎤==+⎣⎦⎰⎰⎰L()()()()ππj j πππ222222313111e e Re()02j j 1e e e s s s ss s s s s s s -+----⎛⎫⎛⎫⎛⎫ ⎪=-+-=--> ⎪ ⎪ ⎪+-+⎝⎭⎪⎝⎭⎝⎭3) ()()2e 5δt f t t =+解:()()()()220005δe d d 5δe d e et s tst st f t t t t t t +∞+∞+∞---⎡⎤⎡⎤=+=+⎣⎦⎣⎦⎰⎰⎰L()0115e 5Re()222st t s s s -==+=+>--∣. 4)()()()cos δsin f t t t t u t =⋅-⋅ 解:()()()∣∣∣j j j 000011cos e e d 12j 2j j j e e ees t j s tttststt t t s s--++∞+∞+∞---=⎡⎤⎢⎥=--=-+-+⎢⎥⎣⎦⎰()222111111Re()2j j j 11s s s s s s⎛⎫=---=-= ⎪+-++⎝⎭>0. 2-21.求下列函数的Laplace 变换式: 1)()232f t t t =++.解:由[]2132!1232132mm m t s ss s s t t +⎡⎤⎡⎤==++=++⎣⎦⎣⎦及有L L L . 2)()1e t f t t =-. 解 :[]()()1111,e e t tt t t s ss s --⎡⎤⎡⎤===-⎣⎦⎣⎦222+1-1L L,L 1-.3)()()21e t f t t =-. 解:5)()cos f t t at =. 解: 由微分性质有: 6) ()5sin23cos2f t t t =- 解:已知[][]2222sin ,cos st t s s ωωωωω==++L L ,则 8)()4e cos4t f t t -=.解: 由[]2cos 416t s +s=L 及位移性质有 42cos4416e ts t s -⎡⎤=⎣⎦++4(+)L . 3.若()()f t F s ⎡⎤=⎣⎦L,证明(象函数的微分性质):特别地,()()tf t F s '⎡⎤=-⎣⎦L,或()()11f t F s t-'⎡⎤=-⎣⎦L ,并操纵此结论计算下列各式:1)()3e sin2t f t t t -=,求()F s . 解:()()()322sin 224e t t s s ωωω-===++22+3+3L ,2)()30e sin 2d tt f t t t t -=⎰,求()F s .解:()0332112sin 2d sin 234e e t t t t t t ss s --⎡⎤⎡⎤==⋅⎢⎥⎣⎦⎣⎦++⎰L L , 3)()1ln 1s F s s +=-,求()f t .解:()1ln ,1s F s s +=-()(),F s f t ⎡⎤=⎣⎦令-1L故 ()()-12sinh tF s f t t⎡⎤==⎣⎦L . 4.若()()f t F s ⎡⎤=⎣⎦L,证明(象函数的积分性质):()()d s f t F s s t ∞⎡⎤=⎢⎥⎣⎦⎰L ,或()()1d s f t t F s s ∞-⎡⎤=⎢⎥⎣⎦⎰L 并操纵此结论计算下列各式:1)()sin kt f t t=,求()F s .解: ()2222sin kkkt s s kωωω===++L , 2)()3e sin 2t t f t t-=,求()F s .解:()()322esin 234tt s -=++L,2-31.设()()12,f t f t 均知足Laplace 变换存在定理的条件(若它们的增长指数均为c ),且()()()()1212,f t f t F s F s ⎡⎤⎡⎤==⎣⎦⎣⎦LL ,则乘积()()12f t f t ⋅的Laplace 变换一定存在,且 其中(),Re .c s c ββ>>+证明: 已知()()12,f t f t 均知足Laplace 变换存在定理的条件且其增长指数均为c ,由Laplace 变换存在定理知()()12f t f t ⋅也知足Laplace 变换存在定理的条件且标明()()12f t f t ⋅的增长指数为2c .因此()()12f t f t ⋅的Laplace 变换在半平面()Re 2s c>上一定存在,且右端积分在()()Re s c c ββ≥+>上相对且一致收敛,而且在()Re 2s c >的半平面内,()F s 为解析函数.根据()()11F f t s ⎡⎤=⎣⎦L,则()1f t 的Laplace 反演积分公式为 从而(交换积分次序)()()()1j 0j 2e 12πjd d s q t F q f t t q ββ++∞-∞∞--⎡⎤=⎢⎥⎣⎦⎰⎰2.求下列函数的Laplace 逆变换(象原函数);并用另外一种方法加以验证.1)()221F s s a =+.2)()()()sF s s a s b =--.3)()()()2s cF s s a s b +=++. 10)()()()2214sF s ss =++.解: 1)12211sin at s a a-⎡⎤=⎢⎥+⎣⎦L . 2)()()1sa b s a s b a b s a s b ⎛⎫=- ⎪-----⎝⎭,3)()()()()()222111s cc a b c F s s a s b b a s a s b b a s b +--⎡⎤==-+⋅⎢⎥++-⎣⎦++-+,故10)由()()()2222131414ss s s s s F s s ⎛⎫=⎪++++⎝⎭=-,有 ()()()11cos cos 23f t F s t t -⎡⎤==-⎣⎦L.3.求下列函数的Laplace 逆变换: 1)()()2214F s s=+.6)()221ln s F s s -=.13)()221e sF s s-+=.解 : 1)用留数计算法,由于122j,2j s s ==-均为()F s 的二级极点, 所以6)令()()()22212ln ,ln 1s F s F s s s s -'==-,()()()()112e e 211t t F s tf t s s s-'=+-=+-=-+-L L , ()()21212ln 1cosh s f t t s t -⎛⎫-==- ⎪⎝⎭L. 13)2211122221e 1e s s ss s s -----⎡⎤⎡⎤⎡⎤+=+⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦LLL ()()()21,222,02t t t t u t t t ⎧->⎪=+--=⎨≤<⎪⎩.2-41.求下列卷积:3)m t n t (,m n 为正整数). 解:mt()()()0d 1C d nttnknm mk n k k n k t t t ττττττ-==⋅-=-∑⎰⎰()1!!1!m n m n t m n ++=++.注:本小题可先用卷积定理求出m t n t 的Laplace 变换,再由Laplace 逆变换求出卷积6)sin kt ()sin 0kt k ≠.解 :sin kt ()()001sin sin sin d cos cos 2d 2ttkt k k t kt k kt τττττ⎡⎤=-=---⎣⎦⎰⎰ ()0sin 211sin cos cos 2422tt k ktt kt t kt kkτ-=-+=-+.7) t sinh t解 :t sinh sinh t t =t ()0sinh d tt τττ=⋅-⎰()()()000111d(e )d(e )2e e sinh 2220t t t t t t t t t ττττττ---⎡⎤=-+-=-++-=-⎢⎥⎣⎦⎰⎰ 9)()u t a -()()0f t a ≥ .解:()u t a -()()()()00,d d ,tt a t a f t u a f t f t t a τττττ⎧<⎪=-⋅-=⎨-≥⎪⎩⎰⎰.10)()δt a -()()0f t a ≥. 解: 当t a <,()δt a -()0f t =. 当t a ≥,()()()()δd aa f t f t f t a τττττ+∞-∞==-⋅-=-=-⎰.()()f t F s ⎡⎤=⎣⎦L ,操纵卷积定理,证明:()()0d t F s f t t s⎡⎤=⎢⎥⎣⎦⎰L 证明:()()()()()1f t u t f t u t F s s⎡⎤⎡⎤⎡⎤=⋅=⋅⎣⎦⎣⎦⎣⎦LL L , ()()()()()()000d d d t t tf t u t u f t f t f t t τττττ⎡⎤⎡⎤⎡⎤⎡⎤=⋅-=-=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎰⎰⎰L L L L 3.操纵卷积定理,证明:()2221sin 2s a at a s t -⎡⎤⎢⎥=⎢⎥+⎣⎦L. 证明 :()()22222221ss F s s a s as a ==⋅+++,由 有2-51.求下列常系数微分方程的解: 1)()2e ,00t y y y '-==;8)()()()331,0000y y y y y y y '''''''''+++====; 12)()()()()()420,0000,01y y y y y y y ''''''''++=====;16)()π10sin 2,00,12y y t y y ⎛⎫''+=== ⎪⎝⎭.分析:解题步调,首先取Laplace 变换将微分方程化为象函数的代数方程, 解代数方程求出象函数, 再取Laplace 逆变换得最后的解.解:1)方程双方取Laplace 变换,并连系初始条件可得 即()()()1112121Y s s s s s ==-----. 从而方程的解为8)对方程双方取Laplace 变换,并连系初始条件,有即由留数计算法,由于10s =是()Y s 的一个一级极点,21s =-是()Y s 的一个三级极点,从而方程的解为2111e 2t t t -⎛⎫=-++ ⎪⎝⎭.12)对方程双方取Laplace 变换,并连系初始条件,有 即从而方程的解为()()11cos sin sin 2y t Y s t t t t -⎡⎤==*=⎣⎦L. 16)对方程双方取Laplace 变换,并连系初始条件,有即()()()()222020114y Y s s s s '=++++()222020113141y s s s '⎛⎫=-+ ⎪+++⎝⎭,从而 ()()()12010sin sin 20sin 33y t Y s t t y t -'⎡⎤==-+⎣⎦L.为了确定()0y ',将条件π12y ⎛⎫= ⎪⎝⎭代入上式可得()1703y '=-,所以方程的解为2.求下列变系数微分方程的解: 1)()()40,03,00ty y ty y y ''''++===; 3)()()()2120,02ty t y t y y '''+-+-==; 5)()()()()10,000,0ty n y y y y n ''''+-+===≥. 解: 1)方程双方取Laplace 变换,有即[][][]40ty y ty '''++=L L L ,亦即 从而()()2d 40d Y s sY s s++=双方积分可得()211ln ln 42Y s c ++=或()Y s =取其逆变换,有欲求c ,可由条件()03y =得到,即()()0003y cJ c ===,所以方程的解为其中()()()2001!12kkk x J x k k ∞=-⎛⎫= ⎪Γ+⎝⎭∑称为零阶第一类Bessel 函数. 3)方程双方取Laplace 变换,有整理化简后可得 即这是一阶线性非齐次微分方程,这里 所以从而方程的解为()()132e e 3!tt c y t Y s t ---⎡⎤==+⎣⎦L()312e t c t -=+(1c 为任意常数) 5)方程双方取Laplace 变换,有即整理化简后可得 双方积分可得 即从而方程的解为()(2n n y t ct J =(c 为任意常数)其中n J 称为n 阶第一类Bessel 函数.3.求下列积分方程的解: 1)()()()0sin d ty t at t y τττ=+-⎰; 3)()()0d 16sin4ty y t t τττ-=⎰; 5)()()20d e tt y y t t τττ--=⎰. 解:1)显然,原方程可写为双方取Laplace 变换,并操纵卷积定理,有 所以从而方程的解为3)原方程可写为双方取Laplace 变换,并操纵卷积定理,有 即取其Laplace 逆变换,有()()()1084y t Y s J t -⎡⎤==±⎣⎦L,即标明()()084y t J t =及()()084y t J t =-均为所求.这里,0J 为零阶第一类Bessel 函数.5)原方程可写为双方取Laplace 变换,并操纵卷积定理,有 所以从而方程的解为()()12t t y t Y s ---⎛⎫⎡⎤==±=± ⎪⎣⎦ ⎪⎝⎭L,即()t y t -=及()t y t -=-均为所求. 4.求下列微分积分方程的解: 1)()()()()0cos d ,01ty t y t y τττ'-==⎰;3)()()()()()022d ,02ty t y t y u t b y ττ'++=-=-⎰; 5)()()()()30144d ,003ty t y t y t y ττ'-+==⎰;解:1)原方程可写为 双方取Laplace 变换,得 即从而方程的解为3)操纵微分性质与积分性质,对方程双方取Laplace 变换,有 即操纵延迟性质,方程的解为5)操纵微分性质与积分性质,对方程双方取Laplace 变换,有 即方程的解为5.求下列微分、积分方程组的解:1)e,322ettx x y y x y '⎧+-=⎪⎨'+-=⎪⎩()()001x y ==; 4)()()()()()()0,01,0,000;0,000x x y z x x y y z y z x x y z z y z ''⎧-++==⎪'''+-+===⎨⎪''''++-===⎩8)()02d 0,4et tx x y x x y ττ-⎧'''++=⎪⎨⎪'''-+=⎩⎰()()00,0 1.x x '==- 解:1)对方程组的两个方程双方分别取Laplace 变换,有 即解之可得取其逆变换,可得方程组的解为4)对方程组的三个方程双方分别取Laplace 变换,有解之可得(注意:后两个方程标明()()Y s Z s =且()()2X s s Y s =-) 取其逆变换,可得解为8)对方程组的两个方程双方分别取Laplace 变换,有即消去()Y s ,可得即将()X s 的成果代入得 化简得取其逆变换,可得方程组的解为7.设在原点处质量为m 的一质点在0t =时在x 方向上受到冲击力()k t δ的作用,其中k 为常数,假定质点的初速度为零,求其运动规律.解:由题意知,在t 时刻质点m 处于x 轴正向的点()x t 处,其运动速度为()x t ',而加速度为()x t '',且有初始条件()()000x x '==.根据Newton 定律,该质点的运动规律归结为下述微分方程的初值问题:方程双方取Laplace 变换,且记()()x t X s ⎡⎤=⎣⎦L ,则即()2kX s ms =,从而方程的解(即质点的运动规律)为11.某系统的激励()sin x t t=,当系统响应()e cos sin t y t t t -=-+时,求1)系统的传递函数()G s ; 2)系统的脉冲响应函数()g t ; 3)系统的频率响应函数()j G ω. 解:1)由传递函数的定义知2)由脉冲响应函数的定义知3)当系统的传递函数()G s 中s 取j ω时,则得到系统的频率响应函数,即。
第二篇数学物理方程—物理问题中的二阶线性偏微分方程及其解法 Abstracts:1、根据物理问题导出数理方程一偏微分方程; 2、给定数理方程的附加条件:初始条件、边界条件、物理条件 (自然条件,连接条件),从而与数理方程一起构成定解问题; 3、方程齐次化; 4、数理方程的线性导致解的叠加。
一、数理方程的来源和分类(状态描述、变化规律)1、来源 I .质点力学:牛顿第二定律F =mr 连续体力学 II.麦克斯韦方程弹性体力学<(弹性定律)'弦 杆振动:出血力— a 2V 2 u (r , t ) = 0 (波动方程); 膜 0t 2 流体力学:质量守恒律:皿不V ・(p y ) = 0£ d t热力学物态方程:过+ (y -V )y ="p + f = 0 (Euler eq.).d t p JJ D .d c=fffp d i nV- D = p ; J E -d l =JJB -d s nVx E = B ;力B - d c= 0 nV- B = 0; J H - d l DjJ(j + D ) - d s nVx H = j + D . E = -V u , B = Vx A ,u ,A 满足波动方程。
、Lorenz 力公式n 力学方程;制axwell eqsT 电导定律n 电报方程。
IIL 热力学统计物理 热传导方程:以一 k V 2T = 0;特别:稳态(生= 0): V 23 = 0 (Laplace equation). < 八 01 扩散方程:0P - D V 2 p = 0. 、 01 IV.量子力学的薛定谔方程: i 方迦=—疟 V 2 u + Vu .0 01 2 m二、数理方程的导出推导泛定方程的原则性步骤:(1)定变量:找出表征物理过程的物理量作为未知数(特征量),并确定影响未知函数的自变量。
(2)立假设:抓主要因素,舍弃次要因素,将问题“理想化”--- “无理取闹”(物理趣乐)。