ANSYS在重力坝应力分析中的应用
- 格式:pdf
- 大小:154.08 KB
- 文档页数:2
利用ANSYS模拟大坝的运行期应力变形1.主要步骤:
S1:在Auto CAD里面按照给出尺寸绘图并导入到ANSYS软件中。
S2:通过命令流或者GUI操作来设置材料并给其赋值。
S3:通过APDL命令或者建模的“Operate”里面的“Extrude”沿Z轴将面拉成体,注意距离为10。
S4:按照题目要求,通过APDL或者“Meshing”里面的“Mesh Attributes”给体赋值材料号。
S5:划分网格,先将线分段再划分网格,注意在给侧面划分网格时划分份数为2,并将“KYNDIV SIZE,NDIV can be changed”勾选去掉,否则划分网格时划分份数会有变化。
S6:通过APDL或者“Solution”里面的“Define Loads”添加边界条件和自重。
S7:模拟初始状态,“杀死”坝体单元,求解。
S8:模拟完建状态,“激活”坝体状态,求解。
S9:运行期,施加水荷载,计算扬压力,求解运行期。
S10:创建荷载工况,查看结果。
2.导出结果:2.1初始状态模拟
2.2完建状态模拟
2.3运行期模拟
2.4运行期的变形图
2.5运行期的第一应力图
2.6运行期的第一应力等值线图
2.7运行期总位移变形图
2.8运行期总位移变形等值线图。
应用ANSYS软件进行混凝土重力坝的有限元静力和模态分析丰梦梦等【摘要】采用ANSYS结构分析软件,通过对某小型混凝土重力坝工程进行有限元静力和模态分析,研究探讨了坝体在满库工况下的变形和应力分布,以了解坝体在工况下的工作形态。
同时,进行高阶模态分析,了解坝体的自振频率和振型并进行简单分析,最后做总结【关键词】ANSYS软件静力分析模态分析混凝土重力坝1 前言我国土地辽阔,水资源丰富,可以开发的水电容量约为3.78亿KW,据世界第一位。
目前我们已经修建了如三峡、小浪底等大型水利水电工程,而这些工程也在我国经济建设中发挥了巨大的作用。
建国以来,随着技术的提高,各种各样型式的重力坝在坝工设计中占了很大的比重。
重力坝是一种主要依靠坝体自重产生的抗滑力来维持自身稳定的坝型。
近年来,混凝土重力坝在重力坝中所占的比重越来越大。
混凝土重力坝以具有安全可靠,耐久性好,抵抗渗漏、设计和施工技术简单,易于机械化施工、对不同的地形和地质条件适应性强等优点而被广泛应用[1]。
但由于许多坝都是建立在地震多发和高烈度地区,一旦遭到破坏将会带来难以估计的经济和损失,因此对大坝做模态分析,计算分析它的固有频率和振型,为重力坝的抗震稳定性分析奠定基础。
2 有限元模型建立某工程非溢流混凝土重力坝,高17米,宽24米,顶宽5米。
上游面坡度为1:0,下游面坡度为1:0.8[2]。
假设大坝的基础是嵌入到基岩中,地基是刚性的。
大坝采用的材料参数为:弹性模量E=3.5GPa,泊松比ν=0.2,容重γ=25KN/m3。
水的质量密度1000kg/m3。
模型见图一2.1静力分析SOLID186是一个高阶3维20节点固体结构单元,SOLID186具有二次位移模式可以更好的模拟不规则的网。
本文使用SOLID186单元进行数值模拟分析。
按照满库状态施加荷载,基础是刚性,底面施加约束,对整个重力坝施加重力荷载,然后求解分析。
分析结果见图二、图三、图四、图五。
基于ANSYS的重力坝三维静动态结构分析目录1 引言 (1)2 工程概况 (1)3 基本资料 (1)3.1 反应谱 (1)3.2 材料参数 (2)3.3 规范要求 (2)4 分析简介 (4)4.1 分析模型 (4)4.2 边界条件 (6)4.3 荷载工况 (6)5 计算成果 (7)5.1 工况一 (7)5.2 工况二 (8)5.3 工况三 (10)5.4 工况四 (11)5.5 工况五 (12)5.6 工况六 (14)5.7 结果总结及分析 (15)6 结论及建议 (17)7 分析命令流 (17)1 引言重力坝是我国高坝中的主要坝型,在防洪、发电、灌溉、城镇供水、航运、养殖和旅游等方面发挥了巨大的作用,取得了显著的经济效益和社会效益。
众所周知,重力坝主要依靠其自身的重力来维持稳定,其坝体体积大,稳定性好。
但由于各种原因,仍有可能失事。
因此,重力坝的应力应变状态和坝基稳定性一直都是设计和施工十分重视的问题。
此外,大坝多建于地震频发的地区,因而对重力坝进行地震荷载作用下的安全评估也十分必要。
本次作业采用有限元方法,运用大型通用有限元分析软件ANSYS,对简化的三维重力坝的线弹性模型在静动力工况下进行有限元计算,并对结果加以分析,最后给出安全评价结论及建议。
2 工程概况某水电站是以发电为主,兼有防洪,航运等综合效益的水电枢纽工程。
该工程枢纽总体布置采用砼重力坝挡水,大坝基本坝剖面为上游坝坡铅直,下游坝坡为1:0.75。
坝顶总长270m,坝高180m,坝顶宽18m,坝底宽139.5m,正常蓄水位170m。
重力坝坝低至坝高100m之间使用坝体混凝土Ⅱ,坝高100m至坝顶之间使用坝体混凝土Ⅰ。
上游正常蓄水位为170m,下游无水。
3 基本资料3.1 反应谱谱分析是一种将模态分析的结果与一个已知的谱联系起来计算结构的位移和应力的分析技术。
在土木工程动力响应分析中,谱分析代替时间-历程分析,特别是抗震分析,主要用来确定结构对随机荷载或随时间变化荷载的动力响应。
基于Ansys对于坝体的研究分析报告坝体及相关建筑在使用过程中,会承受如重力、净水压力、淤泥荷载、浪压力、扬压力等各种作用,而我们在设计、建造这个建筑之前,要分析其产生的应力、应变进而选取材料和校核材料的安全性。
为分析所需,基于Ansys软件建立相应的模型,并施加荷载和作用,在三种工况下校核结构的安全性。
一:分析对象1:坝体的几何参数:2:基岩的几何参数:二:作用及荷载(1) 约束基岩左右两端受x 方向的位移约束,基岩下端受x 、y 两个方向的位移约束。
(2)静水压力正常蓄水位高程91.75m ,防洪高水位97m ,校核洪水位101m 。
对应下游水位分别为15m ,20m 和25m 。
(3)泥沙荷载坝前泥沙淤积高程: 25m 。
坝前泥沙浮容重:6.0kN/m 3,淤沙内摩擦角:12°。
坝面上单位宽度上的泥沙压力为221(45)22s sk sb s p h tg ϕγ=︒- 式中: sk p ——淤沙压力标准值(KN/m );sb γ——泥沙的浮容重,取6kN/m 3;s h ——泥沙淤积深度(m );s ϕ——淤沙的内摩擦角,12°。
(4)浪压力50年一遇计算风速21m/s ,多年平均最大风速14m/s ,有效吹程1km 。
(5)扬压力取渗透压力强度系数α=0.25,帷幕中心线坐标X=10m 。
三:选用单元及划分网格1) 单元选择:Solid –Quad 4node 422) 材料参数:坝体和基岩分别设置,见上图。
3) 划分网格:坝体部分-外围线按1m 每格划分,整体按自由网格划分。
基岩部分-靠近坝体网格密集,坝基面水平线上基岩外围线按20份、4的比率划分;垂直地表的按20份、0.25的比率划分;基底均分。
整体基岩自由网格划分。
四:三种工况的具体Ansys设置1)正常蓄水位(其中括号内为承载能力极限状态时的分项系数)上游水位高程为91.75m,下游水位高程为15m。
(1)上下游静水压力(分项系数为1.0)gradient 斜率为-9810 沿y轴方向,分别取91.75m和15m在各自位置。
基于ANSYS的重力坝抗震性能分析【摘要】建立一个120m重力坝模型,利用ANSYS分析软件,分析此重力坝挡水坝段在静,动力作用下应力变化规律,并对坝体的抗震安全性能进行评估,为类似工程设计、施工提供理论依据。
【关键词】重力坝;ANSYS;反应谱;地震重力坝是世界上最早出现的一种坝型之一。
依据其相对安全可靠,耐久性好,对不同的地形和地质条件适应性强等特点,重力坝在各个国家都很流行。
由于重力坝大多都建在高烈度或地震多发地区,一旦失事,损失不可估量,因此在大坝时对其进行抗震安全分析十分必要。
ANALYSIS OF SEISMIC PERFORMANCE OF GRAVITY DAMBASED ON ANSYS【Abstract】Establish a 120m gravity dam model and using ANSYS analysis software, analysis of the gravity dam retaining dam in static and dynamic effect of the stress change rules, and on the dam seismic safety performance assessment, to provide a theoretical basis for the design and construction of similar projects.【Keywords】gravity dam;Ansys;response spectrum;earthquake 1 有限元模型1.1 计算基本假定(1)假定库水为不可压缩流体,库水对坝体的动力相互作用以坝面附加质量的形式计入;(2)坝体材料假定为线弹性,并假定不同部位材料有不同的弹性常数;(3)采用无质量地基方案,近似考虑坝体结构和地基间的动力相互作用;(4)地基为均匀弹性体,并于坝体紧密联系在一起。
基于ANSYS软件的混凝土重力坝分析重力坝的优点:(1)比较好建造,对环境要求也不高;(2)工作效果很好;(3)运行相当安全;(4)泄洪方便,导流容易;(5)受力明确,结构简单。
不足的地方:重力坝工作特点,是依靠自重的作用,来维持重力坝本身的稳定,所以防滑这部分的工作就显得尤为重要。
我们可以通过使用ANSYS、ADINA、Abaqus、MSC等有限元分析软件,对混凝土重力坝进行检测与分析。
文章中主要是用ANSYS分析重力坝,然后根据分析的结果对重力坝坝型进行完善。
标签:ANSYS;有限元分析软件;重力坝Abstract:The advantages of gravity dam:better construction,the environmental requirements are not high,the work effect is very good,the operation is very safe,flood discharge is convenient,the diversion is easy,the force is clear,the structure is simple. The insufficient place:the gravity dam work characteristic,is relies on the self-weight the function,maintains the gravity dam itself the stability,therefore the non-slip this part of work appears to be particularly important. We can use ANSYS,ADINA,Abaqus,MSC and other finite element analysis software to detect and analyze the concrete gravity dam. In this paper,the gravity dam is analyzed by ANSYS,and then the gravity dam type is perfected according to the analysis results.Keywords:ANSYS;finite element analysis software;gravity dam引言重力坝[1]具有很悠久历史,二十世纪以来,随着计算机的发展、筑坝材料的更新、机械化程度的提高、自动化程度的提高等因素影响下,重力坝的结构设计与布局也逐步趋于现代化。
简单混凝土坝的ANSYS分析计算在上课和自习ANSYS之后,尝试用ANSYS建立一个简单的混凝土重力坝,并施加简单的约束和受力,最后尝试用ANSYS求解和后处理,查看大坝的变形,应力等情况,并做简要分析。
由于笔者本科初学ANSYS时老师教的是命令流方法建立模型也施加力,所以本篇全部采用命令流形式建立大坝和施力。
所建大坝喂混凝土重力坝,断面如下图,拔高180m,上游垂直,下游坝面洗漱0.75.坝基上游取270m,下游取360m,坝基深度取360m,坝顶长270m,坝顶宽1.8m,上游水位100m,下游水位80m。
剖面图如下一.首先,尝试对大坝的材料和材料类型形状等做出说明/prep7et,1,mesh200,6 !划分用et,2,solid65 !混凝土单元et,3,solid45 !岩石单元mp,ex,1,2.85e10 !100m以下的材料弹性模量mp,prxy,1,0.167 !泊松比mp,dens,1,2400 !质量密度mp,ex,2,2.6e10 !100m以上的材料特性mp,prxy,2,0.167mp,dens,2,2400mp,ex,3,2.9e10mp,prxy,3,0.3 !基岩特性mp,dens,3,2600二:建立模型k,1k,2,139.5k,3,18,162k,4,0,162a,1,2,3,4rectng,0,18,162,180 rectng,-270,0,-360,0 rectng,0,139.5,-360,0 rectng,139.5,481.5,-360,0 rectng,-270,481.5,-360,180 aovlap,allnummrg,allnumcmp,alllsel,s,,,3,5,2lesize,all,,,5lsel,s,,,12,13,1lesize,all,,,2amesh,3lsel,s,,,2,4,2lesize,all,,,18lsel,s,,,1lesize,all,,,5amesh,1eplotlsel,s,,,11lesize,all,,,5lsel,s,,,9,10,1lesize,all,,,8,4amesh,2lsel,s,,,14lesize,all,,,5,4lsel,s,,,7lesize,all,,,8,4lsel,s,,,6lesize,all,,,5,0.25 amesh,4eplotlsel,s,,,15,16,1 lesize,all,,,8,4 lsel,s,,,8 lesize,all,,,8,0.25 amesh,5eplotlsel,s,,,4,13,9 lccat,alllsel,s,,,19 lesize,all,,,5,4 lsel,s,,,20,21,1 lesize,all,,,20 amesh,7eplotlsel,s,,,2,12,10 lccat,alllsel,s,,,17 lesize,all,,,8,4 lsel,s,,,18,22,4 lesize,all,,,20 amesh,6eplotallsellsel,r,lcca ldele,all extopt,esize,8,0, type,2mat,1Vext,1,3,2,,,-135 extopt,esize,8,0, type,3mat,3Vext,2,,,,,-135 Vext,4,5,1,,,-135 allselextopt,esize,5,4, extopt,aclear,1 type,3mat,3Vext,1,7,1,,,180 local,11,0,,,-135 csys,11/psymb,cs,1 dsys,11 vsymm,z,all nummrg,all nummcmp,all esel,s,mat,,1eplotnsle,snplotnsel,r,loc,y,100,180 nplotesln,seplotmpchg,2,all/solucsys,0dsys,0nsel,s,loc,x,481.5 nsel,a,loc,x,-270 d,all,uxnsel,s,loc,z,180nsel,a,loc,z,-450nplotd,all,uznsel,s,loc,y,-360d,all,uyesel,s,type,,2esel,s,type,,2nsel,s,loc,x,0nsel,r,loc,z,-270+0.1,-0.1 nsel,r,loc,y,0.1,100-5 esln,s(模型图)至此,已经初步把模型建立并且划分了单元格,也施加了边界条件。
山东水利职业学院院刊2009年6月
第2期ANSYS在重力坝应力分析中的应用
韩永胜梁秋生
(山东水利职业学院,山东日照276826)
摘要:本文对重力坝应力分析的材料力学方法、弹性力学方法、结构模型试验方法以及有限单元法进行了比较,重点阐述了有限单元法,利用大型有限元工程分析软件ANSYS对某重力坝进行了应力分析与开裂区域研究。
关键词:重力坝;应力分析;有限单元法;ANSYS
1引言
重力坝主要依靠坝体本身自重来保持坝体的稳定,故称为“重力坝”。
其坝筑材料主要是混凝土或砌浆石或这两者的组合。
在古代建造砌浆石坝的时候,还没有现在那么高的数学力学基础理论,也没有对这种坝起名叫重力坝,更没有对这种坝进行应力分析。
从17世纪和18世纪以Hooke’s law为基础的材料力学出现和发展,到19世纪初逐步创立了杠件系统的结构力学和一般弹性体的弹性力学,再到19世纪上半叶和中叶混凝土出现和发展之后,才开始将重力坝作为连续弹性体进行应力分析。
最初采用材料力学方法,而后发展到弹性力学方法,对于边界复杂的坝体结构采用模型试验方法。
近年来,随着有限单元法的研究和电子计算机的发展,对重力坝的数值解法越来越受到学者和工程师的青睐。
2材料力学方法
材料力学方法基本假定是:(1)坝体材料为均质和各向同性;(2)在静力载荷应力计算中,不考虑温度载荷引起的应力;(3)坝体的永久横缝不传力,将坝段看作独立的固定于岩基上的竖直悬臂梁,不考虑基础变形对坝体应力的影响[1]。
材料力学计算得出:重力坝最不利的应力位于坝踵(上游坝面底部)和坝址(下游坝面底部)。
这两处是应力控制的部位,我国重力坝设计规范规定[2],用材料力学方法计算时,重力坝上游坝面不允许出现竖直方向拉应力,坝基面上的压应力应小于坝基许用压应力。
3弹性力学方法
19世纪中下叶,法国李维等学者和工程师为重力坝二维应力分析提供了弹性力学解法。
但是由于弹性力学计算方法很繁琐,目前,中低型重力坝的设计基本上按规范规定的材料力学进行应力计算。
4结构模型试验方法
用于测试应力的结构模型试验方法主要有光测法和脆性材料电测法两类。
结构模型试验方法能适应复杂的边界形状和地基变形条件,便于测量和研究重力坝孔口、坝踵和坝址等角缘应力分布状态,解决了材料力学方法不能解决、弹性力学方法难以解决的课题。
在今天,即使电子计算机发展很快、应用很广,一些高重力坝的设计和计算仍采用结构模型试验方法,作为与有限单元法计算结果相互验证的补充的手段。
5有限单元法
有限单元法适用于孔口、角缘和地基变形等复杂的边界条件与载荷情况,可以考虑各种材料的特性和组合,后来又发展到进行温度场和温度应力的计算、非线性分析和动力分析等等。
它出色地完成了材料力学方法和弹性力学方法所不能计算的课题,对重力坝的应力计算发挥了很重要的作用。
本文利用大型有限元分析程序计算了某重力坝的应力分布和开裂区域。
14··
2009年6月第2期
韩永胜等:ANSYS 在重力坝应力分析中的应用
5.1重力坝参数情况
图1重力坝剖面示意图
如图1所示:坝高H=180m,上游坡面垂直,下游坡面系数k=0.75。
根据规范和经验,坝基上游取
1.5H ,下游取2H ,坝基深度取2H ,坝顶长1.5H ,坝顶宽、高都为0.1H 。
上游库容100m ,下游水位80m 。
重力坝材料用混凝土,材料力学性能如表1所示:
表1重力坝材料力学性能参数
5.2模型建立与网格划分图2重力坝有限元模型图图5重力坝开裂示意图
根据重力坝参数在ANSYS 中建立了有限元模型,并划分网格,如图2所示。
其中坝体采用混凝土单元SOLID65,应力应变模型为D-P 模型,坝基采用岩石单元SOLID45,应力应变模型为线弹性模型。
单元数8944个,节点数10977个。
边界约束条件采用底面所有自由度都约束,侧面采用法向约束。
5.3载荷施加与静力求解
按照水工建筑物规范规定[3],本文取主要外载荷重力、静水压力、扬压力。
其中静水压力包括上游静水压力与下游静水压力两部分,都采用三角形分布载荷。
在这三种静力作用下,X 、Y 方向位移图见图
3,最大位移在坝顶处,为0.01636m 。
图3(a)X 方向位移图(b)Y 方向位移
图4为第一主应变与第一主应力图。
从图中可以看出,最大拉应变和拉应力出现在坝顶和下游与岩石连接处,这将可能导致混凝土的开裂,最大拉应力为1.33MPa ,虽然小于混凝土的抗拉强度
1.96MPa ,但是在此处还是出现了裂纹,如图5所
示,原因是素混凝土不能传递拉力。
另外在坝踵处也有0.12MPa 的拉应力,在坝址处有应力集中现象,这些位置都是重力坝设计时需要特别注意的区域。
6结论
本文分析了重力坝应力分析的几种方法,通过
ANSYS 程序算例实现了重力坝的变形分布、应力分
布与开裂位置分析。
说明了有限元法在重力坝设计中的应用价值,利用ANSYS 大型程序可提高计算速度,且使计算结果更全面,在水工设计方面有着很广阔的前景。
参考文献:
[1]麦家煊等.水工结构工程[M].北京:中国环境科学出版社,2005.
[2]中华人民共和国水利电力部.混凝土重力坝设计规范[M].
北京:水利电力出版社,1979,9.
[3]陈胜宏等.水工建筑物[M].北京:中国水利水电出版社,2003.
[4]王国强.实用工程数值模拟技术及其在ANSYS 上的实践[M].陕西:西北工业大学出版社,1999.
收稿日期:2009-04-27
作者简介:韩永胜(1981-),男,山西人,山东水利职业学院助教,现从事计算力学与实验力学的研究与工程力学的教学工作。
15··。