在遇到等腰三角形时,常见的辅助线是作出底边上的高 线或中线,即“三线合一”中的一条,直接利用这一性质可以 省去证明三角形全等.如果直接给出“三线”其中的一条,那 么其他两线的性质可以直接应用. 1.(2024河北石家庄赵县期末)如图,CD是等边 △ABC的中线,DE⊥AC,垂足为点E.若DE=3 cm, 则点D到BC的距离为 3 cm.
解析 ∵OC=CD=DE,∴∠O=∠ODC,∠DCE=∠DEC, ∴∠DCE=∠O+∠ODC=2∠ODC,∴∠O+∠OED=∠O+ ∠DCE=3∠ODC=∠BDE=78°,∴∠ODC=26°, ∴∠CDE=180°-∠BDE-∠ODC=76°.
16.(2023山东威海中考改编,24,★★☆)回顾:用数学的思维思考. (1)如图1,在△ABC中,AB=AC. ①BD,CE是△ABC的角平分线,求证:BD=CE. ②点D,E分别是边AC,AB的中点,连接BD,CE,求证:BD=CE. 从①②两题中选择一题加以证明. 猜想:用数学的眼光观察. 经过做题反思,小明同学认为:在△ABC中,AB=AC,点D为边 AC上一动点(不与点A,C重合).对于点D在边AC上的任意位
2
AD⊥BC,∵AD=AE,∴∠ADE=∠AED= 180=75°,BAD
2
∴∠EDB=90°-∠ADE=15°,故选A.
11.(2024河南新ຫໍສະໝຸດ 获嘉一中期中)如图,△ABC是等边三角形, CB=CD,若∠ABD=12°,则∠BAD的度数为 ( C )
A.10°
B.15°
C.18°
D.20°
解析 ∵△ABC是等边三角形,∴∠ABC=60°,∵∠ABD=12°, ∴∠DBC=60°+12°=72°.∵CB=CD,∴∠BCD=180°-72°-