积分变换法求解定解问题
- 格式:ppt
- 大小:956.50 KB
- 文档页数:40
数学物理方程及数值解 复习提要一、偏微分方程的建立 CH1 典型方程和定解条件 【内容提要】1. 方程的建立(步骤:确定物理量;微元法建立等式;化简得方程)主要方法:微元法; 泛定方程:(1) 波动方程(双曲型):弦振动方程:222222(,)(,)(),()u x t u x t F a a txρ∂∂==∂∂张力单位长度弦质量 传输线方程:222222222221,00i a LCi a a t x t x νν∂∂∂∂-=-=∂∂∂=∂;, 电磁场方程:22222211,,H E H E t t εμεμ∂∂=∇=∇∂∂22222222221(),με标量函数形式:∂∂∂∂=++∂∂∂=∂u u u z a u a t x y (2) 热传导方程/扩散方程(抛物型):ρ,其中22u Fa u f f t c ∂=∇+=∂ 导热杆(无热源)222u u a t x ∂∂=∂∂, 导热片(无热源)22222()u u u a t x y ∂∂∂=+∂∂∂ (3) 稳恒方程(椭圆型):Poisson 方程:,2u f ∇= Laplace 方程:,20u ∇=2.定解条件:初始条件及边界条件边界条件(1)第一类边界条件(Dirichlet 条件): 1(,)(,)D u M t f M t ∂=(2) 第二类边界条件(Neumann 条件):2Duf n ∂∂=∂ (3) 第三类边界条件(Robin 条件): 3()Duu f n σ∂∂+=∂ 3.定解问题的提法:⎧⎪⎧⎨⎨⎪⎩⎩偏微分方程(泛定方程)定解问题初始条件定解条件边界条件()Cauchy ⎧⎨⎩泛定方程(1)初始问题初始条件 ⎧⎨⎩泛定方程(2)边界问题(第一,二,三)边界条件⎧⎪⎨⎪⎩泛定方程(3)混合问题初始条件边界条件4.线性偏微分方程的基本性质(1).线性迭加原理212,11,,,,,,,:nnij i ij i n i j i i j iL a b c a b c f x x x x x x ==∂∂=++∂∂∂∑∑其中是算子的函数111(1,2)(),nnni i ii ii i i i i i L u f in L c u c L u c f=====⇒==∑∑∑命题:21110(1,2),,()0,nnii i i i i i i i i i k j u Lu i c u c L c u x x ∞===∂==⇒=∂∂∑∑∑一致敛命收题:(2.) 齐次化原理(冲量原理)Duhamel 原理:设(,,)x t ωτ是方程22222,,(,)(,)0,(,),a x t t x x x f x x t ωτωτωττω⎧∂∂=-∞<<+∞>⎪∂∂⎪⎨∂⎪==-∞<<+∞⎪∂⎩的解,⇒0(,,)d ,()t x t u x t ωττ=⎰是方程22222(,),,0(,0)(,0)0,0,u u a f x t x t tx u x u x x t ⎧∂∂=+-∞<<+∞>⎪∂∂⎪⎨∂⎪==-∞<<+∞⎪∂⎩的解。
12届真题1. 求下列各小题(2*5=10分):(1)用几何图形表示0arg(1)4z π<-<; (2)给出序列(1/)sin 6n n z i n π=+的聚点; (3)在复数域中求解方程cos 4z =的解;(4)给出二阶偏微分方程的基本类型;(5)给出解析函数所满足的柯西-黎曼方程。
2.按给定路径计算下列积分(5*2=10分):(1)320Re izdz +⎰,积分路径为线段[0,3]和[3,3+2i]组成的折线;(2)11,==⎰积分路径由z=1出发的。
3.利用留数定理计算下列积分(5*2=10分):(1)241x dx x +∞-∞+⎰; (2)3||1zz e dz z =⎰。
4.求常微分方程20w z w ''-=在0z =邻域内的两个级数解(15分)。
5.求下列线性非奇次偏微分方程的通解:2222u u xy y x y∂∂-=-∂∂(15分)。
6.利用分离变量法求解:(20分)2222000(),|0, |0,0, 0.x x l t t u u x l x t x u u u u t ====⎧∂∂-=-⎪∂∂⎪⎪==⎨⎪∂⎪==∂⎪⎩7.用拉普拉斯变换方法求解半无解问题(20分)220, 0,0,(0,)1, lim (,) 0, (,0)|0, 0.x u u x t t x u t u x t t u x x κ→∞⎧∂∂-=>>⎪∂∂⎪⎪=>⎨⎪=>⎪⎪⎩有界,2005级一、填空(请写在答题纸上,每题6分,共计48分)1. 三维泊松方程是______________________________2. 边界为Γ的区域Ω上函数u 的第二类边界条件为___________________。
3. 极坐标下的二维拉普拉斯方程为__________________________。
4. 定解问题2002||0tt xx t t t u u x u x u ===-∞<<+∞⎧⎪⎨==⎪⎩, ,的解__________________________。
Chapter 11 积分变换法一、无界空间的有源导热问题—Fourier 变换法定解问题: ()2(,)(,)(,), ().t xx t u x t a u x t f x t x u x φ=⎧-=-∞<<∞⎪⎨=⎪⎩()()22000, (,), ().0.t xx t xx t t w a w x v a v f x t x w x v φ==⎧⎧-=-∞<<∞-=-∞<<∞⎪⎪⇔+⎨⎨==⎪⎪⎩⎩ ⇒ (,)(,)(,).u x t w x t v x t =+1.一维无源导热问题()20(,)(,)0, ().t xx t w x t a w x t x w x φ=⎧-=-∞<<∞⎪⎨=⎪⎩ 解:把t 看作参数,应用Fourier 变换:1(,)(,)d ;2(,)(,)d .ikx ikx w k t w x t e x w x t w k t e k ∞--∞∞-∞⎧=⎪⎪⎨⎪=⎪⎩⎰⎰(,)(,),w x t w k t ↔()22(,)(,)(,).xx w x t ik w k t k w k t ↔=-220(,)(,)0,().t t w k t a k w k t w k φ=⎧+=⎪⎨=⎪⎩ 解得22(,)().a k tw k t k e φ-= 因为)()(~x k ϕϕ↔, ta x tk a eta e2222421--↔ (利用a b ax e a x bx e 422d cos -∞∞--=⎰π), 利用卷积定理,得()()222244(,)(d (d ()(,;,0)d ,x x a ta tw x t G x t ξξφξξφξξφξξξ----∞∞-∞-∞∞-∞===⎰⎰其中()224(,;,0).x a tG x t ξξ--=容易验证,)0,;,(ξt x G 是问题()⎪⎩⎪⎨⎧-=∞<<∞-=-=)( 0),(),(02ξδx u x t x u a t x u t xx t 的解。
圆锥曲线定点定值问题方法总结
圆锥曲线是一类受应力和形变作用的曲线,它的应用广泛,是研究几何图形的重要工具。
圆锥曲线的定点定值问题要求在任意给定的两个圆锥曲线上找到定点定值的解,而这样的解通常是难以求得的。
一般情况下,这类问题使用数学变换方法,如积分转换、限界积分转换、局部变换等。
首先,以积分变换为例,我们可以使用积分变换来求解圆锥曲线定点定值问题。
这种变换把原始曲线进行分段处理,求出每一段的积分,然后求出该曲线上特定坐标(X0,Y0)的积分。
这种方法的优点在于,可以使用常用的数学软件解决大多数圆锥曲线定点定值问题。
其次,我们也可以使用限界积分变换来解决圆锥曲线定点定值问题。
这种变换首先要将原始曲线进行分段处理,通过限界积分计算每一段的积分。
最后,用积分变换求出曲线上特定坐标(X0,Y0)的积分。
这种方法的优点在于,它可以有效节省计算时间,并且灵活性强,将积分计算公式转换成局部变量。
最后,我们还可以使用局部变换来解决圆锥曲线定点定值问题。
这种变换将原始曲线进行分段处理,将每一段的积分表示为一个局部变量函数,然后将局部变量函数进行积分,求出圆锥曲线上特定坐标(X0,Y0)的积分。
这种方法的优点在于,使用较少的计算量可以快速地求出该曲线上特定坐标(X0,Y0)的积分。
总之,我们可以使用积分变换、限界积分变换和局部变换等数学变换方法来求解圆锥曲线定点定值问题。
这几种方法各有优缺点,需
要结合实际情况来选择合适的解决方案。
圆锥曲线定点定值问题是解决几何图形相关问题的重要方法,也是构建几何图形的基础之一,研究者需要加强对其原理性质的理解,发掘更多的实用方法。