轴对称图形
两个底角相等,简称“等边对等角”
顶角平分线、底边上的中线、和底边上
的高互相重合,简称“三线合一”
2. 能根据等腰三角形的概念与性质求等腰三 角形的周长或知道一角求其它两角或证线段、 角相等。
当堂检测
(1)如图,△ABC 中, AB =AC, ∠A =36°,
则∠B =
;
(2)如图,△ABC 中, AB =AC, ∠A =3 ∠B,
A
重合的线段
重合的角
AB=AC BD=CD AD=AD
∠B = ∠C.
∠BAD = ∠CAD
B
∠ADB =∠ADC =90°
D
C
等腰三角形的性质
性质 1 等腰三角形的两个底角相等 (简写成等边对等角)
性质 2 等腰三角形的顶角平分线、底 边上的中线、底边上的高互相重合 (简写成三线合一)
几何语言:
6、“教学的艺术不在于传授本领,而在于激励、唤醒、鼓舞”。2021年11月2021/11/72021/11/72021/11/711/7/2021
▪7、“教师必须懂得什么该讲,什么该留着不讲,不该讲的东西就好比是学生思维的器,马上使学生在思维中出现问题。”“观察是 思考和识记之母。”2021/11/72021/11/7November 7, 2021
B
C
D
已知:△ABC中,AB=AC 求证:∠B=C
如何证明两个三角形全等?
作BC边上的高AD 作BC边上的中线AD 作顶角的平分线 AD
归纳总结
A等腰三角形常见辅助线A NhomakorabeaA
┌
B
D
CB
D
CB
D
C
如图,作△ABC 的中线AD