八年级数学下册第十七章《勾股定理》单元测试卷-人教版(含答案)
- 格式:docx
- 大小:353.14 KB
- 文档页数:10
2022年八年级下册数学《勾股定理》单元试题
姓名:
学号:
分数:
一、选择题(每小题3分,共30分)
1.下列长度的三条线段能组成直角三角形的是( )
A.2,3,4 B.3,2,7 C.6,22,10 D.3,5,8
2.在平面直角坐标系中,点P(3,4)到原点的距离是( )
A.3 B.4 C.5 D.±5
3.如图所示,数轴上点A所表示的数为a,则a的值是( )
A.5+1 B.-5+1 C.5-1 D.5
4.已知四个三角形分别满足下列条件:①一个内角等于另两个内角之和;②三个内角度数之比为3∶4∶5;③三边长分别为7,24,25;④三边长之比为5∶12∶13.其中直角三角形有( )
A.1个 B.2个 C.3个 D.4个
5,放学以后,萍萍和晓晓从学校分手,分别沿东南方向和西南方向回家,若萍萍和晓晓行走的速度都是40米/分,萍萍用15分钟到家,晓晓用20分钟到家,萍萍家和晓晓家的距离为(
)
A.600米 B.800米 C.1000米 D.不能确定
6,如图1所示,要在离地面5•米处引拉线固定电线杆,使拉线和地面成60°角,若要考虑既要符合设计要求,又要节省材料,则在库存的L1=5.2米,L2=6.2米,L3=7.8米,L4=10米四种备用拉线材料中,拉线AC最好选用( )
A.L1 B.L2 C.L3 D.L4
7.如图,一根垂直于地面的旗杆在离地面5m的B处撕裂折断,旗杆顶部落在离旗杆底部12m的A处,则旗杆折断部分AB的高度是( ) 5mBCAD图1 A.5m B.12m C.13m D.18m
7题图 8题图
人教版数学八年级第十七章勾股定理单元测试精选(含答案)
学校:___________姓名:___________班级:___________考号:___________
评卷人得分
一、单选题
1.下列各组数据中,不能作为直角三角形三边长的是()
A.9,12,15B.3,4,5C.1,2,3D.40,41,9
【答案】C
2.满足下列条件的△ABC不是
..直角三角形的是()
A.BC=1,AC=2,AB=3
B.BC=1,AC=2,AB=5
C.BC:AC:AB=3:4:5
D.∠A:∠B:∠C=3:4:5
【答案】D
3.如图,港口A
在观测站O
的正西方向,4AOnmile
,某船从港口A
出发,沿北
偏西30°方向航行一段距离后到达B处,此时从观测站O
处测得该船位于北偏西60
的
方向,则该船航行的距离(即AB
的长)为()
A.23nmile
B.4nmile
C.3nmile
D.
31nmile
【答案】B
4.以下列各组线段为边作三角形,不能构成直角三角形的是()
A.2,3,4B.1,2
,3C.5,12,13D.9,40,41
【答案】A
5.如图所示,数轴上点A所表示的数为a,则a的值是()
试卷第2页,总12
页A.-2+10B.10-1C.-1-10D.2-10
【答案】A
6.在△ABC中AB=1、AC=3
、BC=2则这个三角形是()
A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形
【答案】B
7.如图,高速公路上有A、B两点相距25km,C、D为两村庄,已知DA=10km,CB
=15km.DA⊥AB于A,CB⊥AB于B,现要在AB上建一个服务站E,使得C、D
两村庄到E站的距离相等,则AE的长是()km.
A.5B.10C.15D.25
【答案】C
8.如图,等边ABC
的边长为2,AD
是边BC
上的中线,M
是AD
上的动点,E
是
边AC
上的中点,若1AE
,求EMCM
的最小值为()
A.1
B.
2C.2
D.3
【答案】D
9.下列各组线段能构成直角三角形的一组是()
第 1 页 共 6 页 人教版八年级下册数学第十七章 勾股定理 单元测试卷
题号 一 二 三
总分
21 22
23 24 25 26 27
28
分数
一、选择题(每小题4分,共28分)
1. 下列各组数中,是勾股数的是( )
A. 14,36,39 B. 8,24,25 C. 8,15,17 D. 10,20,26
2. 如图,每个小正方形的边长均为1,A,B,C是小正方形的顶点,则∠ABC的度数为 ( )
A. 90° B. 60° C. 45° D. 30°
3.△ABC的三边分别为下列各组值,其中不是直角三角形三边的是( )
A.a=41,b=40,c=9 B.a=1.2,b=1.6,c=2
C.a=12,b=13,c=14 D.a=35,b=45,c=1
4.在Rt△ABC中,∠C=90°,AB=15,AC:BC=3:4,则这个直角三角形的面积是( )
A. 24 B. 48 C. 54 D. 108
5.如图是我国古代著名的“赵爽弦图”的示意图,此图是由四个全等的直角三角形拼接而成,其中AE=5,BE=12,则EF的长是( ) 第 2 页 共 6 页
A.7 B.8 C.7 D.7
6.在下列各组数中,是勾股数的是( )
A.1、2、3 B.2、3、4 C.3、4、5 D.4、5、6
7.在同一平面上把三边BC=3,AC=4,AB=5的三角形沿最长边AB翻折后得到△ABC′,则CC′的长等于( )
A. B. C. D.
二、填空题(每空4分,共28分)
8. 在直角三角形ABC中,∠ACB=90°,AC=6,BC=8,则斜边AB=
《勾股定理》检测题
一、认真选一选,你一定很棒!(每题3分,共30分)
1,分别以下列五组数为一个三角形的边长:①6,8,10;②13,5,12 ③1,2,3;④9,40,41;⑤321,421,521.其中能构成直角三角形的有( )组
A.2 B.3 C.4 D.5
2,已知△ABC中,∠A=12∠B=13∠C,则它的三条边之比为( )
A.1∶1∶2 B.1∶3∶2 C.1∶2∶3 D.1∶4∶1
3,已知直角三角形一个锐角60°,斜边长为1,那么此直角三角形的周长是( )
A.52 B.3 C.3+2 D.332
4,如果梯子的底端离建筑物5米,13米长的梯子可以达到建筑物的高度是( )
A.12米 B.13米 C.14米
D.15米
5,放学以后,萍萍和晓晓从学校分手,分别沿东南方向和西南方向回家,若萍萍和晓晓行走的速度都是40米/分,萍萍用15分钟到家,晓晓用20分钟到家,萍萍家和晓晓家的距离为( )
A.600米 B.800米 C.1000米 D.不能确定
6,如图1所示,要在离地面5•米处引拉线固定电线杆,使拉线和地面成60°角,若要考虑既要符合设计要求,又要节省材料,则在库存的L1=5.2米,L2=6.2米,L3=7.8米,L4=10米四种备用拉线材料中,拉线AC最好选用( )
A.L1 B.L2 C.L3 D.L4
7,如图2,分别以直角△ABC的三边AB,BC,CA为直径向外作半圆.设直线AB左边阴影部分的面积为S1,右边阴影部分的面积和为S2,则( ) A
B C
图2 5mBCAD图1 BCAED图3 A.S1=S2 B.S1<S2 C.S1>S2 D.无法确定
人教版八年级数学下册 第十七章 勾股定理 单元检测试题及答案
一、选择题
1.以下列各数据为边长,能构成直角三角形的是( )
A.3,4,5 B.2,3,4 C.1,2,3 D.4,8,10
2.下列4组数中是勾股数的是( )
A.1.5,2.5,2 B.2,2,2
C.12,16,20 D.0.5,1.2,1.3
3.已知直角三角形有两边为3和5,则第三边为( ).
A.4 B.5 C.4或34 D.3或34
4.在RtABC中,90C,2AC,4BC,则点C到斜边AB的距离是( )
A.45 B.25 C.855 D.455
5.下列条件能判定ABC为直角三角形的是( )
A.ABC B.::1:2:4ABC
C.23a,24b,25c D.4a,5b,6c
6.已知直角三角形的周长为26,斜边为2,则该三角形的面积是( ).
A.14 B.34 C.12 D.1
7.在ABC中,∠BAC=90°,则下列结论成立的是( )
A.BC=AC+BC B.AC2=AB2+BC2
C.AB2=AC2+BC2 D.BC2 =AB2+AC2
8.《九章算术》中记载“今有竹高一丈,末折抵地,去本三尺.问:折者高几何?”译文:一根竹子,原高一丈,虫伤有病,一阵风将竹子折断,其竹梢恰好着地,着地处离原竹子根部3尺远.问:折断处离地面有多高?(1丈=10尺).答:折断处离地面的高度为( )
A.3尺 B.4尺 C.4.5尺 D.4.55尺
9.如图所示,已知ABC中,6AB,9AC,ADBC于D,M为AD上任一点,则22MCMB等于( ).
A.9 B.25 C.36 D.45
10.如图,如图,在等边△ABC中,AB=6,AD⊥BC,E是AC上的一点,M是AD上的点,若AE=2,求ME+MC的最小值( )
八年级数学(下)
第十七章创优检测卷
(命题人:广西初中数学试题研究组)
考试时间:120分钟 满分:150分
班级:__________ 姓名:___________
一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,a=12,b=5,则c的长为( )
A.26 B.18 C.13 D.10
2.(2016·广西南宁市期中)如图,以直角三角形的三边作三个正方形,已知图中两个正方形的面积分别为169,25,则字母B所代表的正方形的面积是( )
A.144 B.194 C.12 D.13
3.分别以下列各组数作为三角形的三边,能构成直角三角形的是( )
A.4,5,6 B.1,32, C.6,8,11 D.5,12,17
4.已知命题:等边三角形是等腰三角形,则下列说法正确的是( )
A.该命题为假命题 B.该命题为真命题
C.该命题的逆命题为真命题 D.该命题没有逆命题
5.(2016·湖北荆门)如图,△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为( )
A.5 B.6 C.8 D.10
6.等边三角形的边长为2,则该三角形的面积为( )
A.34 B.3 C.32 D.3
7.已知a、b、c是三角形的三边长,如果满足836122baa=0,则三角形的形状是( )
A.等腰三角形 B.等边三角形 C.钝角三角形 D.直角三角形
8.下列命题:①如果a、b、c为一组勾股数,那么4a、4b、4c仍是一组勾股数;②如果直角三角形的两边是5、12,那么第三条边必是13;③如果一个三角形的三边是12、25、21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a、b、c(a>b=c),那么a2∶b2∶c2=2∶1∶1.其中正确的是( )
人教版数学八年级第十七章勾股定理单元测试精选(含答案)
学校:___________姓名:___________班级:___________考号:___________
评卷人得分
一、单选题
1.如图,是一扇高为2m,宽为1.5m的门框,现有3块薄木板,尺寸如下:①号木板
长3m,宽2.7m;②号木板长4m,宽2.4m;③号木板长2.8m,宽2.8m.可以从这扇
门通过的木板是()
A.①号B.②号C.③号D.均不能通过
【答案】B
2.以下列各组数为边长能构成直角三角形的是()
A.6,12,13B.3,4,7C.8,15,16D.5,12,13
【答案】D
3.如图,在R△ABC中,∠ACB=90°,AC=6,BC=8,E为AC上一点,且AE=8
5,
AD平分∠BAC交BC于D.若P是AD上的动点,则PC+PE的最小值等于()A.18
5B.24
5C.4D.26
5
【答案】D
4.下列各组数是勾股数的是()
A.6,7,8B.1,3
,2
C.5,4,3D.0.3,0.4,0.5
【答案】C
5.已知一个直角三角形的两边长分别是6和8,那么这个直角三角形的面积为()
试卷第2页,总14页A.48B.24C.67D.24或67
【答案】D
6.三角形各边长度如下,其中不是直角三角形的是()
A.3,4,5B.6,8,10C.5,11,12D.8,15,17
【答案】C
7.已知一个Rt△的两边长分别为3和4,则第三边长的平方是()
A.25B.14C.7D.7或25
【答案】D
8.已知M、N是线段AB上的两点,AM=MN=2,NB=1,以点A为圆心,AN长
为半径画弧;再以点B为圆心,BM长为半径画弧,两弧交于点C,连接AC,BC,
则△ABC一定是()
A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形
【答案】B
9.在我国古代数学著作《九章算术》的第九章《勾股》中记载了这样一个问题:“今天
有开门去阔一尺,不合二寸,问门广几何?”意思是:如图,推开两扇门(AD和BC),门
1 新版人教版八年级数学下册第十七章 勾股定理测试卷
(时间:45分,满分:100分)
一、选择题(每小题6分,共36分)
1.如图,一颗高为16m的大树被台风刮断.若树在离地面6m处折断,则树顶端落在离树底部( )处.
A.5m B.7m C.8m D.10m
(第1题)
2.下列各组数中不能作为直角三角形的三边长的是( ) (第3题)
A.1.5,2,3 B.7,24,25 C.6,8,10 D.9,12,15
3.如图,在Rt△ABC中,∠C=900,若AB=15,则正方形ADEC和正方形BCFG的面积为( )
A.150 B.200 C.225 D.无法计算
4.甲、乙两艘客轮同时离开港口,航行的速度都是40m/min,甲客轮用15min到达A,乙客轮用20min到达B.若A,B两点的直线距离为1000m,甲客轮沿北偏东300的方向航行,则乙客轮的航行方向可能是( )
A.北偏西300 B.南偏西300 C.南偏东600 D.南偏西600
5.如图,在四边形ABCD中,AB=1,BC=1,CD=2,DA=6,且∠ABC=900,则四边形ABCD的面积是( )
A.2 B.221 C.21 D.221
(第5题) (第6题)
6.2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的弦图,它是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形,如图所示.如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短直角边长为a,较长直角边长为b,那么2)(ba的值为( )A.13 B.19 C.25 D.169
人教版八年级数学下册第十七章《勾股定理》
单元练习题(含答案)
一、单选题
1.如图,在RtABC中,90ACB,CDAB于D,已知15AB,RtABC的周长为15+95,则CD的长为( )
A.5 B.13 C.95 D.6
2.如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x,y表示直角三角形的两直角边(x>1),请观察图案,指出以下关系式中不正确的是( )
A.x2+y2=49 B.x-y=2 C.2xy+4=49 D.x+y=9
3.在△ABC中,∠A,∠B,∠C的对边分别是a,b,c,下列条件不能判断△ABC是直角三角形的是( )
A.a=6,b=8,c=10 B.a=5,b=12,c=13
C.a=1,b=2,c=3 D.∠A:∠B:∠C=1:2:3
4.以下列各组数为边长,能组成直角三角形的是( )
A.5,8,10 B.8,15,17 C.4,5,7 D.7,19,21
5.如图,在22的方格中,小正方形的边长是1,点A、B、C都在格点上,则AC边上的高为( )
A.5 B.322
C.355 D.32
6.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是( )
A.245 B.5 C.6 D.8
7.如图,已知正方形ABCD的对角线长为2,将正方形ABCD沿直线EF折叠,则图中阴影部分的周长为( )
A.8 B.4 C.8 D.6
8.图1中,每个小正方形的边长为1,ABC的三边a,b,c的大小关系是( )
A.a
9.如图,在Rt△ABC中,∠ACB=90°,AB=16,则正方形ADEC和正方形BCFG的面积和为( )
A.16 B.32 C.160 D.256
第十七章测试卷
一、选择题(每题3分,共30分)
1.设直角三角形的两条直角边长分别为a和b,斜边长为c,已知b=12,c=13,则a=( )
A.1 B.5 C.10 D.25
2.下列各组长度的线段能构成直角三角形的是( )
A.30,40,50 B.7,12,13
C.5,9,12 D.3,4,6
3.下列命题的逆命题不成立的是( )
A.如果两个数互为相反数,那么它们的和等于0
B.如果两个角相等,那么这两个角的补角也相等
C.如果两个数相等,那么它们的平方相等
D.如果|a|=|b|,那么a=b
4.如图,三角形纸片ABC,AB=AC,∠BAC=90°,点E为AB的中点.沿过点E的直线折叠,使点B与点A重合,折痕EF交BC于点F.已知EF=32,则BC的长是( ) A.322 B.32 C.3 D.33
(第4题) (第5题)
(第6题)
5.如图,△ABC和△DCE都是边长为4的等边三角形,点B,C,E在同一条直线上,连接BD,则BD的长为( )
A.3 B.23 C.33 D.43
6.如图,在平面直角坐标系中,点P的坐标为(-2,3),以点O为圆心,以OP的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于( )
A.-4和-3之间 B.3和4之间
C.-5和-4之间 D.4和5之间 7.如图,小巷左右两侧都是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左端墙脚的距离为0.7 m,顶端距离地面2.4 m,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2 m,则小巷的宽度为( )
A.0.7 m B.1.5 m C.2.2 m D.2.4 m
(第7题) (第8题) (第9题) (第10题)
8.如图是台阶的示意图,已知每级台阶的宽度都是30 cm,每级台阶的高度都是15 cm,连接AB,则AB等于( )
1 第十七章 勾股定理
一、单选题
1.一个直角三角形两直角边长分别为3和4,下列说法正确的是( )
A.斜边长为25 B.三角形的周长为25
C.斜边长上的高为125 D.三角形的面积为20
2.下列各组数中,是勾股数的为( )
A.1,1,2 B.1.5,2,2 C.7,24,25 D.6,12,13
3.若一个直角三角形的两边长为12、13,则第三边长为( )
A.5 B.17 C.5或17 D.5或√313
4.在ABCV中,若::1:1:2ABC,且C的对边长为2,则A的对边长为( )
A.1 B.2 C.3 D.2
5.如图,在平面直角坐标系中,点P坐标为(﹣2,3),以点O为圆心,以OP的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标为( )
A.13 B.2﹣13 C.﹣13 D.13﹣2
6.如图,三角形纸片ABC,AB=AC,∠BAC=90°,点E为AB中点,沿过点E的直线折叠,使点B与点A重合,折痕现交于点F,已知EF=32,则BC的长是( )
2
A.322 B.32 C.3 D.33
7.如图,一棵大树被大风刮断后,折断处离地面8m,树的顶端离树根6m,则这棵树在折断之前的高度是( )
A.18m B.10m C.14m D.24m
8.如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B与灯塔P之间的距离为( )
A.60海里 B.45海里 C.203海里 D.303海里
9.勾股定理是人类最伟大的科学发现之一,在我国古算书《周醉算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出( )
人教版八年级数学下册 第十七章勾股定理单元测试题
一、选择题(每小题3分,共27分)
1.设直角三角形的两条直角边长分别为a和b,斜边长为c.已知b=8,c=10,则a的值为( )
A.2 B.6 C.5 D.36
2.在平面直角坐标系中,点P(3,4)到原点的距离是( )
A.3 B.4 C.5 D.±5
3.在△ABC中,AB=1,AC=2,BC=5,则该三角形为(
)
A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰直角三角形
4.把一个边长为1的正方形如图所示放在数轴上,以正方形的对角线为半径画弧交数轴于点A,则点A对应的数是( )A.1 B.2 C.3 D.2
第4题图 第5题图
5.如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B处与灯塔P之间的距离为( )
A.60海里 B.45海里 C.203海里 D.303海里
6.《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺.问折高者几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部6尺远,问折断处离地面的高度是多少?设折断处离地面的高度为x尺,则可列方程为( )
A.x2-6=(10-x)2 B.x2-62=(10-x)2
C.x2+6=(10-x)2 D.x2+62=(10-x)2
7.等腰三角形的腰长为10,底长为12,则其底边上的高为( )
A.13 B.8 C.25 D.64
8.如图,Rt△ABC中,∠ACB=90°,若AB=15cm,则正方形ADEC和正方形BCFG的面积之和为( )A.150cm2 B.200cm2 C.225cm2 D.无法计算
第十七章《勾股定理》单元测试题
题号 一 二 三 总分
19 20 21 22 23 24 分数
一、选择题(每小题3分,共30分)
1.已知Rt△ABC的三边长分别为a、b、c,且∠C=90°,c=13,a=12,则b的值为( )
A.7 B.5 C.25 D.6
2.下列几组数中,不能作为勾股数的是( )
A.3,4,5 B.6,8,10 C.5,12,13 D.20,30,40
3.如图,在RtABC△中,CACB,D为斜边AB的中点,RtEDF在ABC内绕点D转动,分别交边AC,BC于点E,F(点E不与点A,C重合),下列说法正确的是( )
①45DEF;②222BFAEEF;③2CDEFCD
A.①② B.①③ C.②③ D.①②③
4.已知四个三角形分别满足下列条件:①一个内角等于另两个内角之和;②三个内角度数之比为3∶4∶5;③三边长分别为7,24,25;④三边长之比为5∶12:13.其中直角三角形有( )
A.1个 B.2个 C.3个 D.4个
5. 若一直角三角形两边长分别为12和5,则第三边长为( )
A.13 B.13或 C.13或15 D.15
6.一个圆桶底面直径为24cm,高32cm,则桶内所能容下的最长木棒为( )
A.20cm B.50cm C.40cm D.45cm
7.如图,△ABC 的两条高线 BD,CE 相交于点 F,已知∠ABC=60°,AB=10 ,CF=EF,则△ABC 的面积为( )
A.203 B.253 C.303 D.403
8.已知,等边三角形ΔABC中,边长为2,则面积为( )
弟1页 (共8页) 弟2页 (共8页) 第十七章《勾股定理》单元测试
一、选择题(每小题4分,共28分)
1.在Rt△ABC中,∠C=90°,AC=3,BC=4,则AB的长为( )
A.3 B.4 C.5 D.6
2.将下列各组数据中的三个数作为三角形的三边长,其中能构成直角三角形的是( )
A.3,4,5 B.1,2,3
C.6,7,8 D.2,3,4
图17-Z-1
3.如图17-Z-1,数轴上点A,B分别对应1,2,过点B作PQ⊥AB.以点B为圆心,AB长为半径画弧,交PQ于点C,以原点O为圆心,OC长为半径画弧,交数轴于点M,则点M对应的数是( )
A.3 B.5 C.6 D.7
4.如图17-Z-2是甲、乙两张不同的长方形纸片,将它们分别沿着虚线剪开后,各自要拼一个与原来面积相等的正方形,则(
)
图17-Z-2
A.甲、乙都可以
B.甲、乙都不可以
C.甲不可以,乙可以
D.甲可以,乙不可以
图17-Z-3
5.如图17-Z-3,点D在△ABC的边AC上,将△ABC沿BD翻折后,点A恰好与点C重合.若BC=5,CD=3,则BD的长为( )
A.1 B.2 C.3 D.4
6.如图17-Z-4,△ABC和△DCE都是边长为4的等边三角形,点B,C,E在同一条直线上,连接BD,则BD的长为( )
A.3 B.2 3 C.3 3 D.4
3
图17-Z-4 图17-Z-5
7.如图17-Z-5,在△ABC中,AB=6,AC=10,BC边上的中线AD=4,则△ABC的面积为( )
A.30 B.24
C.20 D.48
二、填空题(每小题4分,共24分)
第 1 页
人教版八年级数学第十七章勾股定理测试题(含答案)
一、单选题(共20题;共40分)
1.下列各组数中,以它们为边长的线段不能构成直角三角形的是( )
A. 1, , B. 3,4,5 C. 5,12,13 D. 2,2,3
2.下列数组不能构成直角三角形三边长的是( )
A. 3,4,5 B. 5,12,13 C. 1, , D. 2,3,4
3.下列各组数中,能构成直角三角形的是( )
A. 4,5,6 B. 1,1, C. 6,8,11 D. 5,12,23
4.如果梯子的底端离建筑物5 米,13 米长的梯子可以达到该建筑物的高度是( )
A. 12 米 B. 13 米 C. 14 米 D. 15 米
5.下列条件中,不能判断△ABC为直角三角形的是( )
A. a=1.5,b=2,c=2.5 B. a:b:c=3:4:5 C. ∠A+∠B=∠C D. ∠A:∠B:∠C=3:4:5
第17章 勾股定理
一.选择题(共10小题)
1.已知Rt△ABC的三边分别为a、b、c,则下列结论不可能成立的是( )
A.a2﹣b2=c2 B.∠A﹣∠B=∠C
C.∠A:∠B:∠C=3:4:5 D.a:b:c=7:24:25
2.有一个面积为1的正方形,经过一次“生长”后,在他的左右肩上生出两个小正方形,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,变成了下图,如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2019次后形成的图形中所有的正方形的面积和是( )
A.1 B.2018 C.2019 D.2020
3.如图,网格中每个小正方形的边长均为1,点A,B,C都在格点上,以A为圆心,AB为半径画弧,交最上方的网格线于点D,则CD的长为( )
A. B.0.8 C.3﹣ D.
4.如图△ABC中,∠D=90°,C是BD上一点,已知CB=9,AB=17,AD=8,则DC的长是( )
A.8 B.9 C.6 D.15
5.下列说法中,正确的个数有( )
①已知直角三角形的面积为2,两直角边的比为1:2,则斜边长为;
②直角三角形的最大边长为,最短边长为1,则另一边长为;
③在△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC为直角三角形;
④等腰三角形面积为12,底边上的高为4,则腰长为5.
A.1个 B.2个 C.3个 D.4个
6.我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是(
)
A. B.
C. D.
7.如图,四边形ABCD中,∠ABC=90°,AC=BD,AC⊥BD,若AB=4,AD=5,则DC的长(
)
A.7 B. C. D.2
8.如图,某公司举行周年庆典,准备在门口长25米,高7米的台阶上铺设红地毯,已知台阶的宽为3米,则共需购买( )m2的红地毯.
A.21 B.75 C.93 D.96
八年级数学下册第十七章《勾股定理》单元测试卷-人教版(含答案)
一、单选题(本大题共12小题,每小题3分,共36分)
1.如图是我国汉代数学家赵爽在注解《周髀算经》时给出的“勾股方圆图”(又称赵爽弦图),它是由四个全等的直角三角形(直角边分别为a,b,斜边为c)与中间的一个小正方形拼成的一个大正方形.如果大正方形的面积为11,小正方形的面积为3,则44ab的值为( )
A.68 B.89 C.119 D.130
2.如图,ABC中,90,8,6ACBACBC,将ADE沿DE翻折,使点A与点B重合,则CE的长为( )
A.198 B.2 C.254 D.74
3.已知点M的坐标为3,4,则下列说法正确的是( )
A.点M在第二象限内 B.点M到x轴的距离为3
C.点M关于y轴对称的点的坐标为3,4 D.点M到原点的距离为5
4.如图,点A表示的实数是( )
A.﹣3 B.﹣5 C.﹣6 D.﹣7
5.如图,圆柱的底面周长为12cm,AB是底面圆的直径,在圆柱表面的高BC上有一点D,且10cmBC,2cmDC.一只蚂蚁从点A出发,沿着圆柱体的表面爬行到点D的最短路程是( )cm.
A.14 B.12 C.10 D.8
6.△ABC的三边长a,b,c满足5a+(b﹣12)2+|c﹣13|=0,则△ABC的面积是( )
A.65 B.60 C.30 D.26
7.如图,RtABC中,90,4,6BABBC,将ABC折叠,使点C与AB的中点D重合,折痕交AC于点M,交BC于点N,则线段CN的长为( ).
A.73 B.83 C.3 D.103
8.如图,在ABC中,△B=22.5°,△C=45°,若AC=2,则ABC的面积是( )
A.322 B.1+2 C.22 D.2+2 9.我们知道,如果直角三角形的三边的长都是正整数,这样的三个正整数就叫做一组勾股数.如果一个正整数c能表示为两个正整数a,b的平方和,即22cab,那么称a,b,c为一组广义勾股数,c为广义斜边数,则下面的结论:△m为正整数,则3m,4m,5m为一组勾股数;△1,2,3是一组广义勾股数;△13是广义斜边数;△两个广义斜边数的和是广义斜边数;△若2222,12,221akkbkckk,其中k为正整数,则a,b,c为一组勾股数;△两个广义斜边数的积是广义斜边数.依次正确的是( )
A.△△△ B.△△△△ C.△△△ D.△△△
10.为预防新冠疫情,民生大院入口的正上方 A 处装有红外线激光测温仪(如图所示),测温仪离地面的距离 AB=2.4 米,当人体进入感应范围内时,测温仪就会自动测温并报告人体体温.当身高为 1.8 米的市民 CD 正对门缓慢走到离门 0.8 米的地方时(即 BC=0.8 米),测温仪自动显示体温,则人头顶离测温仪的距离 AD 等于( )
A.1.0 米 B.1.2 米 C.1.25 米 D.1.5 米
11.中国古代称直角三角形为勾股形,如果勾股形的三边长为三个正整数,则称三边长叫“勾股数”;如果勾股形的两直角边长为正整数,那么称斜边长的平方叫“整弦数”对于以下结论:△20是“整弦数”;△两个“整弦数”之和一定是“整弦数”;△若c2为“整弦数”,则c不可能为正整数;△若m=a12+b12,n=a22+b22,11ab≠22ab,且m,n,a1,a2,b1,b2均为正整数,则m与n之积为“整弦数”;△若一个正奇数(除1外)的平方等于两个连续正整数的和,则这个正奇数与这两个连续正整数是一组“勾股数”.其中结论正确的个数为( )
A.1个 B.2个 C.3个 D.4个
12.如图,三角形纸片ABC中,点D是BC边上一点,连接AD,把△ABD沿着直线AD翻折,得到△AED,DE交AC于点G,连接BE交AD于点F.若DG=EG,AF=4,AB=5,△AEG的面积为92,则2BD的值为( )
A.13 B.12 C.11 D.10
二、填空题(本大题共8小题,每小题3分,共24分)
13.无理数可以用数轴上的点表示.如图,数轴上点A表示的数是______.
14.我国古代数学名著《算法统宗)有一道“荡秋干”的问题,“平地秋千未起,踏板一尺离地.送行二步与人齐,5尺人高曾记,仕女家人争蹴.良工高士素好奇,算出索长有几?”此问题可理解为:如图,有一架秋千,当它静止时,踏板离地距离PA的长为1尺,将它向前水平推送10尺时,即10PC尺,秋千踏板离地的距离PB就和身高5尺的人一样高,秋千的绳索始终拉得很直,则秋千的绳索长为________尺.
15.如图,在RtABC△中,9068CACBC,,,将ABC按如图方式折叠,使点B与点A重合,折痕为DE,则CD的长为________.
16.如图,一棵垂直于地面的大树在离地面3米处折断,树的顶端落在离树干底部4米处,那么这棵树折断之前的高度是____________米. 17.如图,圆柱形容器的高为0.9m,底面周长为1.2m,在容器内壁离容器底部0.3m处的点B处有一蚊子.此时,一只壁虎正好在容器外壁,离容器上沿0.2m与蚊子相对的点A处,则壁虎捕捉蚊子的最短距离为_____ m.
18.观察下列几组勾股数,并填空:△6,8,10,△8,15,17,△10,24,26,△12,35,37,则第△组勾股数为______.
19.爱动脑筋的小明某天在家玩遥控游戏时遇到下面的问题:已知,如图一个棱长为8cm无盖的正方体铁盒,小明通过遥控器操控一只带有磁性的甲虫玩具,他先把甲虫放在正方体盒子外壁A处,然后遥控甲虫从A处出发沿外壁面正方形ABCD爬行,爬到边CD上后再在边CD上爬行3cm,最后在沿内壁面正方形ABCD上爬行,最终到达内壁BC的中点M,甲虫所走的最短路程是 ______cm
20.如图,在△ABC中,AB=AC,BD△AC于点D,把线段AC绕点C旋转得到线段CE,点E恰好落在AB的延长线上,12BECD,△BCD的面积是8,则BC的长为________.
三、解答题(本大题共5小题,每小题8分,共40分)
21.某海上有一小岛,为了测量小岛两端A,B的距离,测量人员设计了一种测量方法,如图,已知B是CD的中点,E是BA延长线上的一点,且△CED=90°,测得AE=16.6海里,DE=60海里,CE=80海里.
(1)求小岛两端A,B的距离.
(2)过点C作CF△AB交AB的延长线于点F,求BFBC值.
22.阅读下列一段文字,然后回答下列问题.已知在平面内两点P1(x1,y1)、P2(x2,y2),其两点间的距离22121212()()PPxxyy,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x2﹣x1|或|y2﹣y1|.
(1)已知A(2,4)、B(﹣3,﹣8),试求A、B两点间的距离; (2)已知A、B在平行于y轴的直线上,点A的纵坐标为4,点B的纵坐标为﹣1,试求A、B两点间的距离;
(3)已知一个三角形各顶点坐标为D(1,6)、E(﹣2,2)、F(4,2),你能判定此三角形的形状吗?说明理由.
23.某天,暴雨突然来袭,两艘搜救艇接到消息,在海面上有遇险船只从A、B两地发出求救信号.于是,第一艘搜救艇以20海里/时的速度离开港口O沿北偏东40°的方向向A地出发,同时,第二艘搜救艇也从港口O出发,以15海里/时的速度向B地出发,2小时后,他们同时到达各自的目标位置.此时,他们相距50海里.
(1)求第二艘搜救艇的航行方向是北偏西多少度?(求BOD的大小)
(2)由于B地需要被援救的人数较多,故需要搭载人数较少的第一艘搜救艇改道去到B地支援,在从A地前往到B地的过程中,与港口O最近的距离是多少?
24.如图所示,一架云梯长25m,斜靠在一面墙上,梯子底端离墙7m,这个梯子的顶端距地面有多高?如果梯子顶端下滑了4m,那么梯子的底端在水平方向上也滑动了4m吗?
25.【阅读思考】已知0<x<1,求2211(1)xx的最小值
分析:如图,我们可以构造边长为1的正方形ABCD,P为BC边上的动点.设BP=x,则PC=1-x,那么可以用含x的式子表示AP、DP,问题可以转化为AP与PD的和的最小值,用几何知识可以解答
(1)AP+PD的最小值为________
(2)运用以上方法求:2291xy的最小值,其中x、y为两正数,且x+y=6
(3)借助上述的思考过程,求2291237xxx的最大值 参考答案
1.B
2.D
3.D
4.B
5.C
6.C
7.D
8.D
9.D
10.A
11.C
12.A
13.2
14.14.5
15.74
16.8
17.1
18.16,63,65
19.16
20.210
21.(1)33.4海里
(2)725
22.(1)AB=13
(2)AB=5
(3)△DEF是等腰三角形,
23.(1)50度
(2)24海里
24.这个梯子的顶端距地面24m;梯子的底端在水平方向上不是滑动了4m,而是滑动了8m.
25.(1)5;
(2)213;
(3)210.