积分变换法
- 格式:pdf
- 大小:518.18 KB
- 文档页数:9
Chapter 11 积分变换法一、无界空间的有源导热问题—Fourier 变换法定解问题: ()2(,)(,)(,), ().t xx t u x t a u x t f x t x u x φ=⎧-=-∞<<∞⎪⎨=⎪⎩()()22000, (,), ().0.t xx t xx t t w a w x v a v f x t x w x v φ==⎧⎧-=-∞<<∞-=-∞<<∞⎪⎪⇔+⎨⎨==⎪⎪⎩⎩ ⇒ (,)(,)(,).u x t w x t v x t =+1.一维无源导热问题()20(,)(,)0, ().t xx t w x t a w x t x w x φ=⎧-=-∞<<∞⎪⎨=⎪⎩ 解:把t 看作参数,应用Fourier 变换:1(,)(,)d ;2(,)(,)d .ikx ikx w k t w x t e x w x t w k t e k ∞--∞∞-∞⎧=⎪⎪⎨⎪=⎪⎩⎰⎰(,)(,),w x t w k t ↔()22(,)(,)(,).xx w x t ik w k t k w k t ↔=-220(,)(,)0,().t t w k t a k w k t w k φ=⎧+=⎪⎨=⎪⎩ 解得22(,)().a k tw k t k e φ-= 因为)()(~x k ϕϕ↔, ta x tk a eta e2222421--↔ (利用a b ax e a x bx e 422d cos -∞∞--=⎰π), 利用卷积定理,得()()222244(,)(d (d ()(,;,0)d ,x x a ta tw x t G x t ξξφξξφξξφξξξ----∞∞-∞-∞∞-∞===⎰⎰其中()224(,;,0).x a tG x t ξξ--=容易验证,)0,;,(ξt x G 是问题()⎪⎩⎪⎨⎧-=∞<<∞-=-=)( 0),(),(02ξδx u x t x u a t x u t xx t 的解。
积分变换公式知识点总结一、积分变换的概念积分变换是微积分学中的一个重要概念,它是对函数进行变换的一种方法,通过对函数进行积分变换,可以得到原函数的一些新的性质和特征。
积分变换被广泛应用于信号处理、控制系统、电路分析等领域。
二、常见的积分变换公式1. 恒等式公式1)积分的线性性质:若f(t)和g(t)都在区间[a, b]上可积,则有∫[a, b](af(t) + bg(t))dt = a∫[a, b]f(t)dt + b∫[a, b]g(t)dt。
2)区间可加性:如果函数f(t)在区间[a, c]上可积,那么f(t)在区间[a, b]和区间[b, c]上都可积,并且有∫[a, c]f(t)dt = ∫[a, b]f(t)dt + ∫[b, c]f(t)dt。
3)可积函数的基本性质:若函数f(t)在区间[a, b]上可积,那么f(t)在这个区间的任何子集上也可积,且积分的值是相同的。
2. 基本积分变换公式1)积分的基本性质:∫kf(t)dt = k∫f(t)dt,其中k为常数。
2)换元积分法:∫f(u)du = ∫f(u(t))u'(t)dt。
3)分部积分法:∫udv = uv - ∫vdu。
3. 常用的积分变换公式1)指数函数的积分变换:∫e^x dx = e^x + C。
2)三角函数的积分变换:∫sin(x)dx = -cos(x) + C,∫cos(x)dx = sin(x) + C。
3)对数函数的积分变换:∫1/x dx = ln|x| + C。
三、积分变换的应用1. 信号处理中的应用积分变换在信号处理领域有着重要的应用,特别是在分析和处理一些特殊的信号时,比如正弦信号、脉冲信号等。
通过对这些信号进行积分变换,可以得到它们的频谱特性,从而更好地理解和处理这些信号。
2. 控制系统中的应用在控制系统中,积分变换也有着重要的应用。
例如在PID控制器中,积分环节能够消除系统的静态误差,改善系统的稳定性和精度。