人教版数学八年级下册 第17章 勾股定理 单元复习试题 含答案
- 格式:doc
- 大小:251.50 KB
- 文档页数:15
八年级数学下册《第十七章-勾股定理》单元测试卷及答案(人教版)一 选择题(每小题3分 共30分)1. 如果下列各组数是三角形的三边长,那么不能组成直角三角形的一组数是( )A. √2 √3 √5B. 1.5C. 32 42 52D. 1 22. 点A(−3,−4)到原点的距离为( )A. 3B. 4C. 5D. 73. 有一个直角三角形的两边长分别为3和4,则第三边的长为( )A. 5B. √7C. √5D. 5或√74.如果直角三角形两直角边的比为5∶12, 则斜边上的高与斜边的比为( ) A 60∶13B 5∶12C 12∶13D 60∶1695. 若一直角三角形两边长分别为12和5 则第三边长为( ) A .13 B .13或C .13或15D .156.一个圆桶底面直径为24cm ,高32cm ,则桶内所能容下的最长木棒为( )A .20cmB .50cmC .40cmD .45cm7.如图 小明准备测量一段水渠的深度 他把一根竹竿AB 竖直插到水底 此时竹竿AB 离岸边点C 处的距离米.竹竿高出水面的部分AD 长0.5米 如果把竹竿的顶端A 拉向岸边点C 处 竿顶和岸边的水面刚好相齐 则水渠的深度BD 为( )A .2米B .2.5米C .2.25米D .3米1.5CD8.如图, “赵爽弦图”是用四个相同的直角三角形与一个小正方形无缝隙地铺成一个大正方形 已知大正方形面积为25 (x +y)2=49 用x y 表示直角三角形的两直角边(x >y) 下列选项中正确的是( )A. 小正方形面积为4B. x 2+y 2=5C. x 2−y 2=7D. xy =249.如图,在△ABC 中 ∠C =90° AC =4 BC =2.以AB 为一条边向三角形外部作正方形 则正方形的面积是( )A. 8B. 12C. 18D. 2010.如图 在Rt △ABC 中 ∠ACB =90° AC =3 BC =4 BE 平分∠ABC CD ⊥AB 于D BE 与CD 相交于F 则CF 的长是( )A. 1B. 43C. 53D. 2二 填空题(每题3分 共24分)11.若一个三角形的三边之比为5:12:13 且周长为60cm 则它的面积为_____cm 2. 12.如图所示 所有的四边形都是正方形 所有的三角形都是直角三角形 其中最大的正方形的边长为7cm 正方形A B C 的面积分别是28cm 210cm 214cm 则正方形D 的面积是___________2cm .13.在ABC中90C∠=︒AB=5 则222AB AC BC++=______.14.如图在△ABC中∠ABC=90° 分别以BC AB AC为边向外作正方形面积分别记为S1S2,S3若S2=4 S3=6则S1=__________.15.方程思想如图在Rt△ABC中∠C=90° BC=6cm AC=8cm 按图中所示方法将△BCD沿BD折叠使点C落在AB边的点C’处那么△ADC’的面积是_____cm2. 16.如图一架秋千静止时踏板离地的垂直高度DE=0.5m将它往前推送1.5m(水平距离BC=1.5m)时秋千的踏板离地的垂直高度BF=1m秋千的绳索始终拉直则绳索AD的长是m.17.如图小明利用升旗用的绳子测量学校旗杆BC的高度他发现绳子刚好比旗杆长11米若把绳子往外拉直绳子接触地面A点并与地面形成30°角时绳子末端D距A点还有1米那么旗杆BC的高度为米.18.在△ABC中AB=AC=5 BC=6.若点P在边AC上移动则BP的最小值是.三、解答题(满分46分,19题6分20 21 22 23 24题每题8分)19.小明将一副三角板如图所示摆放在一起发现只要知道其中一边的长就可以求出其它各边的长若已知CD=2求AC的长.20.如图折叠长方形的一边AD使点D落在边BC的点F处已知AB=8cm BC=10cm求(1)FC的长.(2)EF的长.21 (8分)如图已知∠ADC=90°AD=8 CD=6 AB=26 BC=24.(1)证明:△ABC是直角三角形.(2)请求图中阴影部分的面积.22.如图 在长方形中 点在边上 把长方形沿直线折叠 点落在边上的点处。
第17章勾股定理一.选择题(共10小题)1.在Rt△ABC中,∠B=90°,BC=1,AC=2,则AB的长是()A.1 B.C.2 D.2.如图是我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形、如果大正方形的面积13,小正方形的面积是1,直角三角形的短直角边为a,较长的直角边为b,那么(a+b)2的值为()A.169 B.25 C.19 D.133.若直角三角形两条直角边长分别为2,3,则该直角三角形斜边上的高为()A.B.C.D.4.如图,由四个全等的直角三角形拼成的图形,设CE=a,HG=b,则斜边BD的长是()A.B.C.a+b D.a﹣b5.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是()A.7,24,25 B.3,4,5C.3,4,5 D.4,7,86.如图,四边形ABCD中,AB=4cm,BC=3cm,CD=12cm,DA=13cm,且∠ABC=90°,则四边形ABCD的面积为()A.6cm2B.30cm2C.24cm2D.36cm27.下列结论中,错误的有()①在Rt△ABC中,已知两边长分别为3和4,则第三边的长为5;②△ABC的三边长分别为AB,BC,AC,若BC2+AC2=AB2,则∠A=90°;③在△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形;④若三角形的三边长之比为3:4:5,则该三角形是直角三角形;A.0个B.1个C.2个D.3个8.小明想知道学校旗杆的高度,他发现旗杆上的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面,则旗杆的高是()A.8米B.10米C.12米D.14米9.如图,东西方向上有A,C两地相距10千米,甲以16千米/时的速度从A地出发向正东方向前进,乙以12千米/时的速度从C地出发向正南方向前进,那么最快经过()小时,甲、乙两人相距6千米?A.B.C.1.5 D.10.如图,有两棵树,一棵树高8m,另一棵树高3m,两树相距12m.一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行()A.12m B.14m C.13m D.15m二.填空题(共6小题)11.四根小木棒的长分别为5cm,8cm,12cm,13cm,任选三根组成三角形,其中有个直角三角形.12.在直角三角形中,若勾为1,股为2.则弦为.13.将一副三角尺如图所示叠放在一起,如果AB=10cm,那么AF=cm.14.在△ABC中,AB=,AC=5,若BC边上的高等于3,则BC边的长为.15.由四个全等的直角三角形拼成如图所示的“赵爽弦图”,若直角三角形斜边长为2,最短的边长为1,则图中阴影部分的面积为.16.我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图(1)).图(2)由弦图变化得到,它是由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNKT的面积分别为S1、S2、S3.若正方形EFGH的边长为2,则S1+S2+S3=.三.解答题(共6小题)17.如图,正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫格点.(1)在图①中,以格点为端点,画线段MN=;(2)在图②中,以格点为顶点,画正方形ABCD,使它的面积为10.18.如图,在四边形ABCD中,AB=AD=,∠A=90°,∠CBD=30°,∠C=45°,求BD 及CD的长.19.如图,在四边形ABCD中,AB=AD,∠A=90°,∠CBD=30°,∠C=45°,如果AB=,求CD的长.20.如图是规格为8×8的正方形网格,请在所给网格中按下列要求操作:(1)在网格中建立平面直角坐标系,使A点坐标为(﹣2,4),B点坐标为(﹣4,2);(2)在第二象限内的格点上画一点C,使点C与线段AB组成一个以AB为底的等腰三角形,且腰长是无理数,则C点坐标是;(3)求△ABC中BC边上的高长.21.如图,在△ABC中,AD⊥BC,∠B=45°,∠C=30°,AD=1,求△ABC的周长.22.某中学有一块四边形的空地ABCD,如图所示,学校计划在空地上种植草皮,经测量∠A =90°,AB=3m,DA=4m,BC=12m,CD=13m,若每平方米草皮需要200元,问学校需要投入多少资金买草皮?参考答案一.选择题(共10小题)1.B.2.B.3.C.4.B.5.B.6.C.7.C.8.C.9.A.10.C.二.填空题(共6小题)11.有1个直角三角形.12..13.5.14.5或3.15.4﹣2.16.12.三.解答题(共6小题)17.解:(1)如图①所示:(2)如图②所示.18.解:作DE⊥BC于E,在Rt△ABD中,BD===2,在Rt△DEB中,∠CBD=30°,∴DE=BD=1,在Rt△EDC中,∠C=45°,∴EC=DE=1,由勾股定理得,CD===.19.解:如图,过点D作DE⊥BC于E,∵AB=AD,∠BAD=90°,∴AD=AB=,∴由勾股定理可得BD==2,∵∠CBD=30°,∴DE=BD=×2=1,又∵Rt△CDE中,∠DEC=90°,∠C=45°,∴由勾股定理可得CD==.20.解:(1)如图1:(2)如图2:在第二象限内的格点上画一点C,使点C与线段AB组成一个以AB为底的等腰三角形,且腰长是无理数,则C点坐标是(﹣1,1);故答案为:(﹣1,1);(3)∵BC==,S△ABC=3×3﹣×1×3﹣×1×3﹣×2×2=4,∴△ABC中BC边上的高==.21.解:∵AD⊥BC,∴∠ADB=∠ADC=90°.在Rt△ADB中,∵∠B+∠BAD=90°,∠B=45°,∴∠B=∠BAD=45°,∴AD=BD=1,AB=.在Rt△ADC中,∵∠C=30°,∴AC=2AD=2,∴CD=,BC=BD+CD=1+,∴AB+AC+BC=++3.22.解:连接BD,在Rt△ABD中,BD2=AB2+AD2=32+42=52,在△CBD中,CD2=132,BC2=122,而122+52=132,即BC2+BD2=CD2,∴∠DBC=90°,S四边形ABCD=S△BAD+S△DBC=•AD•AB+DB•BC,=×4×3+×12×5=36.所以需费用36×200=7200(元).。
人教版八年级下册数学第十七章勾股定理单元测试卷题号一二三总分21 22 23 24 25 26 27 28分数一、选择题(每小题4分,共28分)1. 下列各组数中,是勾股数的是()A. 14,36,39B. 8,24,25C. 8,15,17D. 10,20,262. 如图,每个小正方形的边长均为1,A,B,C是小正方形的顶点,则∠ABC的度数为 ()A. 90°B. 60°C. 45°D. 30°3.△ABC的三边分别为下列各组值,其中不是直角三角形三边的是()A.a=41,b=40,c=9 B.a=1.2,b=1.6,c=2C.a=12,b=13,c=14D.a=35,b=45,c=14.在Rt△ABC中,∠C=90°,AB=15,AC:BC=3:4,则这个直角三角形的面积是()A. 24B. 48C. 54D. 1085.如图是我国古代著名的“赵爽弦图”的示意图,此图是由四个全等的直角三角形拼接而成,其中AE=5,BE=12,则EF的长是()A .7B .8C .7D .76.在下列各组数中,是勾股数的是( ) A .1、2、3B .2、3、4C .3、4、5D .4、5、67.在同一平面上把三边BC =3,AC =4,AB =5的三角形沿最长边AB 翻折后得到△ABC ′,则CC ′的长等于( ) A . B . C . D .二、填空题(每空4分,共28分)8. 在直角三角形ABC 中,∠ACB=90°,AC=6,BC=8,则斜边AB= ,斜边AB 上的高线长为 .9.在Rt ∆ABC 中,90ACB ∠=︒,且9,4c a c a +=-=,则b = . 10.如图,将一根长24厘米的筷子,置于底面直径为6厘米,高为8厘米的圆柱形水杯中,则筷子露在杯子外面的长度至少为 厘米.11.如图一个圆柱,底圆周长6cm ,高4cm ,一只蚂蚁沿外壁爬行,要从A 点爬到B 点,则最少要爬行 cm12.如图所示,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm ,正方形A ,B ,C 的面积分别是8cm 2, 10cm 2,14cm 2,则正方形D 的面积是 cm 2.13.如图,在55⨯的正方形网格中,以AB 为边画直角△ABC ,使点C 在格点上,且另外两条边长均为无理数,满足这样条件的点C 共 个.。
第17章勾股定理一.选择题(共10小题)1.已知点A的坐标为(2,﹣1),则点A到原点的距离为()A.3B.C.D.12.满足下列条件的三角形中,不是直角三角形的是()A.三内角的度数之比为1:2:3B.三内角的度数之比为3:4:5C.三边长之比为3:4:5D.三边长的平方之比为1:2:33.一个直角三角形两条直角边的长分别为5,12,则其斜边上的高为()A.B.13C.6D.254.有一个面积为1的正方形,经过一次“生长”后,在他的左右肩上生出两个小正方形,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,变成了下图,如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2019次后形成的图形中所有的正方形的面积和是()A.1B.2018C.2019D.20205.历史上对勾股定理的一种证法采用了下列图形:其中两个全等的直角三角形边AE、EB 在一条直线上.证明中用到的面积相等关系是()A.S△EDA=S△CEBB.S△EDA+S△CEB=S△CDBC.S四边形CDAE=S四边形CDEBD.S△EDA+S△CDE+S△CEB=S四边形ABCD6.校园内有两棵树,相距12米,一棵树高为13米,另一棵树高8米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞()A.10米B.11米C.12米D.13米7.如图,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要()A.4米B.5米C.7米D.10米8.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=,则BC的长为()A.﹣1B.+1C.﹣1D.+19.△ABC是某市在拆除违章建筑后的一块三角形空地.已知∠C=90°,AC=30米,AB =50米,如果要在这块空地上种植草皮,按每平方米草皮a元计算,那么共需要资金()A.600a元B.50a元C.1200a元D.1500a元10.放学以后,小红和小颖从学校分手,分别沿东南方向和西南方向回家,若小红和小颖行走的速度都是200米/分,小红用3分钟到家,小颖4分钟到家,小红和小颖家的直线距离为()A.600米B.800米C.1000米D.1400米二.填空题(共7小题)11.在Rt△ABC中,∠C=90°,BC=12,AC=9,则AB=.12.有一个直角三角形的两边为4、5,要使三角形为直角三角形,则第三边等于.13.如图,在数轴上,点A、B表示的数分别为0、2,BC⊥AB于点B,且BC=1,连接AC,在AC上截取CD=BC,以A为圆心,AD的长为半径画弧,交线段AB于点E,则点E 表示的实数是.14.观察下列式子:当n=2时,a=2×2=4,b=22﹣1=3,c=22+1=5n=3时,a=2×3=6,b=32﹣1=8,c=32+1=10n=4时,a=2×4=8,b=42﹣1=15,c=42+1=17…根据上述发现的规律,用含n(n≥2的整数)的代数式表示上述特点的勾股数a=,b=,c=.15.如图,正方形网格中,点A,B,C,D均在格点上,则∠ACD+∠BDC=°.16.如果三角形的两个内角α与β满足2α+β=90°,那么我们称这样的三角形为“准互余三角形”.如图在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点D为BC边上一点,若△ABD为“准互余三角形”,则BD的长为.17.如图,四边形ABCD中,AD∥BC,∠BCD=90°,AB=BC+AD,∠DAC=45°,E为CD上一点,且∠BAE=45°,若CD=4,则DE长为.三.解答题(共5小题)18.如图,△ABC中,∠ACB=90°,AB=,求斜边AB上的高CD.19.如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图1中,画一个三角形,使它的三边长都是有理数;(2)在图2中,画一个直角三角形,使它们的三边长都是无理数;(3)在图3中,画一个正方形,使它的面积是10.20.某消防队进行消防演练,在模拟现场,有一建筑物发生了火灾,消防车到达后,发现离建筑物的水平距离最近为12米,即AD=BC=12米,此时建筑物中距地面12.8米高的P 处有一被困人员需要救援,已知消防云梯的车身高AB是3.8米.为此消防车的云梯至少应伸长多少米?21.一架方梯AB长13米,如图,斜靠在一面墙上,梯子底端离墙OB为5米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了3米,那么梯子的底端在水平方向滑动了几米?22.这是某商场自动扶梯示意图,若将扶梯AC水平放置,则刚好与AB一样长.已知扶梯高度CE=5cm,CD=1cm,求扶梯AC的长.参考答案一.选择题(共10小题)1.C.2.B.3.A.4.D.5.D.6.D.7.C.8.D.9.A.10.C.二.填空题(共7小题)11.15.12.3或.13.﹣1.14.2n,n2﹣1,n2+1.15.90.16.或.17..三.解答题(共5小题)18.解:∵∠ACB=90°,AB=,∴AC==,∵×AB•CD=×AC•BC∴CD===.19.解:(1)三边分别为:3、4、5 (如图1);(2)三边分别为:、2、(如图2);(3)画一个边长为的正方形(如图3).20.某消防队进行消防演练,在模拟现场,有一建筑物发生了火灾,消防车到达后,发现离建筑物的水平距离最近为12米,即AD=BC=12米,此时建筑物中距地面12.8米高的P 处有一被困人员需要救援,已知消防云梯的车身高AB是3.8米.为此消防车的云梯至少应伸长多少米?解:由题意可知:AB=CD=3.8米,AD=12米,PC=12.8米,∠ADP=90°,∴PD=PC﹣CD=9米,在Rt△ADP中,AP==15米,答:此消防车的云梯至少应伸长15米.21.解:(1)∵AO⊥DO,∴AO===12(m),(2)∵AA′=3m,∴A′O=AO﹣AA′=9m,∴OB′===,∴BB′=OB′﹣OB=﹣5=2﹣5(m),∴梯子的底端在水平方向滑动了2﹣5米.22.解:设AC的长为x米,∵AC=AB,∴AB=AC=x米,∵EB=CD=1米,∴AE=(x﹣1)米,在Rt△ACE中,AC2=CE2+AE2,即:x2=52+(x﹣1)2,解得:x=13,答:扶梯AC的长为13米.。
人教版八年级数学下册第17章勾股定理单元测试题一.选择题(共10小题)1.如图,线段AB=、CD=,那么,线段EF的长度为()A.B.C.D.2.Rt△ABC中,斜边BC=2,则AB2+AC2+BC2的值为()A.8B.4C.6D.无法计算3.如图,由4个相同的直角三角形与中间的小正方形拼成一个大正方形,若大正方形面积是9,小正方形面积是1,直角三角形较长直角边为a,较短直角边为b,则ab的值是()A.4B.6C.8D.104.下列长度的三条线段不能组成直角三角形的是()A.3,4,5B.1,,2C.6,8,10D.1.5,2.5,35.如图,在△ABC中,AB=13,BC=10,BC边上的中线AD=12,试判定△ABC的形状()A.直角三角形B.等边三角形C.等腰三角形D.以上都不对6.下列各组数中,不是直角三角形的三条边的长的是()A.3,4,5B.6,8,10C.5,12,13D.4,5,67.下列各组数中,是勾股数的是()A.1,2,3B.0.3,0.4,0.5C.,,D.7,24,258.已知一直角三角形的木板,三边的平方和为12800cm2,则斜边长为()A.80cm B.30cm C.90cm D.120cm9.从电线杆离地面6米处向地面拉一条钢缆,钢缆与地面的夹角是60°,则这根钢缆的地面固定点到电线杆底部的距离是()A.2B.2C.3D.610.小明想知道学校旗杆(垂直地面)的高,他发现旗杆上的绳子垂到地面还多了1m,当他把绳子拉直后,发现绳子下端拉开5m,且下端刚好接触地面,则旗杆的高是()A.6m B.8m C.10m D.12m二.填空题(共8小题)11.如图,将一根长为15cm的筷子置于底面直径为5cm的装满水的圆柱形水杯中,已知水深为12cm,设筷子露出水面的长为hcm,则h的取值范围是.12.三角形的三边长分别为3,4,5,则这个三角形的面积是.13.如图,是2002年8月北京第24届国际数学家大会会标,由4个全等的直角三角形拼合而成.如果图中大、小正方形的面积分别为52和4,那么一个直角三角形的两直角边的和等于.14.直角三角形的两直角边是3和4,则斜边是15.已知小明和小王从同一地点出发,小明向正东方向走了2km,小王向正南方向走了3km,此时两人之间相距km.16.如图,在一个高为5m,长为13m的楼梯表面铺地毯,则地毯的长度至少是.17.小明向东走6m后,沿另一方向又走了8m,再沿第三个方向走了10m回到原地,小明向东走6m 后是向方向走的(填方位).18.在平面直角坐标系中,已知点P的坐标为(1,﹣3),那么点P到原点O的距离OP的长度为.三.解答题(共8小题)19.已知,如图,在△ABC中,D为边BC上的一点,AB=13,AD=12,AC=15,BD=5,求BC 的长.20.如图,在△ABC中,AB=20,AC=15,BC=25,AD⊥BC,垂足为D.求AD,BD的长.21.已知:如图,四边形ABCD中,∠B=90°.AB=2.BC=4,CD=,AD=10,求(1)AC的长;(2)四边形ABCD的面积.22.如图,已知在△ABC中,AB=AC=13,D是AB上一点,且CD=12,BD=8.(1)求△ADC的面积.(2)求BC的长.23.如图,东西方向的河道宽2000米,水流自西向东水速为3米/秒,一船从港口A以5米/秒的速度驶向对岸,港口A的正对岸是港口B(1)若船头正对对岸,则船最终停在对岸何处?(2)若要使船正好到达港口B,请画出船头方向,并计算此时到对岸要多长时间?24.如图,一架长5米的梯子AB,顶端B靠在墙上,梯子底端A到墙的距离AC=3米.(1)求BC的长;(2)梯子滑动后停在DE的位置,当AE为多少时,AE与BD相等?25.如图,四边形ABCD中,∠B=90°,∠ACB=30°,AB=2,CD=3,AD=5.(1)求证:AC⊥CD;(2)求四边形ABCD的面积.26.如图,在平面直角坐标系中,点A(0,12),点B(m,12),且B到原点O的距离OB=20,动点P从原点O出发,沿路线O→A→B运动到点B停止,速度为每秒5个单位长度,同时,点Q从点B出发沿路线B→A→O运动到原点O停止,速度为每秒2个单位长度.设运动时间为t.(1)求出P、Q相遇时点P的坐标.(2)当P运动到AB边上时,连接OP、OQ,若△OPQ的面积为6,求t的值.参考答案与试题解析一.选择题(共10小题)1.解:∵AB==,CD==,∴图形中的网格是由边长为1的小正方形构成的,则EF==.故选:C.2.解:∵Rt△ABC中,BC为斜边,∴AB2+AC2=BC2,∴AB2+AC2+BC2=2BC2=2×22=8.故选:A.3.解:由题意得:大正方形的面积是9,小正方形的面积是1,直角三角形的较长直角边为a,较短直角边为b,即a2+b2=9,a﹣b=1,所以ab=[(a2+b2)﹣(a﹣b)2]=(9﹣1)=4,即ab=4.解法2,4个三角形的面积和为9﹣1=8;每个三角形的面积为2;则ab=2;所以ab=4故选:A.4.解:A、∵32+42=52,∴此三角形是直角三角形,不符合题意;B、∵12+()2=(2)2,∴此三角形是直角三角形,不符合题意;C、∵62+82=102,∴此三角形是直角三角形,不符合题意;D、∵1.52+2.52≠32,∴此三角形不是直角三角形,符合题意;故选:D.5.解:∵AD是中线,AB=13,BC=10,∴BD=BC=5.∵52+122=132,即BD2+AD2=AB2,∴△ABD是直角三角形,则AD⊥BC,又∵BD=CD,∴AC=AB=13,∴△ABC的形状是等腰三角形,故选:C.6.解:∵42+52=41,62=36,41≠36,∴4,5,6不能作为直角三角形的三边长.故选:D.7.解:A、∵12+22≠32,∴这组数不是勾股数;B、∵0.32+0.42=0.52,但不是整数,∴这组数不是勾股数;C、∵+≠,∴这组数不是勾股数;D、∵72+242=252,∴这组数是勾股数.故选:D.8.解:设直角三角形的斜边长为x,∵三边的平方和为12800cm2,∴x2=6400cm2,解得x=80cm.故选:A.9.解:如图,已知∠C=60°,AB=6,在Rt△ABC中,设BC=x米,则AC=2x米,由勾股定理得:x2+62=(2x)2,解得:x=2,故选:B.10.解:设旗杆的高AB为xm,则绳子AC的长为(x+1)m在Rt△ABC中,AB2+BC2=AC2∴x2+52=(x+1)2解得x=12∴AB=12∴旗杆的高12m.故选:D.二.填空题(共8小题)11.解:∵将一根长为15cm的筷子,置于底面直径为5cm,高为12cm的圆柱形水杯中,∴在杯子中筷子最短是等于杯子的高,最长是等于杯子斜边长度,∴当杯子中筷子最短是等于杯子的高时,h=12,最长时等于杯子斜边长度,即:h==13,∴h的取值范围是:(15﹣13)≤h≤(15﹣12),即2≤h≤3.故答案为:2≤h≤3.12.解:∵三角形的三边长分别为3,4,5,∴52=32+42,∴此三角形为直角三角形,∴这个三角形的面积=×3×4=6.故答案为:6.13.解:设设三角形的两直角边分别为x,y,则,由②得x2+y2﹣2xy=4…③,①﹣③得2xy=48则(x+y)2=x2+y2+2xy=52+48=100,x+y==10.故答案是:10.14.解:在直角三角形中,三边边长符合勾股定理,已知两直角边为3、4,则斜边边长==5,故答案为5.15.解:如图所示,∠ACB=90°,∴AB===(km).故答案为:.16.解:由勾股定理得:楼梯的水平宽度==12,∵地毯铺满楼梯是其长度的和应该是楼梯的水平宽度与垂直高度的和,地毯的长度至少是12+5=17米.故答案为:17m.17.解:如图,AB=6m,BC=BD=8m,AC=AD=10m,∵602+802=1002,∴∠ABC=∠ABD=90°,故小明向东走6m后是向北或向南走的.故答案为:北或南.18.解:∵点P的坐标为(1,﹣3),点O为坐标原点,∴OP==.答:点P到原点O的距离OP的长度为.故答案为:.三.解答题(共8小题)19.解:∵AD2+BD2=144+25=169,AB2=169,∴AD2+BD2=AB2,∴AD⊥BC,即∠ADC=90°,∴CD===9,∴BC=CD+BD=5+9=14.20.解:∵AB2+AC2=202+152=625=252=BC2,∴△ABC是直角三角形,∵S=×AB×AC=×BC×AD,△ACB∴15×20=25×AD,∴AD=12,由勾股定理得:BD==16.21.解:(1)如图,连接AC,∵∠B=90°,∴△ABC为直角三角形,又∵AB=2,BC=4,∴根据勾股定理得:AC=;(2)又∵CD=,AD=10,∴AD 2=102=100,CD 2+AC 2==80+20=100,∴CD 2+AC 2=AD 2,∴△ACD 为直角三角形,∠ACD =90°,则S 四边形ABCD =S △ABC +S △ACD =AB •BC +AC •CD =×2×4+×× =4+20=24.故四边形ABCD 的面积为24.22.解:(1)∵AB =13,BD =8,∴AD =AB ﹣BD =5,∴AC =13,CD =12,∴AD 2+CD 2=AC 2,∴∠ADC =90°,即△ADC 是直角三角形,∴△ADC 的面积=×AD ×CD =×5×12=30;(2)在Rt △BDC 中,∠BDC =180°﹣90°=90°,由勾股定理得:BC ===4,即BC 的长是4. 23.解:(1)2000÷5=400(秒),3×400=1200(米).答:船最终停在港口B 东边的1200米处.(2)在Rt △ACD 中,AC =5米/秒,CD =3米/秒,∴AD ==4(米/秒).2000÷4=500(秒).答:此时到对岸要500秒钟.24.解:(1)∵一架长5米的梯子AB,顶端B靠在墙上,梯子底端A到墙的距离AC=3米,∴BC==4(m),答:BC的长为4m;(2)当BD=AE,则设AE=x,故(4﹣x)2+(3+x)2=25解得:x1=1,x2=0(舍去),故AE=1m.25.(1)证明:在Rt△ABC中,∠B=90°,∠ACB=30°,AB=2,∴AC=2AB=4,在△ACD中,AC=4,CD=3,AD=5,∵42+32=52,即AC2+CD2=AD2,∴∠ACD=90°,∴AC⊥CD;(2)解:在Rt△ABC中,∠B=90°,AB=2,AC=4,∴BC==2,∴Rt△ABC的面积为AB•BC=×2×2=2,又∵Rt△ACD的面积为AC•CD=×4×3=6,∴四边形ABCD的面积为:2+6.26.解:(1)设t秒后P,Q相遇.在Rt△AOB中,∵∠BAO=90°,OA=12,OB=20,∴AB===16,由题意:5t+2t=12+16,解得t=4,此时BQ=8.AQ=AB﹣BQ=16﹣8=8,∴P(8,12).(2)当P,Q都在AB边上时,•|16﹣(5t﹣12)﹣2t|×12=6,解得t=或当点Q在OA上时,•16•(28﹣2t)=6,解得t=,综上所述,满足条件的值为或或.。
第17章勾股定理一.选择题(共10小题)1.下列各组数是勾股数的是()A.2,3,4 B.0.3,0.4,0.5C.7,24,25 D.,,2.△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,下列条件不能判断△ABC是直角三角形的是()A.a2+b2=c2B.a=5,b=12,c=13C.∠A:∠B:∠C═3:4:5 D.∠A=∠B+∠C3.如图,长方形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,AC的长为半径作弧交数轴于点M,则点M表示的数为()A.﹣1 B.﹣1 C.2 D.4.如图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的,若AC=4,BC=6,将四个直角三角形中边长为4的直角边分别向外延长一倍,得到图2所示的“数学风车”,则这个风车的外围周长是()A.56 B.24 C.64 D.325.如图,点E在正方形ABCD的边AB上,若EB=1,EC=2,那么正方形ABCD的面积为()A.B.3 C.D.56.勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出()A.直角三角形的面积B.最大正方形的面积C.较小两个正方形重叠部分的面积D.最大正方形与直角三角形的面积和7.如图,今年第9号台风利奇马”过后,市体育中心附近一棵大树在高于地面3米处折断,大树顶部落在距离大树底部4米处的地面上,那么树高是()A.7m B.8m C.9m D.12m8.将一根长为25厘米的筷子置于底面直径为5厘米,高为12厘米的圆柱形水杯中,设筷子露在杯子外的长为h厘米,则h的取值范围是()A.12≤h≤13 B.11≤h≤12 C.11≤h≤13 D.10≤h≤129.如图,已知1号、4号两个正方形的面积和为7,2号、3号两个正方形的面积和为4,则a,b,c三个正方形的面积和为()A.11 B.15 C.10 D.2210.如图,高速公路上有A、B两点相距25km,C、D为两村庄,已知DA=10km,CB=15km.DA ⊥AB于A,CB⊥AB于B,现要在AB上建一个服务站E,使得C、D两村庄到E站的距离相等,则AE的长是()km.A.5 B.10 C.15 D.25二.填空题(共6小题)11.如图,在Rt△ABC中,∠B=90°,AB=6,BC=8.AD平分∠BAC交BC边于点D,则BD=.12.如图,有赵爽弦图变化得到,它是由八个全等的直角三角形拼接而成,记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,若S1+S2+S3=27,S3=1,则S1的值是.13.观察下列各式:32+42=52;82+62=102;152+82=172;242+102=262;…;你有没有发现其中的规律?请用你发现的规律写出接下来的式子:.14.如图,有一块田地的形状和尺寸如图所示,则它的面积为.15.如图,某自动感应门的正上方A处装着一个感应器,离地AB=2.5米,当人体进入感应器的感应范同内时,感应门就会自动打开.一个身高1.6米的学生CD正对门,缓慢走到离门1.2米的地方时(BC=1.2米),感应门自动打开,则AD=米.16.如图,△ABC是边长为12cm的正三角形,动点P从A向B以2cm/s匀速运动,同时动点Q从B向C以1cm/s匀速运动,当点P到达点B时,P、Q两点停止运动,设点P的运动时间为t秒,则t=时,△PBQ为直角三角形.三.解答题(共5小题)17.如图,已知在四边形ABCD中,AB=20cm,BC=15cm,CD=7cm,AD=24cm,∠ABC=90°.(1)连结AC,求AC的长;(2)求∠ADC的度数;(3)求出四边形ABCD的面积18.分析探索题:细心观察如图,认真分析各式,然后解答问题.OA22=()2+1=2 S1=;OA32=()2+1=3 S2=;OA42=()2+1=4 S3=…(1)请用含有n(n为正整数)的式子表示S n=;(2)推算出OA10=.(3)求出S12+S22+S32+…+S102的值.19.《中华人民共和国道路交通管理条例》规定:小汽车在城市街道上的行驶速度不得超过70千米/时,如图,一辆小汽车在某城市街道直道上行驶,某一时刻刚好行驶到路对面车速检测仪A(观测点)正前方30米处的C处,过了2秒钟后,测得小汽车与车速检测仪间的距离为50米,问:这辆小汽车超速了吗?(参考数据转换:1m/s=3.6km/h)20.如图1,在△ABC中,∠B=22.5°,AC=5,AD是BC边上的高,AB的垂直平分线交AB 于点E,交BC于点F.(1)判别AD与DF的数量关系并证明;(2)过F点作FG⊥AC于点G,交AD于点O(如图2),若OD=3,求BC的长度.21.如图,在Rt△ABC中,AB=3,BC=4,动点P从点A出发沿AC向终点C运动,同时动点Q从点B出发沿BA向点A运动,到达A点后立刻以原来的速度沿AB返回.点P,Q 的运动速度均为每秒1个单位长度,当点P到达点C时停止运动,点Q也同时停止运动,连接PQ,设它们的运动时间为t(t>0)秒.(1)设△CBQ的面积为S,请用含有t的代数式来表示S;(2)线段PQ的垂直平分线记为直线l,当直线l经过点C时,求AQ的长.参考答案一.选择题(共10小题)1.解:A、22+32≠42,故此选项错误;B、0.3,0.4,0.5不是正整数,故此选项错误;C、72+242=252,故此选项正确;D、()2+()2≠()2,同时它们也不是正整数,故此选项错误.故选:C.2.解:A、∵a2+b2=c2,∴∠C=90°,即△ABC是直角三角形,故本选项不符合题意;B、∵a=5,b=12,c=13,∴a2+b2=c2,∴∠C=90°,即△ABC是直角三角形,故本选项不符合题意;C、∵∠A:∠B:∠C=3:4:5,∴最大角∠C=×180°≠90°,∴△ABC是直角三角形,故本选项符合题意;D、∵∠A=∠B+∠C,∠A+∠B+∠C=180°,∴∠A=90°,即△ABC是直角三角形,故本选项不符合题意;故选:C.3.解:∵AB=3,AD=1,∴AC==,∵点A为圆心,AC的长为半径作弧交数轴于点M,AM=AC=,∵A点表示﹣1,∴M点表示的数为:﹣1,故选:A.4.解:依题意,设“数学风车”中的四个直角三角形的斜边长为x,则x2=82+62=100所以x=10所以“数学风车”的周长是:(10+4)×4=56.故选:A.5.解:∵四边形ABCD是正方形,∴∠B=90°,∴BC2=EC2﹣EB2=22﹣12=3,∴正方形ABCD的面积=BC2=3.故选:B.6.解:设直角三角形的斜边长为c,较长直角边为b,较短直角边为a,由勾股定理得,c2=a2+b2,阴影部分的面积=c2﹣b2﹣a(c﹣b)=a2﹣ac+ab=a(a+b﹣c),较小两个正方形重叠部分的宽=a﹣(c﹣b),长=a,则较小两个正方形重叠部分底面积=a(a+b﹣c),∴知道图中阴影部分的面积,则一定能求出较小两个正方形重叠部分的面积,故选:C.7.解:根据勾股定理可知:折断的树高==5米,则这棵大树折断前的树高=3+5=8米.故选:B.8.解:当筷子与杯底垂直时h最大,h最大=25﹣12=13cm.当筷子与杯底及杯高构成直角三角形时h最小,如图所示:此时,AB===13cm,故h=25﹣13=12cm.故h的取值范围是12cm≤h≤13cm.故选:A.9.解:利用勾股定理可得S a=S1+S2,S b=S2+S3,S c=S3+S4,∴S a+S b+S c=S a=S1+S2+S2+S3+S3+S4=7+4+4=15.故选:B.10.解:设AE=x,则BE=25﹣x,由勾股定理得:在Rt△ADE中,DE2=AD2+AE2=102+x2,在Rt△BCE中,CE2=BC2+BE2=152+(25﹣x)2,由题意可知:DE=CE,所以:102+x2=152+(25﹣x)2,解得:x=15km.所以,E应建在距A点15km处.故选:C.二.填空题(共6小题)11.解:作DE⊥AC于E,如图所示:∵∠B=90°,AB=6,BC=8.∴DB⊥AB,AC==10,∵AD平分∠BAC,DE⊥AC,∴DE=DB,在Rt△AED和Rt△ABD中,,∴Rt△AED≌Rt△ABD(HL),∴AE=AB=6,∴CE=AC﹣AE=4,设DE=DB=x,则CD=8﹣x,在Rt△CDE中,由勾股定理得:x2+42=(8﹣x)2,解得:x=3,∴BD=3;故答案为:3.12.解:∵八个直角三角形全等,四边形ABCD,EFGH,MNKT是正方形,∴CG=NG,CF=DG=NF,∴S1=(CG+DG)2=CG2+DG2+2CG•DG=GF2+2CG•DG,S2=GF2,S3=(NG﹣NF)2=NG2+NF2﹣2NG•NF,∴S1+S2+S3=GF2+2CG•DG+GF2+NG2+NF2﹣2NG•NF=3GF2=27,∴GF2=9,∴S2=9,∵S3=1,∴S1的值是17.故答案为17.13.解:根据规律,下一个式子是:352+122=372.14.解:作辅助线:连接AB,因为△ABD是直角三角形,所以AB===5,因为52+122=132,所以△ABC是直角三角形,则要求的面积即是两个直角三角形的面积差,即×12×5﹣×3×4=30﹣6=24.15.解:如图,过点D作DE⊥AB于点E,∵AB=2.5米,BE=CD=1.6米,ED=BC=1.2米,则AE=AB﹣BE=2.5﹣1.6=0.9(米).在Rt△ADE中,由勾股定理得到:AD===1.5(米)故答案是:1.5.16.解:∵△ABC是等边三角形,∴AB=BC=6cm,∠A=∠B=∠C=60°,当∠PQB=90°时,∠BPQ=30°,∴BP=2BQ.∵BP=12﹣2x,BQ=x,∴12﹣2x=2x,解得x=3;当∠QPB=90°时,∠PQB=30°,∴BQ=2PB,∴x=2(12﹣2x),解得x=.答:3或秒时,△BPQ是直角三角形.故答案为3或.三.解答题(共5小题)17.解:(1)连接AC,在Rt△ABC中,∠ABC=90°,∵AB=20cm,BC=15cm,∴由勾股定理可得:AC=cm;(2)∵在△ADC中,CD=7cm,AD=24cm,∴CD2+AD2=AC2,∴∠ADC=90°;(3)由(2)知,∠ADC=90°,∴四边形ABCD的面积=,18.解:(1)+1=n+1Sn=(n是正整数);故答案是:;(2)∵OA12=1,OA22=()2+1=2,OA32=()2+1=3,OA42=()2+1=4,∴OA12=,OA2=,OA3=,…∴OA10=;故答案是:;(3)S12+S22+S32+…+S102=()2+()2+()2+…+()2=(1+2+3+ (10)=.即:S12+S22+S32+…+S102=.19.解:在Rt△ABC中,AC=30m,AB=50m,由勾股定理可得:BC==40(m),∴小汽车的速度为v=40÷2=20(m/s)=20×3.6(km/h)=72(km/h),∵72(km/h)>70(km/h),∴这辆小汽车超速行驶.答:这辆小汽车超速了.20.(1)AD=DF,理由如下:证明:如图1,连结AF,∵EF是AB的垂直平分线,∴BF=AF,∴∠BAF=∠B=22.5°,∴∠AFD=45°,∵AD是BC边上的高,∴△AFD是等腰直角三角形,∴AD=DF;(2)解:∵FG⊥AC,AD⊥BC,∴∠FGC=∠ADF=90°,∠GFC+∠C=90°,∠DAC+∠C=90°,∴∠GFC=∠DAC,∵AD=DF,∴△ODF≌△CDA,∴OD=CD=3,在Rt△ACD中,由勾股定理得AD===4,连结AF,在Rt△ADF中,AD=DF=4,∴AF===4,∴BF=AF=4,∴BC=BF+DF+CD=4+4+3=7+4.21.解:(1)如图1,当0<t≤3时,BQ=t,BC=4,∴S=×4×t=2t;如图2,当3<t≤5时,,AQ=t﹣3,则BQ=3﹣(t﹣3)=6﹣t,∴S=×4×(6﹣t)=12﹣2t;(2)连接CQ,如图3,∵QP的垂直平分线过点C,∴CP=CQ,∵AB=3,BC=4,∴AC===5,∴42+t2=(5﹣t)2,解得t=;或42+(6﹣t)2=(5﹣t)2,显然不成立;∴AQ=3﹣=.。
人教版八年级数学下册第十七章《勾股定理》单元测试题(含答案)分值:120分时间:90分钟一、选择题(本大题共12道小题,共36分)1.已知三角形的三条边分别为a,b,c,则下列不能判断三角形为直角三角形的是A. B. C. D.2.下列各组数是勾股数的是A. ,,B. 1,1,C. ,,D. 5,12,133.如图,中,,,,点P是BC边上的动点,则AP的长不可能是A. B. 4 C. D. 7(第3题图)(第4题图)4.如图,矩形ABCD中,,,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于M,则点M为A. 2B.C.D.5.如图所示,正方形ABGF和正方形CDBE的面积分别是100和36,则以AD为直径的半圆的面积是A. B. C. D.(第5题图)(第6题图)6.如图,一次飓风灾害中,一棵大树在离地面3米处折断,树的顶端落在离树干底部4米处,那么这棵树折断之前的高度是A. 5米B. 6米C. 7米D. 8米7.如图,在的网格中,每个小正方形的边长均为1,点A,B,C都在格点上.若BD是的高,则BD的长为A. B. C. D.(第7题图)(第9题图)8.下列命题中正确的是A. 在直角三角形中,两条边的平方和等于第三边的平方B. 如果一个三角形两边的平方差等于第三边的平方,那么这个三角形是直角三角形C. 在中,,,的对边分别为a,b,c,若,则D. 在中,若,,则9.如下图,在长方形ABCD中,,,将此长方形折叠,使点D与点B 重合,折痕为EF,则的面积为A. B. C. D.10.如下图,在中,,,,CD平分交AB于点D ,E是AC的中点,P是CD上一动点,则的最小值是A. B. 6 C. D.(第10题图)(第11题图)11.如图,透明的圆柱形容器容器厚度忽略不计的高为,底面周长为,在容器内壁离容器底部的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且在离容器上部的点A处,则蚂蚁吃到饭粒需爬行的最短路程是A. B. C. D.12.勾股定理是几何中的一个重要定理,在我国古算书周髀算经中就有“若勾三、股四、则弦五”的记载。
人教版八年级下册第十七章勾股定理单元练习题(含答案一、选择题1.在平静的湖面上,有一支红莲,高出水面1米,一阵风吹来,红莲移到一边,花朵齐及水面,已知红莲移动的水平距离为2米,这里的水深为( )A. 1.5米B. 2米C. 2.5米D. 1米2.如图1,分别以直角三角形三边为边向外作等边三角形,面积分别为S1、S2、S3;如图2,分别以直角三角形三个顶点为圆心,三边长为半径向外作圆心角相等的扇形,面积分别为S4、S5、S6.其中S1=16,S2=45,S5=11,S6=14,则S3+S4等于( )A. 86B. 64C. 54D. 483.如图表示的是一个十字路口,O是两条公路的交点,点A、B、C、D表示的是公路上的四辆车,若OC=8 cm,AC=17 cm,AB=5 cm,BD=10m,则C,D两辆车之间的距离为( )A. 5 mB. 4 mC. 3 mD. 2 m4.如图是由三个棱长均为1的正方体箱子堆积而成的几何体,在底端的顶点A处有一只蚂蚁,它想吃到顶端的顶点B处的食物,则它沿该几何体表面爬行的最短路程等于( )A.B. 2+1C.D. 55.如图,长方体的透明玻璃鱼缸,假设其长AD=80 cm,高AB=60 cm,水深为AE =40 cm,在水面上紧贴内壁G处有一鱼饵,G在水面线EF上,且EG=60 cm;一小虫想从鱼缸外的A点沿壁爬进鱼缸内G处吃鱼饵,则小动物爬行的最短路线长为( )A. 40 cmB. 60 cmC. 80 cmD. 100 cm6.三角形三边长为6、8、10,那么最长边上的高为( )A. 6B. 4.5C. 4.8D. 87.如图,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2 m,梯子的顶端B到地面的距离为7 m,现将梯子的底端A向外移动到A′,使梯子的底端A′到墙根O的距离等于3 m,同时梯子的顶端B下降至B′,那么BB′( )A.小于1 mB.大于1 mC.等于1 mD.小于或等于1 m8.如图,一根垂直于地面的旗杆在离地面5 m处撕裂折断,旗杆顶部落在离旗杆底部12 m处,旗杆折断之前的高度是( )A. 5 mB. 12 mC. 13 mD. 18 m二、填空题9.直角三角形斜边长是5,一直角边的长是3,则此直角三角形的面积为________.10.一个三角形的三边长之比为5∶12∶13,它的周长为120,则它的面积是________.11.如图,分别以△ABC的三边为直径向外作3个半圆,它们的面积分别为4、5、9,则△ABC________直角三角形.(填“是”或“不是”)12.如图,AD=8,CD=6,∠ADC=90°,AB=26,BC=24,该图形的面积等于________.13.中国古代的数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位.尤其是三国时期的数学家赵爽,不仅最早对勾股定理进行了证明,而且创制了“勾股圆方图”,开创了“以形证数”的思想方法.在图1中,小正方形ABCD的面积为1,如果把它的各边分别延长一倍得到正方形A1B1C1D1,则正方形A1B1C1D1的面积为________;再把正方形A1B1C1D1的各边分别延长一倍得到正方形A2B2C2D2(如图2),如此进行下去,得到的正方形AnBnCnDn的面积为________(用含n的式子表示,n 为正整数).14.如图,四边形ABCD中,AB⊥AD于A,AB=8,AD=8,BC=7,CD=25,则四边形ABCD的面积为__________.15.如图,以直角△ABC的三边向外作正方形,其面积分别为S1,S2,S3且S1=4,S2=8,则S3=________.16.在△ABC中,已知AB=BC=CA=4 cm,点P、Q分别从B、C两点同时出发,其中点P沿BC向终点C运动,速度为1 cm/s;点Q沿CA、AB向终点B运动,速度为2 cm/s,设它们运动的时间为x(s),当x=__________,△BPQ是直角三角形.三、解答题17.如图所示的一块地,AD=9 m,CD=12 m,∠ADC=90°,AB=39 m,BC=36 m,求这块地的面积.18.如图,在B港有甲、乙两艘渔船,若甲船沿北偏东60°方向以每小时8海里速度前进,乙船沿南偏东某方向以每小时15海里速度全速前进,2小时后甲船到M岛,乙船到P岛,两岛相距34海里,你知道乙船沿那个方向航行吗?19.在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.20.为了弘扬“社会主义核心价值观”,乐至县政府在广场树立公益广告牌,如图所示,为固定广告牌,在两侧加固钢缆,已知钢缆底端D距广告牌立柱距离CD为3米,从D点测得广告牌顶端A点和底端B点的距离分别是5米和3米.(1)求公益广告牌的高度AB;(2)求∠BDC的度数.21.阅读与应用:阅读以下材料,并按要求完成相应的任务.中国最早的一部数学著作--《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话:周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地的数据呢?”商高回答说:“数的产生来源于对方和圆这些形体的认识,其中有一条原理:当直角三角形‘矩’得到的一条直角边‘勾’等于3,另一条直角边‘股’等于4的时候,那么它的斜边‘弦’就必定是5.这个原理是大禹在治水的时候就总结出来的呵.”任务:(1)上面周公与商高的这段对话,反映的数序原理在数学上叫做__________定理;(2)请你利用以上数学原理解决问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,求问题中葛藤的最短长度是多少尺.答案解析1.【答案】A【解析】设水深为h米,则红莲的高(h+1)米,且水平距离为2米,则(h+1)2=22+h2,解得h=1.5.故选A.2.【答案】C【解析】如图1,S1=AC2,S2=AB2,S3=BC2,∵BC2=AB2-AC2,∴S2-S1=S3,如图2,S4=S5+S6,∴S3+S4=45-16+11+14=54.故选C.3.【答案】D【解析】在Rt△AOC中,∵OA2+OC2=AC2,∴OA===15(m),∴OB=OA+AB=20 m,在Rt△BOD中,∵BD2=OB2+OD2,∴OD===10(m),∴CD=OD-OC=2 m,故选D.4.【答案】A【解析】如图所示,由图可知,AB==.故选A.5.【答案】D【解析】如图所示作点A关于BC的对称点A′,连接A′G交BC与点Q,小虫沿着A →Q→G的路线爬行时路程最短.在直角△A′EG中,A′E=80 cm,EG=60 cm,∴AQ+QG=A′Q+QG=A′G==100 cm.∴最短路线长为100 cm.故选D.6.【答案】C【解析】∵62+82=102,∴这个三角形是直角三角形,∴最长边上的高为6×8÷10=4.8.故选C.7.【答案】A【解析】在直角三角形AOB中,因为OA=2,OB=7,由勾股定理,得AB=,由题意可知AB=A′B′=,又OA′=3,根据勾股定理得OB′=,∴BB′=7-<1.故选A.8.【答案】D【解析】旗杆折断后,落地点与旗杆底部的距离为12 m,旗杆离地面5 m折断,且旗杆与地面是垂直的,所以折断的旗杆与地面形成了一个直角三角形.根据勾股定理,折断的旗杆为=13 m,所以旗杆折断之前高度为13 m+5 m=18 m.故选D.9.【答案】6【解析】∵直角三角形斜边长是5,一直角边的长是3,∴另一直角边长为=4.该直角三角形的面积S=×3×4=6.10.【答案】480【解析】设三边的长是5x,12x,13x,则5x+12x+13x=120,解得x=4,则三边长是20,48,52.∵202+482=522,∴三角形是直角三角形,∴三角形的面积是×20×48=480.11.【答案】是【解析】由分别以△ABC的三边为直径向外作3个半圆,它们的面积分别为4、5、9,得BC2+AC2=AB2,则△ABC是直角三角形.12.【答案】96【解析】连接AC,在Rt△ACD中,AD=8,CD=6,∴AC===10,在△ABC中,∵AC2+BC2=102+242=262=AB2,∴△ABC为直角三角形;∴图形面积为S△ABC-S△ACD=×10×24-×6×8=96.13.【答案】5 5n【解析】已知小正方形ABCD的面积为1,则把它的各边延长一倍后,△AA1B1的面积是1,新正方形A1B1C1D1的面积是5,从而正方形A2B2C2D2的面积为5×5=25=52,…正方形AnBnCnDn的面积为5n.14.【答案】84+96【解析】连接BD,∵AB⊥AD,∴∠A=90°,∴BD=24,∵BC2+BD2=72+242=625=252=CD2,∴△CBD为直角三角形,∴S四边形ABCD=S△ABD+S△BCD=×8×8+×24×7=96+84.15.【答案】12【解析】∵△ABC直角三角形,∴BC2+AC2=AB2,∵S1=BC2,S2=AC2,S3=AB2,S1=4,S2=8,∴S3=S1+S2=12.16.【答案】2或【解析】根据题意,得BP=t cm,CQ=2t cm,BQ=(8-2t) cm,若△BPQ是直角三角形,则∠BPQ=90°或∠BQP=90°,①当∠BPQ=90°时,Q在A点,CQ=CA=4 cm,4÷2=2(s);②当∠BQP=90°时,∵∠B=60°,∴∠BPQ=90°-60°=30°,∴BQ=BP,即8-2t=t,解得t=,故当t=2或秒时,△BPQ是直角三角形.17.【答案】解连接AC,则在Rt△ADC中,AC2=CD2+AD2=122+92=225,∴AC=15,在△ABC中,AB2=1521,AC2+BC2=152+362=1521,∴AB2=AC2+BC2,∴∠ACB=90°,∴S△ABC-S△ACD=AC·BC-AD·CD=×15×36-×12×9=270-54=216.答:这块地的面积是216平方米.【解析】连接AC,运用勾股定理逆定理可证△ACD,△ABC为直角三角形,可求出两直角三角形的面积,此块地的面积为两个直角三角形的面积差.18.【答案】解BM=8×2=16海里,BP=15×2=30海里,在△BMP中,BM2+BP2=256+900=1156,PM2=1156,BM2+BP2=PM2,∴∠MBP=90°,180°-90°-60°=30°,故乙船沿南偏东30°方向航行.【解析】先根据路程=速度×时间,求出BM,BP的长,再根据勾股定理的逆定理得到∠MBP=90°,进一步即可求解.19.【答案】解如图,在△ABC中,AB=15,BC=14,AC=13,设BD=x,则CD=14-x,由勾股定理,得AD2=AB2-BD2=152-x2,AD2=AC2-CD2=132-(14-x)2,故152-x2=132-(14-x)2,解之得x=9.∴AD=12.∴S△ABC=BC·AD=×14×12=84.【解析】根据题意利用勾股定理表示出AD2的值,进而得出等式求出答案.20.【答案】解(1)在直角三角形ADC中,AC===4(m),在直角三角形BDC中,BC===3(m),故AB=AC-BC=1(米),答:公益广告牌的高度AB的长度为1 m;(2)∵在直角三角形BDC中,BC=CD=3 m,∴△DBC是等腰直角三角形,∴∠BDC=45°.【解析】(1)直接利用勾股定理得出AC的长,进而得出BC的长即可得出AB的长;(2)利用已知结合(1)中所求得出△DBC是等腰直角三角形,进而得出答案.21.【答案】解(1)上面周公与商高的这段对话,反映的数序原理在数学上叫做勾股定理;故答案是勾股;(2)如图,一条直角边(即枯木的高)长20尺,另一条直角边长5×3=15(尺),因此葛藤长为=25(尺).答:问题中葛藤的最短长度是25尺.【解析】(1)根据勾股定理的概念填空;(2)这种立体图形求最短路径问题,可以展开成为平面内的问题解决,展开后可转化下图,所以是个直角三角形求斜边的问题,根据勾股定理可求出.。
八年级数学下册《第十七章 勾股定理》单元测试卷带答案(人教版)班级 姓名 学号一、选择题:1.设一个直角三角形的两直角边分别是a ,b ,斜边是c .若用一把最大刻度是20cm 的直尺,可一次直接测得c 的长度,则a ,b 的长可能是( )A .a =12,b =16B .a =11,b =17C .a =10,b =18D .a =9,b =192.在△ABC 中,AC=9,BC=12,AB=15,则AB 边上的高是( )A .365B .1225C .94D 3.已知,一轮船以16海里/时的速度从港口A 出发向北偏东63?方向航行,另一轮船以8海里/时的速度同时从港口A 出发向南偏东27 方向航行,则离开港口1小时后,两船相距( )A .B .海里C .16海里D .24海里4.如图,一根木杆在离地面3m 处折断,木杆顶端落在离木杆底端4m 处,木杆折断之前的高度是( )A .5mB .6mC .7mD .8m5.如图,牧童在 A 处放牛,牧童家在 B 处, A , B 处距河岸 DC 的距离 AC 、 BD 的长分别为5km 和10km ,且 C , D 两点的距离为8km ,天黑前牧童从 A 处将牛牵到河边饮水再回家,那么牧童最少要走的距离为( ).A .15kmB .16kmC .17kmD .18km6.如图,点A ,B 是棱长为1的立方体的两个顶点,若将该立方体按图中所示展开,则在展开图中,A ,B 两点间的距离是( )AB C D7.如图,在Rt △ABC 中,∠ACB =90°,AE 为△ABC 的角平分线,且ED ⊥AB ,若AC =6,BC =8,则ED 的长( )A .2B .3C .4D .58.如图,已知△ABC 中,∠ABC=90°,AB=BC ,三角形的顶点在相互平行的三条直线l 1,l 2,l 3上,且l 1,l 2之间的距离为2,l 2,l 3之间的距离为3,则AC 的长是( )A .B .C .D .7二、填空题: 9.在Rt ABC 中90C ∠=︒,4AB =则222AB AC BC ++= .10.如果△ABC 的三边长a 、b 、c 满足关系式(a+2b ﹣60)2+|b ﹣18|+|c ﹣30|=0,则△ABC 的形状是 .11.将一根长为17cm 的筷子,置于内径为6cm 高为8cm 的圆柱形水杯中,设筷子露在杯子外面的长度为x cm ,则x 的取值范围是 .12.如图,等腰ABC 中,AB=AC ,AD 是底边上的高,若AB=5cm ,BC=6cm ,则AD= cm .13.Rt △ABC 中,∠B =90°,D 为BC 上的一点,若DC =DA =5,△ACD 的面积为10,则BD 的长为 .14.如图,在ABC 中,90301ABC A BC M N ︒︒∠=∠==,,,,分别是AB AC ,上的任意一点,求MN NB +的最小值为 .三、解答题:15.如图,小丽想知道自家门前小河的宽度,于是她测出如下数据:在河岸选取A点,A点对岸选取参照点C,测得∠A=30°;她沿河岸向前走了30米选取点B,并测得∠CBD=60°.根据数据能否测得小河宽度?若能请算出小河宽度,若不能请说明理由.16.某建筑物的金属支架如图所示,根据要求AB长为4m,C为AB的中点,点B到D的距离比立柱CD的长小0.5m,∠BCD=60°,求立柱CD长.17.在△ABC中,∠ACB=90°,P为BC中点,PD⊥AB于D,求证:AD2﹣BD2=AC2.18.一架方梯AB长25米,如图所示,斜靠在一面上:(1)若梯子底端离墙OB=7米,这个梯子的顶端距地面AO有多高?(2)在(1)的条件下,如果梯子的顶端下滑了4米,那么梯子的底端在水平方向滑动了BB´几米?19.如图,ABC 是等边三角形,D 是边AB 上一点,以CD 为边作E 等边CDE ,DE 交AC 于点F ,连接AE(1)求证:BCD ≌.ACE(2)若6BC =,2AE =求CD 的长.20.如图,已知在△ABC 中,∠B=90°,AB=8cm ,BC=6cm ,点P 开始从点A 开始沿△ABC 的边做逆时针运动,且速度为每秒1cm ,点Q 从点B 开始沿△ABC 的边做逆时针运动,且速度为每秒2cm ,他们同时出发,设运动时间我t 秒.(1)出发2秒后,求PQ 的长;(2)在运动过程中,△PQB 能形成等腰三角形吗?若能,则求出几秒后第一次形成等腰三角形;若不能,则说明理由;(3)从出发几秒后,线段PQ 第一次把直角三角形周长分成相等的两部分?参考答案:1.A 2.A 3.B 4.D 5.C 6.C 7.B 8.A9.3210.直角三角形11.7≤x ≤912.413.314.1.515.解:能测出小河的宽度.原因如下:过C 作CE ⊥AD 于点E∵∠CBD=60°∴∠ABC=120°∴A=∠ACB=∠ECB=30°∴BC=AB=30,BE=15.根据勾股定理得: 22CB BE -223015-3 .综上,小河宽度为3米.16.解:连接BD ,作OB ⊥CD 于点O∵在直角三角形BCO 中,∠BCD=60°,AB 长为4m ,C 为AB 的中点∴OC= 112BC = m ,33 m在直角三角形BOD 中,设CD 为x ,OD=DC-OC=x-1,BD=CD-0.5=x-0.5,3可得: 222(0.5)(1)3)x x -=-+解得:x=3.75答:CD 的长为3.75m .17.解:证明:连接AP ,如图所示AD 2﹣BD 2=AP 2﹣PD 2﹣(BP 2﹣PD 2)=AC 2+CP 2﹣PD 2﹣BP 2+PD 2=AC 2+CP 2﹣BP2 ∵P 为BC 中点∴CP=BP∴CP 2﹣BP 2=0∴AD 2﹣BD 2=AC 2.18.(1)解:在Rt △AOB 中,AB=25米,OB=7米,OA 2222257AB OB =-=-= 24(米). 答:梯子的顶端距地面24米;(2)解:在Rt △AOB 中,A'O=24﹣4=20米,OB' 2222'''2520A B OA =--= 15(米),BB'=15﹣7=8米.答:梯子的底端在水平方向滑动了8米.19.(1)证明:ABC 与CDE 是等边三角形 AC BC ∴=,CD CE =和60ACB DCE ∠=∠=BCD ACE ∴∠=∠BCD ∴≌()ACE SAS(2)解:如图,作DG BC ⊥于点GBCD ≌ACE2.BD AE ∴==60B ∠=1BG ∴= 3DG =615CG BC BG ∴=-=-=222827.CD CG DG ∴=+==20.(1)解:∵出发2秒后AP=2cm∴BP=8-2=6(cm ),BQ=2×2=4(cm )在Rt △PQB 中,由勾股定理得:22PB BQ +=13cm ),即出发2秒后,PQ 的长为13(2)解:在运动过程中,△PQB 能形成等腰三角形AP=t ,BP=AB-AP=8-t ,BQ=2t由PB=BQ 得:8-t=2t解得t=83(秒),即出发83秒后第一次形成等腰三角形. (3)解:在Rt △ABC 中,由勾股定理得:22AB BC +=10=10(cm );∵AP=t ,BP=AB-AP=8-t ,BQ=2t ,QC=6-2t ,线段PQ 第一次把直角三角形周长分成相等的两部分 ∴AC+AP+QC=PB+BQ∴10+t+(6-2t)=8-t+2t解得t=4(cm ),即从出发4秒后,线段PQ 第一次把直角三角形周长分成相等的两部分。
人教版八年级数学下册第十七章《勾股定理》单元测试题(含答案)一、选择题。
1.在△ABC中,AB=2,BC=5,AC=3,则()A.∠A=90°B.∠B=90°C.∠C=90°D.∠A=∠B2.如图,阴影部分表示以直角三角形各边为直径的三个半圆所组成的两个新月形,已知S1+S2=7,且AC+BC=8,则AB的长为( )A.6 B.223C.52D.783.在△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,下列结论中不正确的是()A.如果∠A﹣∠B=∠C,那么△ABC 是直角三角形B.如果∠A:∠B:∠C=1:2:3,那么△ABC 是直角三角形C.如果 a2:b2:c2=9:16:25,那么△ABC 是直角三角形D.如果 a2=b2﹣c2,那么△ABC 是直角三角形且∠A=90°4.如图,矩形纸片ABCD中,AB=4,BC=6,将ABC沿AC折叠,使点B落在点E 处,CE交AD于点F,则DF的长等于()A.53B.35C.73D.545.如图,已知圆柱底面的周长为4dm,圆柱的高为2dm,在圆柱的侧面上,过点A和点C 嵌有一圈金属丝,则这圈金属丝的周长最小为()A .42dmB .22dmC .25dmD .45dm6.如图,矩形ABCD 的对角线AC 与BD 交于点O ,过点O 作BD 的垂线分别交AD 、BC 于E 、F 两点,若43AC =,120AEO ∠=︒,则FC 的长度为( )A .1B .2C .2D .3 7.如图,在ABC ∆中,90,4,3C AC BC ︒∠===,将ABC ∆绕点A 逆时针旋转,使点C 落在线段AB 上的点E 处,点B 落在点D 处,则,B D 两点间的距离为( )A 10B .22C .3D 58.已知三角形的三边长为a 、b 、c ,如果22(5)|12|261690a b c c -+-+-+=,则△ABC是()A .以a 为斜边的直角三角形B .以b 为斜边的直角三角形C .以c 为斜边的直角三角形D .不是直角三角形9.在△ABC 中,AB=12cm AC=9cm BC=15cm ,则△ABC 的面积为( )A .108cm 2B .54cm 2C .180cm 2D .90cm 210.如图①是一个边长为()m n +的正方形,小颖将图①中的阴影部分拼成图②的形状,由图①和图②能验证的式子是( )A .22()()4m n m n m +--=B .()222()2m n m n mn +-+=C .222()2m n mn m n -+=+D .22()()m n m n m n +-=-二、填空。
人教版八年级数学下册《第十七章勾股定理》单元测试卷(带答案)(本试卷三个大题,24个小题。
满分100分,考试时间120分钟。
) 学校 班级 姓名 学号一、选择题(本大题共有10个小题,每小题3分,共30分)1. 如图,一次飓风灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是( )A .5米B .6米C .7米D .8米2 . 在ABC 中,∠A ,∠B ,∠C 的对边分别记为a ,b ,c ,则由下列条件:(1)A B C ∠∠=∠+;(2)123A B C ∠∠∠=::::;(3)222a c b =-;(4)::1:2:3a b c = 能判定ABC 为直角三角形的有( )A .1个B .2个C .3个D .4个3 . 开学之际,为了欢迎同学们,学校打算在主楼前的楼梯上铺地毯.如图,这是一段楼梯的侧面,它的高BC 是3米,斜边AB 是5米,则该段楼梯铺上地毯至少需要的长度为( )A .8米B .7米C .6米D .5米4. 如图,一圆柱高12cm ,底面半径为3cm ,一只蚂蚁从点A 沿圆柱表面爬到点B 处吃食物,要爬行的最短路程(π取3)是( )A.15cm B.21cm C.24cm D.28 cm5.如图,小巷左右两侧是竖直的墙壁,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.若梯子底端位置保持不动,将梯子斜靠在右墙时,顶端距离地面1.5米,则小巷的宽度为()A.2.7米 B.2.5米C.2米D.1.8米6 . 如图:一个长、宽、高分别为4cm、3cm、12cm的长方体盒子能容下的最长木棒长为()A.11cm B.12cm C.13cm D.14cm7 . 如图,在△ABC中,AB=10,AC=6,BC=8,将△ABC折叠,使点C落在AB边上的点E处,AD是折痕则△BDE的周长为()A.6 B.8 C.12 D.148. 如图,秋千静止时,踏板离地的垂直高度1m =BE ,将它往前推6m 至C 处时(即水平距离6m CD =),踏板离地的垂直高度4m CF =,它的绳索始终拉直,则绳索AC 的长是( )A .21m 2B .15m 2C .6mD .9m 2如图,“赵爽弦图”是吴国的赵爽创制的.以直角三角形的斜边为边长得到一个正方形,该正方形由4个全等的直角三角形再加上中间的小正方形组成,在一次游园活动中,数学小组制作了一面“赵爽弦图” 其中90ABC ∠=︒,AC=13cm ,AB=5cm ,则阴影部分的面积是( )2cm .A .169B .25C .49D .6410.勾股定理与黄金分割并称为几何学中的两大瑰宝勾股定理的发现可以称为是数学史上的里程碑,2000多年来,人们对它进行了大量的研究,至今已有几百种证法.利用图形中有关面积的等量关系可以证明勾股定理,利用如图①的直角三角形纸片拼成的②③④⑤四个图形中,可以证明勾股定理的图形有( )A .1个B .2个C .3个D .4个二、填空题(本大题共有8个小题,每小题3分,共24分)走“捷径”,仅仅少走了米.11.如图,某处有一块长方形草坪,有极少数人为了避开拐角AOB12.《九章算术》中有一道“引葭赴岸”问题:“仅有池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深,葭长各几何?”题意是:有一个池塘,其地面是边长为10尺的正方形,一棵芦苇AB生长在它的中央,高出水面部分BC为1尺,如果把芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B恰好碰到岸边的B',示意图如图,则水深为尺13 . 如图,数轴上的点C所表示的数为________14 . 如图,有一个圆柱体,它的高为20,底面周长为30,如果一只蚂蚁要从圆柱体下底面的A点沿圆柱表面爬到与A相对的上底面B点,则蚂蚁爬的最短路线长约为.15.荡秋千(图1)是中国古代北方少数民族创造的一种运动.有一天,赵彬在公园里游玩,如图2,他发现秋千静止时,踏板离地的垂直高度 0.5m DE =,将它往前推送 1.8m (水平距离 18m .=BC )时,秋千的踏板离地的垂直高度 1.1m BF CE ==,秋千的绳索始终拉得很直,则绳索AD 的长度是_______.如图,在ABC 中,按以下步骤作图:①分别以点B 和C 为圆心,以大于12BC 的长为半径作弧 两弧相交于点M 和N ,②作直线MN 交边AB 于点E ,若5,4AC BE ==,∠B=45°,则AB = .17. 如图,在ABC 中::3:4:5AB BC CA =,且周长为36cm ,点P 从点A 开始,沿AB 边向点B 以每秒1cm 的速度移动;点Q 从点B 开始,沿BC 边向点C 以每秒2cm 的速度移动.若同时出发,则过3秒时,BPQ 的面积为 2cm .18. 如图,在ABC 中90C ∠=︒,点D 为BC 边上一点,将ACD 沿AD 翻折得到AC D ',若点C '在AB 边上,68AC BC ==,则AD 的长为 .三、解答题(本大题共有6个小题,共46分)19.如图,四边形ABCD 中,∠B =90°,AB=3,BC=4,CD=13,AD=12,求四边形ABCD 的面积.20 . 如图,小丽发现,秋千静止时踏板离地面的垂直高度0.5m DE =,将它往前推送至点B ,测得秋千的踏板离地面的垂直高度 1.1m BF =,此时水平距离 1.8m BC EF ==,秋千的绳索始终拉的很直,求绳索AD 的长度.21 .如图,在5×5的方格纸中,每一个小正方形的边长都为1.(1)∠BCD 是不是直角?请说明理由.(2)求四边形ABCD 的面积.22.一架云梯长25米,如图,靠在一面墙上,梯子底端离墙7米.(1)这个梯子的顶端距离地面有多高?(2)如果梯子的顶端下滑了4米,那么梯子的底端在水平方向滑动了多少米?23 .如图,在矩形ABCD中,BC=4,AB=10,E为CD边上的一点,DE=7,动点P从点A出发,以每秒1个单位的速度沿着边AB向终点B运动,连接PE.设点P运动的时间为t秒.(1)求BE的长;(2)当t为多少秒时,BPE是直角三角形?24.课本再现如图1,有一个圆柱,它的高为12cm,底面圆的周长为18cm.在圆柱下底面的点A处有一只蚂蚁,它想吃到上底面与点A相对的点B处的食物,蚂蚁沿圆柱侧面爬行的最短路程是多少?方法探究对于立体图形中求最短路程问题,应把立体图形展开成平面图形,再确定A,B两点的位置依据“两点之间线段最短”,结合勾股定理,解决相应的问题.如图2,在圆柱的侧面展开图中点A,B对应的位置如图所示,利用勾股定理求出蚂蚁爬行的最短路程是______cm.方法应用(2)如图3,直四棱柱的上下底面是正方形,底面边长为3cm,高为10cm.在其侧面从点A开始,绕侧面两周,嵌入装饰彩条至点B停止.求彩条的最短长度.(1)如图4,圆柱形玻璃杯底面周长为30cm ,高为35cm ,杯底厚1cm .在玻璃杯外壁距杯口2cm 的点A 处有一只蚂蚁,蚂蚁相对面的内壁底部B 处有一滴蜂蜜,蚂蚁沿杯口爬入内壁去吃蜂蜜,求蚂蚁爬行的最短路径长.(玻璃杯的壁厚忽略不计)参考答案与解析一、选择题(本大题共有10个小题,每小题3分,共30分)1.【答案】D 【分析】由题意得:在直角三角形中,知道了两直角边,运用勾股定理即可求出斜边,从而得出这棵树折断之前的高度.【详解】∵垂直于地面的大树在离地面3米处折断,树的顶端落在离树杆底部4米处 ∴折断的部分长为2234+=5∴折断前高度为5+3=8(米).故选:D .2 .【答案】C 【分析】本题考查了勾股定理的逆定理,三角形内角和定理,熟练掌握勾股定理的逆定理,以及三角形内角和定理是解题的关键.利用勾股定理的逆定理,三角形内角和定理,进行计算逐一判断即可解答.【详解】解:(1)A B C ∠+∠=∠ 180A B C ∠+∠+∠=︒180C C ∴∠+∠=︒90C ∴∠=︒ABC ∴为直角三角形;(2)::1:2:3A B C ∠∠∠= 180A B C ∠+∠+∠=︒318090123C ∴∠=⨯︒=︒++ ABC ∴为直角三角形;(3)222a c b222a b c ∴+=ABC ∴为直角三角形;(4)::1:2:3a b c =∴设a k = 2b k = 3c k =(其中0)k ≠222a b c ∴+≠ABC ∴不是直角三角形故选:C3 .【答案】B 【分析】本题考查的是勾股定理的应用,以及利用平移可知地毯的长为AC BC +的和,解题的关键是能熟练掌握勾股定理以及数形结合的方法;先根据勾股定理求出AC 的长,进而可得出结论.【详解】解:ABC 是直角三角形 3m 5m BC AB ==,224m AC AB BC ∴-=∴如果在楼梯上铺地毯,那么至少需要地毯为7m AC BC +=故选:B .4.【答案】A 【分析】根据题意可把立体图形转化为平面图形进行求解,如图,然后根据勾股定理可进行求解.【详解】解:如图∵圆柱高12cm ,底面半径为3cm ∴2312cm,392BC AC ππ⨯==== ∴在Rt △ACB 中,由勾股定理得2215cm AB AC BC +=∴蚂蚁从点A 沿圆柱表面爬到点B 处吃食物,要爬行的最短路程为15cm ;故选A .5.【答案】A 【分析】先根据勾股定理求出梯子的长,进而根据勾股定理可得出小巷的宽度.【详解】由题意可得:2220.7 2.4 6.25AD =+=在Rt ABC 中90ABC ∠=︒ 1.5BC =米 222BC AB AC +=∴221.5 6.25AB +=∴2AB =±0AB >∴2AB =∴小巷的宽度为0.72 2.7+=(米).故选A .6 .【答案】C 【详解】解:∵侧面对角线BC 2=32+42=52∴CB =5(cm)∵AC =12(cm)∴AB 22125+(cm )∴空木箱能放的最大长度为13cm故选:C .7 .【答案】C 【分析】利用勾股定理求出AB=10,利用翻折不变性可得AE=AC=6,推出BE=4即可解决问题.【详解】在Rt △ABC 中∵AC =6,BC =8,∠C =90°∴AB 2268+10由翻折的性质可知:AE =AC =6,CD =DE∴BE =4∴△BDE 的周长=DE +BD +BE =CD +BD +E =BC +BE =8+4=12.故选:C .8.【答案】B 【分析】本题考查了勾股定理的应用,由勾股定理得出方程是解题的关键.设绳索AC 的长是x m ,则AB x =m ,求出(3)m AD AB BE DE x =+-=-,然后在Rt ACD △中,由勾股定理得出方程,解方程即可.【详解】解:设绳索AC 的长是x m ,则AB x =m4m DE FC == 1m =BE14(3)m AD AB BE DE x x ∴=+-=+-=-在Rt ACD △中,由勾股定理得:222AC AD CD =+即222(3)6x x =-+ 解得:152x = 即绳索AC 的长是15m 2 故选:B .9.【答案】C 【分析】本题考查了勾股定理的应用,解题的关键是掌握直角三角形中两直角边的平方和等于斜边的平方.在Rt ABC △中,先根据勾股定理求出BC 的长,然后用大正方形的面积减去4个小三角形的面积即可求出阴影部分的面积.【详解】解:90ABC ∠=︒ 13cm AC = 5cm AB =2212(cm)BC AC AB ∴- 则阴影部分的面积是()211313451249cm 2⨯-⨯⨯⨯= 故选:C .10.【答案】C 【分析】利用面积与恒等式,②中矩形面积等于两个直角三角形面积之和,都为ab ,无法证明勾股定理; ③中梯形面积等于两个直角边分别为a ,b 的直角三角形与一个直角边为c 的等腰直角三角形面积之和;④中大正方形的面积等于4个小直角三角形面积与一个小正方形面积之和;⑤中大正方形的面积等于4个小直角三角形面积与一个小正方形面积之和,即可求解.【详解】解:根据题意得:②中矩形面积等于两个直角三角形面积之和,都为ab ,无法证明勾股定理;③中梯形面积等于两个直角边分别为a ,b 的直角三角形与一个直角边为c 的等腰直角三角形面积之和,即 ()221112222a b ab c +=⨯+ 整理得:222+=a b c ,可以证得勾股定理;④中大正方形的面积等于4个小直角三角形面积与一个小正方形面积之和,即()22142c ab b a =⨯+- 整理得:222+=a b c ,可以证得勾股定理;⑤中大正方形的面积等于4个小直角三角形面积与一个小正方形面积之和,即()22142a b ab c +=⨯+ 整理得:222+=a b c ,可以证得勾股定理;所以可以证明勾股定理的图形有③④⑤,共3个.故选:C四、填空题(本大题共有8个小题,每小题3分,共24分)11.【答案】4【分析】利用勾股定理求出AB 的长即可得到答案.【详解】解:∵在AOB 中6m 8m 90OA OB AOB ===︒,,∠ ∴2210m AB OA OB +=∴4m OA OB AB +-=∴仅仅少走了4米故答案为:4.12.【答案】12【分析】此题主要考查了勾股定理的应用.我们可以将其转化为数学几何图形,如图所示,根据题意,可知EB '的长为10尺,则5B C '=尺,设出AB AB x '==尺,表示出水深AC ,根据勾股定理建立方程,求出的方程的解即可得到芦苇的长和水深.【详解】解:依题意画出图形,设芦苇长AB AB x ='=尺,则水深()1AC x =-尺因为10B E '=尺,所以5B C '=尺在Rt AB C '△中()22251x x +-=解之得13x =即水深12尺,芦苇长13尺.故答案为:12.13 .【答案】10AB 的长,再根据数形结合即可求解. 【详解】解:∵221310AB +=∴点C 所表示的数为10- 故答案为:10-14 .【答案】25【分析】要求最短路线,首先要把圆柱的侧面展开,利用两点之间线段最短,再利用勾股定理即可求解.【详解】解:将圆柱体侧面沿A 点所在直线展开,点A ,B 的最短距离为线段AB 的长由上图可知:30152AC == 20BC = ∴AB 为最短路径22201525+.则蚂蚁爬的最短路线长约为25.故答案为:25.15.【答案】3m 【分析】本题考查了勾股定理的应用,设绳索AD 的长度为m x ,则()0.6m AC x =-,在Rt ACB中,由勾股定理得出方程,解方程即可.由勾股定理得出方程是解题的关键.【详解】解:由题意得:90ACB ∠=︒在Rt ACB 中,由勾股定理得:222AC BC AB +=设绳索AD 的长度为m x ,则()()1.10.50.6m AC AD DE CE x x =+-=-+=-∴()2221.80.6x x =+-解得:3x =答:绳索AD 的长度是3m .16.【答案】 7 【分析】本题考查中垂线的性质,勾股定理.连接CE ,得到BE CE =,进而得到45BCE B ∠=∠=︒,推出90BEC ∠=︒,勾股定理求出AE 的长,再用AE BE +进行求解即可.【详解】解:连接CE ,由作图可知:MN 垂直平分BC∴BE CE =∴45BCE B ∠=∠=︒∴90BEC ∠=︒∴90AEC ∠=︒ ∴223AE AC CE -∴7AB AE BE =+=;故答案为:7.17.【答案】18 【分析】首先设AB 为3x cm ,BC 为4x cm ,AC 为5x cm ,利用方程求出三角形的三边,由勾股定理的逆定理得出三角形为直角三角形.再求出3秒后的,BP ,BQ 的长,利用三角形的面积公式计算求解.【详解】解:设AB 为3x cm ,BC 为4x cm ,AC 为5x cm∵周长为36cm则AB +BC +AC =36cm∴3x +4x +5x =36解得x =3∴AB =9cm ,BC =12cm ,AC =15cm∵AB 2+BC 2=AC 2∴△ABC 是直角三角形过3秒时,BP =9﹣3×1=6(cm ),BQ =2×3=6(cm )∴S △PBQ =12BP •BQ =12×(9﹣3)×6=18(cm 2).故答案为:18.18.【答案】35【分析】本题考查了翻折变换的性质,勾股定理等知识;熟练掌握翻折变换的性质,由勾股定理得出方程是解题的关键.由勾股定理求出10AB =,由折叠的性质得出CD DC '= 906C AC D AC AC ''∠=∠=︒==, 得出490BC AB AC BC D '''=-=∠=︒, 设BD x =,则8CD DC x '==-,在Rt BDC '中,由勾股定理得出方程,可求BD 长,由勾股定理可求AD 的长.【详解】解:由折叠可知:CD DC '= 906C AC D AC AC ''∠=∠=︒==,在Rt ABC △中,由勾股定理得:2210AB AC BC +=∴490BC AB AC BC D '''=-=∠=︒,设BD x =,则8CD DC x '==-,在Rt BDC '中,由勾股定理得:()22248x x =+-∴5x =∴53BD CD ==, ∴2236935AD AC CD =+=+=故答案为:35三、解答题(本大题共有6个小题,共46分)19.【答案】36【分析】连接AC ,首先根据勾股定理求出5AC =,然后根据勾股定理的逆定理得到ACD 是直角三角形,最后根据三角形面积公式求解即可.【详解】解:连接AC ,在ABC 中∵∠B =90° 3AB = 4BC = ∴2222435AC AB BC ++=1143622ABCS AB BC =⋅=⨯⨯= 在ACD 中 ∵13CD = 12AD = 5AC =∴222AD AC CD +=∴ACD 是直角三角形 ∴115123022ACD S AC AD =⋅=⨯⨯=. ∴四边形ABCD 的面积63036ABC ACD S S =+=+=.20.【答案】3m 【分析】设绳索AD 的长度为m x ,则(0.6)m AC x =-,在Rt ABC △中,由勾股定理得出方程,解方程即可.【详解】解:设秋千的绳索AD 长为m x ,则AB 为m x∵四边形BCEF 是矩形1.1m BF CE ∴==0.5m DE =0.6m CD ∴=则AC 为()0.6m x -在Rt ABC △中,由勾股定理得:222AC BC AB +=,即:()2220.6 1.8x x -+=解得:3x =∴绳索AD 的长度为3m .21 .【答案】(1)∠BCD =90°,理由见解析;(2)14.5.【分析】(1)连接BD ,由于每一个小正方形的边长都为1,根据勾股定理可分别求出△BCD 的三边长,根据勾股定理的逆定理即可判断出△BCD 的形状;(2)BCE ABH ADI DCFAHEJ DFJI ABCD S S S S S S S =-----正方形正方形四边形. 【详解】解:(1)∠BCD 是直角,理由如下:连接BD∵BC 2242+5CD 2221+5BD 2243+∴BC 2+CD 2=BD 2∴△BCD 为直角(2)S 四边形ABCD =S 正方形AHEJ -S △BCE -S △ABH -S △ADI -S △DCF -S 正方形DFJI所以S 四边形ABCD =5×5-12×4×2-12×2×1-1×1-12×4×1-12×5×1 =25-4-1-1-2-52=292.22.【答案】(1)这个梯子的顶端距离地面有24米高(2)梯子的底端在水平方向滑动了8米【分析】本题考查勾股定理的实际应用.(1)在Rt AOC 中,直接利用勾股定理进行求解即可;(2)在Rt BOD 中,利用勾股定理求出OB 的长,用OB 的长减去OA 的长,求解即可;掌握勾股定理,是解题的关键.【详解】(1)解:在Rt AOC 中25m AC = 7m AO = ∴2224m CO AC AO -=;答:这个梯子的顶端距离地面有24米高;(2)∵24420m OD CO CD =-=-=在Rt BOD 中25m BD AC == ∴2215m BO BD OD -=∴8m AB BO AO =-=.答:梯子的底端在水平方向滑动了8米.23 .【答案】(1)5;(2)当t =7或53秒时,△BPE 为直角三角形.【分析】(1)根据勾股定理计算即可; (2)分∠BPE =90°、∠BEP =90°两种情况,根据勾股定理计算.【详解】解:(1)由题意知,CD =AB =10,DE =7,BC =4CE =CD -DE =10﹣7=3在Rt △CBE 中,BE 2222435BC CE +=+;(2)①当以P 为直角顶点时,即∠BPE =90°AP =10﹣3=7,则t =7÷1=7(秒)②当以E 为直角顶点时,即∠BEP =90°,由勾股定理得BE 2+PE 2=BP 2设AP =t10BP t =- 2224(7)PE t =+-即52+42+(7﹣t )2=(10﹣t )2解得,t =53当t =7或53秒时,△BPE 为直角三角形. 24.【答案】(1)15;(2)26cm (3)39cm【分析】本题考查勾股定理、几何体的展开图.根据题意得出蚂蚁沿圆柱侧面爬行的最短路程是指展开后线段AB 的长求出AC ,BC ,根据勾股定理求出AB 即可.根据绕两圈到B ,则展开后相当于求出Rt ABC △的斜边长,并且24cm,10cm AC BC == 根据勾股定理求出即可.(3)将杯子侧面展开,建立A 关于MN 的对称点A ',根据两点之间线段最短可知A B '的长度即为所求.【详解】解:(1)根据题意得出:蚂蚁沿圆柱侧面爬行的最短路程是指展开后线段AB 的长 由题意得:9cm,12cm AC BC ==.在Rt ABC △中,由勾股定理得:()222212915cm AB AC BC ++所以,蚂蚁沿圆柱侧面爬行的最短路程是15cm故答案为:15.(2)如图所示∵从点A 开始经过4个侧面缠绕2圈到达点B∴展开后()3cm 824cm 10cm,AC BC =⨯==, 由勾股定理得:2222241026cm AB AC BC ++所以彩条的最短长度是26cm .(3)展开玻璃杯的侧面,如图作点A 关于MN 的对称点A ',连接A B ',作BC A A '⊥于点C ,则 15BC = 2A M AM '== 35134CM =-= 36CA CM A M ''=+=. 在Rt A BC '中,2222153639cm A B BC CA ''=++= 所以蚂蚁爬行的最短路径长为39cm.。
人教版八年级下册第十七章勾股定理复习题(含答案)一、选择题1.如图,在△ABC中,∠C=90°,∠A=30°,AB=12,则AC=(C)A.6 B.62C.6 3 D.122.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8 m处,发现此时绳子末端距离地面2 m,则旗杆的高度为(滑轮上方的部分忽略不计)(D)A.12 mB.13 mC.16 mD.17 m3.在△ABC中,AB=6,AC=8,BC=10,则该三角形为(B)A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形4.在△ABC中,∠A,∠B,∠C的对边分别为a,b,c且a2-b2=c2,则下列说法正确的是(C)A.∠C是直角B.∠B是直角C.∠A是直角D.∠A是锐角5.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=5,则BC的长为(D)A.3-1B.3+1C.5-1D.5+16.如果将长为6 cm,宽为5 cm的长方形纸片折叠一次,那么这条折痕的长不可能是(A)A.8 cm B.6 cmC.5.5 cm D.1 cm7.如图,在单位正方形组成的网格图中标有AB,CD,EF,GH四条线段,其中能构成一个直角三角形三边的线段是(B)A.CD,EF,GH B.AB,EF,GHC.AB,CD,EF D.GH,AB,CD8.(2019·信阳罗山县模拟)如图,在△ABC中,点M是AC边上一个动点.若AB=AC =10,BC=12,则BM的最小值为(B)A.8 B.9.6 C.10 D.4 5二、填空题9.如图,阴影部分是一个正方形,则此正方形的面积为64cm2.10.你听说过亡羊补牢的故事吧.为了防止羊的再次丢失,牧羊人要在宽0.9 m,长1.2 m的长方形栅栏门的相对角顶点间加固一条木板,则这条木板至少需1.5__m长.11.如图,O为数轴原点,A,B两点分别对应-3,3,作腰长为4的等腰△ABC,连接OC,以O为圆心,CO长为半径画弧交数轴于点M,则点M12.“同旁内角互补”的逆命题是互补的两个角是同旁内角,它是假命题.13.已知一个直角三角形的两边长分别为6和8,则第三边长的平方是100或28.14.CD是△ABC的边AB上的高,若CD=3,AD=1,AB=2AC,则BC15.若一个三角形的周长为12 3 cm,一边长为3 3 cm,其他两边之差为 3 cm,则这个三角形是直角三角形.16.(2019·枣庄)把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=2,则CD17.(2019·邵阳)公元3世纪初,中国古代数学家赵爽注《周髀算经》时,创造了“赵爽弦图”.如图,设勾a=6,弦c=10,则小正方形ABCD的面积是4.三、解答题18.如图,在四边形ABCD中,∠B=90°,CD⊥AD,AD2+CD2=2AB2.求证:AB=BC.证明:连接AC.∵在△ABC中,∠B=90°,∴AB2+BC2=AC2.∵CD⊥AD,∴∠ADC=90°.∴在△ACD中,AD2+CD2=AC2.∵AD2+CD2=2AB2,∴AB2+BC2=2AB2.∴BC2=AB2.∵AB>0,BC>0,∴AB=BC.19.(2019·河北)勘测队按实际需要构建了平面直角坐标系,并标示了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B两地.(1)A,B间的距离为20km;(2)计划修一条从C到铁路AB的最短公路l,并在l上建一个维修站D,使D到A,C 的距离相等,则C,D间的距离为13km.20.如图,有一块空白地,∠ADC=90°,CD=6 m,AD=8 m,AB=26 m,BC=24 m.试求这块空白地的面积.解:连接AC.∵∠ADC=90°,∴△ADC是直角三角形.∴AD2+CD2=AC2,即82+62=AC2.解得AC=10.又∵AC2+CB2=102+242=262=AB2,∴△ACB是直角三角形,∠ACB=90°.∴S四边形ABCD=S Rt△ACB-S Rt△ACD=12×10×24-12×6×8=96(m2).故这块空白地的面积为96 m2.。
专题复习提升训练卷《勾股定理》单元训练人教版八年级数学下册一、选择题1、下列说法正确的是( )A. 若a b c ,,是ABC ∆的三边,则222a b c +=B. 若a b c ,,是Rt ABC ∆的三边,则222a b c +=C. 若 a b c ,,是Rt ABC ∆的三边,90A ∠=︒,则222a b c +=D. 若 a b c ,,是Rt ABC ∆的三边,90C ∠=︒,则222a b c +=2、下列各组数据中的三个数,可作为三边长构成直角三角形的是()A.1、2、3B.2223,4,53、如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )A. 7,24,25B. 312,412,512C. 3,4,5D. 4,712,8124、如图,在Rt ABC △中,90ACB ∠=︒,CD AB ⊥于点D ,已知3AC =,4BC =,则BD =()A .125B .95CD .1655、如图,在四边形ABCD 中,2AB BC ==,DC =AD =,90ABC ∠=︒,则四边形ABCD 的面积是().A .6B .8C .10D .126、如图,梯子AB 斜靠在墙面上,AC BC AC BC ⊥=,,当梯子的顶端A 沿AC 方向下滑x 米时,梯足B 沿CB 方向滑动y 米,则x 与y 的大小关系是( )y C .x y < D .不确定7、已知等边三角形的边长为3,点P 为等边三角形内任意一点,则点P 到三边的距离之和为( )A . 32B . 332 C . 32D . 不能确定8、七巧板是我国祖先的一项卓越创造.下列四幅图中有三幅是小明用如图所示的七巧板拼成的,则不是小明拼成的那副图是( )A. B. C. D.9、△ABC 中,AB=15,AC=13,高AD=12,则△ABC 的周长为( )A. 42B. 32C. 42或32D. 37或3310、如图,等边ABC 的边长为8.P ,Q 分别是边,AC BC 上的点,连结,AQ BP ,交于点O .以下结论:①若AP CQ =,则BAP ACQ ≌;②若AQ BP =,则120AOB ∠=︒;③若,7AP CQ BP ==,则5PC =;④若点P 和点Q 分别从点A 和点B 同时出发,以相同的速度向点C运动(到达点C 就停止),则点O经过的路径长为.其中正确的()A .①②③B .①④C .①②D .①③④二、填空题11、观察以下几组勾股数,并寻找规律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;…,请你写出具有以上规律的第⑥组勾股数:__________.12、如果梯子的底端距离墙根的水平距离是9m ,那么15m 长的梯子可以达到的高度为13、如图,一根高8米的旗杆被风吹断倒地,旗杆顶端A 触地处到旗杆底部B 的距离为6米,则折断点C到旗杆底部B 的距离为14、已知△ABC 的三边a,b,c 满足(a-5)2+(b-12)2+|c-13|=0,则△ABC 是__________三角形.15、如图是一棵勾股树,它是由正方形和直角三角形排成的,若正方形A ,B ,C ,D 的边长分别是4,5,3,4,则最大正方形E 的面积是___.16、若ABC ∆的三边a b c ,,满足条件:222338102426a b c a b c +++=++,则这个三角形最长边上的高为17、如图,长方体的底面边长分别为1cm 和2cm ,高为4cm ,点P 在边BC 上,且BP=BC .如果用一根细线从点A 开始经过3个侧面缠绕一圈到达点P ,那么所用细线最短需要 cm.18、如图,P 是等边ABC ∆中的一个点,2,4PA PB PC ===,则ABC ∆的边长是.19、如图,在Rt △ABC 中,∠C=30°,以直角顶点A 为圆心,AB 长为半径画弧交BC 于点D ,过D 作DE ⊥AC于点E .若DE=a ,则△ABC 的周长用含a 的代数式表示为________________.CBA PCBA20、已知ABC ∆是边长为1的等腰直角三角形,以Rt ABC ∆的斜边AC 为直角边,画第二个等腰Rt ACD ∆,再以Rt ACD ∆的斜边AD 为直角边,画第三个等腰Rt ADE ∆,……,依此类推,第n 个等腰直角三角形的斜边长是 .三、解答题21、如图,在吴中区上方山动物园里有两只猴子在一棵树CD 上的点B 处,且5BC m =,它们都要到池塘A处吃东西,其中一只猴子甲沿树爬至C 再沿CA 走到离树24m 处的池塘A 处,另一只猴子乙先爬到树顶D 处后再沿缆绳DA 线段滑到A 处.已知猴子甲所经过的路程比猴子乙所经过的路程多2m ,设BD 为xm .(1)请用含有x 的整式表示线段AD 的长为 m ;(2)求这棵树高有多少米?22、如图,△ABC ≌△DBE ,∠CBE =60°,∠DCB =30°.求证:DC 2+BE 2=AC 2.23、如图,△ABC 中,AB=BC ,BE ⊥AC 于点E ,AD ⊥BC 于点D ,∠BAD=45°,AD 与BE 交于点F ,连接CF .(1)求证:BF=2AE ;(2)若,求AD 的长.24、如图,在ABC ∆中,90ACB ∠=︒,AC BC =,P 是ABC ∆内的一点,且123PB PC PA ===,,,求BPC ∠的度数.GFED CBA25、如图,在ABC ∆中,21AC =,13BC =,D 是AC 边上一点,12BD =,16AD =,(1)若E 是边AB 的中点,求线段DE 的长;(2)若E 是边AB 上的动点,求线段DE 的最小值.26、如图,长方形纸片中,,将纸片折叠,使顶点落在边上的 点处,折痕的一端点在边上. (1)如图(1),当折痕的另一端在边上且AE=4时,求AF 的长 (2)如图(2),当折痕的另一端在边上且BG=10时,①求证:EF=EG . ②求AF 的长. (3) 如图(3),当折痕的另一端在边上,B 点的对应点E 在长方形内部,E 到AD 的距离为2cm,且BG=10时,求AF 的长.(图1) (图2) (图3)ABCD 8AB =B AD E G BC F AB F AD F AD GFED C B A HAE F BGC D ABG CDEFH专题复习提升训练卷 《勾股定理》单元训练 人教版八年级数学下册一、选择题1、下列说法正确的是( )A. 若a b c ,,是ABC ∆的三边,则222a b c +=B. 若a b c ,,是Rt ABC ∆的三边,则222a b c +=C. 若 a b c ,,是Rt ABC ∆的三边,90A ∠=︒,则222a b c +=D. 若 a b c ,,是Rt ABC ∆的三边,90C ∠=︒,则222a b c +=【解析】在直角三角形中,才可应用勾股定理.其次,要注意边和角的对应.故选D.2、下列各组数据中的三个数,可作为三边长构成直角三角形的是( )A.1、2、3B.2223,4,5【解析】因为222+=,故选C.3、如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是()A. 7,24,25B. 312,412,512C. 3,4,5D. 4,712,812【解析】 按照勾股数的规律计算.选B.4、如图,在Rt ABC △中,90ACB ∠=︒,CD AB ⊥于点D ,已知3AC =,4BC =,则BD =()A .125B .95C D .165解:∵90ACB ∠=︒,3AC =,4BC =,∴AB 5===,设BD=x ,AD=5-x ,∵CD AB ⊥,∴∠CDA=∠CDB=90°,2222AC AD BC BD -=-,22223(5)4x x --=-, 解得,x=165,故选D5、如图,在四边形ABCD 中,2AB BC ==,DC =AD =,90ABC ∠=︒,则四边形ABCD 的面积是().A .6B .8C .10D .12解:连接AC ,如图:∵90ABC ∠=︒,2AB BC ==,∴AC =;∵在ADC 中,222226AC DC +=+=,226AD ==,∴222A C D C A D +=,ADC 是直角三角形,12222S ABC =⨯⨯= ,162S ADC =⨯= ,268S ABCD S ABC S ADC =+=+= 四边形,故选B6、如图,梯子AB 斜靠在墙面上,AC BC AC BC ⊥=,,当梯子的顶端A 沿AC 方向下滑x 米时,梯足B 沿CB 方向滑动y 米,则x 与y 的大小关系是( )y C .x y < D .不确定【解析】设AC=BC=a ,=()2220a x y x y -=+>,x y>选B.7、已知等边三角形的边长为3,点P 为等边三角形内任意一点,则点P 到三边的距离之和为( )A . 32B . 332 C . 32D . 不能确定【解析】如解图,△ABC 是等边三角形,AB =3,点P 是三角形内任意一点,过点P 分别向三边AB ,BC ,CA 作垂线,垂足依次为D ,E ,F ,过点A 作AH ⊥BC 于点H ,则BH =32,AH =AB 2-BH 2=332.连接PA ,PB ,PC ,则S △PAB +S △PBC +S △PCA =S △ABC ,∴12AB ·PD +12BC ·PE +12CA ·PF =12BC ·AH ,∴PD +PE +PF =AH =332. 故选B 8、七巧板是我国祖先的一项卓越创造.下列四幅图中有三幅是小明用如图所示的七巧板拼成的,则不是小明拼成的那副图是( )A. B. C. D.【解析】观察可得,选项C 中的图形与原图中的④、⑦图形不符,故选C.9、△ABC 中,AB=15,AC=13,高AD=12,则△ABC 的周长为( )A. 42B. 32C. 42或32D. 37或33【详解】情况一:如下图,△ABC 是锐角三角形,∵AD 是高,∴AD⊥BC∵AB=15,AD=12,∴在Rt△ABD 中,BD=9∵AC=13,AD=12,∴在Rt△ACD 中,DC=5,∴△ABC 的周长为:15+12+9+5=42情况二:如下图,△ABC 是钝角三角形,在Rt△ADC 中,AD=12,AC=13,∴DC=5在Rt△ABD 中,AD=12,AB=15,∴DB=9,∴BC=4,∴△ABC 的周长为:15+13+4=32故选:C10、如图,等边ABC 的边长为8.P ,Q 分别是边,AC BC 上的点,连结,AQ BP ,交于点O .以下结论:①若AP CQ =,则BAP ACQ ≌;②若AQ BP =,则120AOB ∠=︒;③若,7AP CQ BP ==,则5PC =;④若点P 和点Q 分别从点A 和点B 同时出发,以相同的速度向点C运动(到达点C 就停止),则点O经过的路径长为.其中正确的()A .①②③B .①④C .①②D .①③④解:①在三角形△BAP 和△ACQ 中:AP CQBAC C AB AC =⎧⎪∠=∠⎨⎪=⎩,则△BAP ≌△ACQ (SAS) ;①正确;②如图1,题中AQ=BP ,存在两种情况:在1P 的位置,∠AOB=120°,在2P 的位置,∠AOB 的大小无法确定;②错误;③本问与AP=CQ 这个条件无关,如图, P 还是会有两个位置即:1P 、2P ,当在1P 时,作BE ⊥AC 于E 点,则E 为AC 中点,∵AB=8,AE=12AC ,∴BE ==,又BP=7,∴1PE ==,∴CP=CE+PE=5,当在2P 时,同理解△BCP ,得CP= CE-PE=3;故③错;④由题可得:AP=BQ ,由对称性可得O 的运动轨迹为△ABCAB 则∵AB=8,∴BC=AB=8,则AB=∴运动轨迹路径长为④正确;∴正确的为①④;故选B二、填空题11、观察以下几组勾股数,并寻找规律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;…,请你写出具有以上规律的第⑥组勾股数:__________.【解答】由题意得,每组第一个数是奇数,且逐步递增2,第二、第三个数相差为一故第⑥组的第一个数是13设第二个数为x ,第三个数为x+1;根据勾股定理得()22213+1x x =+解得84x =,则第⑥组勾股数:13,84,85。
第十七章勾股定理一、选择题1.如图,长方体的底面是边长为1的正方形,长方体的高为3,如果用一根无弹力的细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短的是()A. 3B. 4C. 5D. 82.如图,池塘边有两点A、B,点C是与BA方向成直角的AC方向上一点,测得CB=60 m,AC =20 m,则A,B两点间的距离是()A. 200 mB. 20mC. 40mD. 50 m3.铁路部门规定旅客免费携带行李箱的长、宽、高之和不超过160 cm,某厂家生产符合该规定的行李箱,已知行李箱的高为30 cm,长与宽的比为3∶2,则该行李箱的长的最大值为()A. 26 cmB. 52 cmC. 78 cmD. 104 cm4.如图,数轴上点A,B分别对应1,2,过点B作PQ⊥AB,以点B为圆心,AB长为半径画弧,交PQ于点C,以原点O为圆心,OC长为半径画弧,交数轴于点M,则点M对应的数是()A.B.C.D.5.下列命题中是假命题的是()A.△ABC中,若∠B=∠C-∠A,则△ABC是直角三角形B.△ABC中,若a2=(b+c)(b-c),则△ABC是直角三角形C.△ABC中,若∠A∶∠B∶∠C=3∶4∶5,则△ABC是直角三角形D.△ABC中,若a∶b∶c=5∶4∶3,则△ABC是直角三角形6.如图,A在O正北方向,B在O正东方向,且A、B到点O的距离相等,甲从A出发,以每小时60千米的速度朝正东方向行驶,乙从B出发,以每小时40千米的速度朝正北方向行驶,1小时后,位于点O处的观察员发现甲乙两人之间的夹角为45°,此时甲乙两人相距()A. 80千米B. 50千米C. 100千米D. 100千米7.如图,长方体的底面边长为1 cm和3 cm,高为6 cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达B,那么所用细线最短需要()A. 12 cmB. 11 cmC. 10 cmD. 9 cm8.如图,△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为()A. 5B. 6C. 8D. 10二、填空题9.已知两条线段的长为3 cm和4 cm,当第三条线段的长为__________ cm时,这三条线段能组成一个直角三角形.10.如图,在Rt△ABC中,∠ACB=90°,AD平分∠BAC与BC相交于点D,若BD=4,CD=2,则AC的长是________.11.如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为________.12.在△ABC中,∠C=90°,AC=6,BC=8,点D是斜边AB的中点,连接CD,则CD长为________.13.如图1,有一个面积为1的正方形,经过一次“生长”后,在它的左右肩上生出两个小正方形,如图2,其中,三个正方形围成的三角形是直角三角形.再经过一次“生长”后,变成图3;“生长”10次后,如果继续“生长”下去,它将变得更加“枝繁叶茂”.随着不断地“生长”,形成的图形中所有正方形的面积和也随之变化.若生长n次后,变成的图中所有正方形的面积用Sn表示,求回答:(1)S0=________,S1=________,S2=________,S3=________;(2)S0+S1+S2+…+S10=________.14.如图,四边形ABCD中,AB⊥AD于A,AB=8,AD=8,BC=7,CD=25,则四边形ABCD的面积为__________.15.如图,∠A=∠OCD=90°,OA=2,OD=,AB=BC=CD=1,则△OBC形状____________.16.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点D在AB上,AD=AC,AF⊥CD交CD于点E,交CB于点F,则CF的长是________.三、解答题17.如图,把一块等腰直角三角形零件(△ABC,其中∠ACB=90°),放置在一凹槽内,三个顶点A,B,C分别落在凹槽内壁上,已知∠ADE=∠BED=90°,测得AD=5 cm,BE=7 cm,求该三角形零件的面积.18.如图,在边长为1的小正方形组成的网格中,四边形ABCD的四个顶点都在格点上,请按要求完成下列各题.(1)线段AB的长为________,BC的长为________,CD的长为________;(2)连接AC,通过计算说明△ACD和△ABC是什么特殊三角形.19.为了丰富少年儿童的业余生活,某社区要在如图中的AB所在的直线上建一图书室,本社区有两所学校所在的位置在点C和点D处,CA⊥AB于A,DB⊥AB于B.已知AB=2.5 km,CA=1.5 km,DB=1.0 km,试问:图书室E应该建在距点A多少km处,才能使它到两所学校的距离相等?20.如图,在△ABC中,D为BC边上的一点,已知AB=13,AD=12,AC=15,BD=5,求CD 的长.21.已知a、b、c是△ABC的三边,且满足(a+4)∶(b+3)∶(c+8)=3∶2∶4,且a+b+c=12,请你探索△ABC的形状.答案解析1.【答案】C【解析】如图所示,AB ==5.故选C.2.【答案】C【解析】∵CB=60 m,AC=20 m,AC⊥AB,∴AB==40(m).故选C.3.【答案】C【解析】设长为3a cm,宽为2a cm.由题意30+3a+2a≤160,解得a≤26,∴a的最大值为26,3a=78,∴该行李箱的长的最大值为78 cm,故选C.4.【答案】B【解析】如图所示:连接OC,由题意可得:OB=2,BC=1,则OC==,故点M对应的数是.故选B.5.【答案】C【解析】A.∠B+∠A=∠C,所以∠C=90°,所以△ABC是直角三角形,故本选项不符合题意.B.若a2=(b+c)(b-c),所以a2+c2=b2,所以△ABC是直角三角形,故本选项不符合题意.C.若∠A∶∠B∶∠C=3∶4∶5,最大角为75°,故本选项符合题意.D.若a∶b∶c=5∶4∶3,则△ABC是直角三角形,故本选项不符合题意.故选C.6.【答案】D【解析】由题意可得:AB′=BD=40千米,AC=60千米,将△OBD顺时针旋转270°,则BO与AO重合,在△COD和△B′OC中∵∴△COD≌△B′OC(SAS),则B′C=DC=40+60=100(千米),故选D.7.【答案】C【解析】将长方体展开,连接A、B′,则AA′=1+3+1+3=8(cm),A′B′=6 cm,根据两点之间线段最短,AB′==10 cm.故选C.8.【答案】C【解析】∵AB=AC,AD是∠BAC的平分线,∴AD⊥BC,BD=CD,∵AB=5,AD=3,∴BD==4,∴BC=2BD=8,故选C.9.【答案】5或【解析】当第三边是直角边时,根据勾股定理,第三边的长==5,三角形的边长分别为3,4,5能构成三角形;当第三边是斜边时,根据勾股定理,第三边的长==,三角形的边长分别为3,,亦能构成三角形;综合以上两种情况,第三边的长应为5或,10.【答案】2【解析】作DE⊥AB于E,∵AD是∠BAC的平分线,∠ACB=90°,DE⊥AB,∴DE=DC=3,∴AC=AE,由勾股定理,得BE==2,设AC=AE=x,由勾股定理,得x2+62=(x+2)2,解得x=2.11.【答案】14【解析】∵AB=AC,AD平分∠BAC,BC=8,∴AD⊥BC,CD=BD=BC=4,∵点E为AC的中点,∴DE=CE=AC=5,∴△CDE的周长=CD+DE+CE=4+5+5=14.12.【答案】5【解析】∵∠C=90°,AC=6,BC=8,∴AB==10,∵点D是斜边AB的中点,∴DC=AB=5.13.【答案】(1)1234(2)66【解析】(1)∵正方形的面积为1,∴第一次生长后长出的三角形面积为SA+SB=1;第二次生长后长出的三角形面积为SD+SC+SA+SB=1;第三次生长后长出的三角形面积为1;第四次生长后长出的三角形面积为1;∴S0=1,S1=2,S2=3,S3=4.故答案为1,2,3,4;(2)根据(1)中的规律可知,S0+S1+S2+…+S10=1+2+3+4+5+6+7+8+9+10+11=66.故答案为66.14.【答案】84+96【解析】连接BD,∵AB⊥AD,∴∠A=90°,∴BD=24,∵BC2+BD2=72+242=625=252=CD2,∴△CBD为直角三角形,∴S四边形ABCD=S△ABD+S△BCD=×8×8+×24×7=96+84.15.【答案】直角三角形【解析】∵∠A=∠OCD=90°,OA=2,OD=,AB=BC=CD=1,∴在Rt△BAO中,由勾股定理,得OB==,在Rt△DCO中,由勾股定理,得OC==,∴OB2+BC2=OC2=6,∴∠OBC=90°.∴△OBC是直角三角形.16.【答案】1.5【解析】连接DF,如图所示:∵在Rt△ABC中,∠ACB=90°,AC=3,BC=4,∴AB==5,∵AD=AC=3,AF⊥CD,∴CE=DE,BD=AB-AD=2,∴CF=DF,在△ADF和△ACF中,∴△ADF≌△ACF(SSS),∴∠ADF=∠ACF=90°,∴∠BDF=90°,设CF=DF=x,则BF=4-x,在Rt△BDF中,由勾股定理,得DF2+BD2=BF2,即x2+22=(4-x)2,解得x=1.5;∴CF=1.5.17.【答案】解∵△ABC是等腰直角三角形,∴AC=BC,∠ACB=90°,∴∠ACD+∠BCE=90°,∵∠ADC=90°,∴∠ACD+∠DAC=90°,∴∠DAC=∠BCE,在△ADC和△CEB中,∴△ADC≌△CEB(AAS),∴DC=BE=7 cm,∴AC===(cm),∴BC=2,∴该零件的面积为××=37(cm2).【解析】首先证明△ADC≌△CEB,根据全等三角形的性质可得DC=BE=7 cm,再利用勾股定理计算出AC长,然后利用三角形的面积公式计算出该零件的面积即可.18.【答案】解(1)由勾股定理得AB==,BC==5,CD==2;(2)∵AC==2,AD==2,∴AC=AD,∴△ACD是等腰三角形;∵AB2+AC2=5+20=25=BC2,∴△ABC是直角三角形.【解析】(1)把线段AB、BC、CD、放在一个直角三角形中利用勾股定理计算即可;(2)根据勾股定理的逆定理求出AC=AD,即可判断△ACD的形状;由勾股定理的逆定理得出△ABC是直角三角形.19.【答案】解由题意可得:设AE=x km,则EB=(2.5-x) km,∵AC2+AE2=EC2,BE2+DB2=ED2,EC=DE,∴AC2+AE2=BE2+DB2,∴1.52+x2=(2.5-x)2+12,解得x=1.答:图书室E应该建在距点A1 km处,才能使它到两所学校的距离相等.【解析】根据题意表示出AE,EB的长,进而利用勾股定理求出即可.20.【答案】解∵AB=13,AD=12,BD=5,∴AB2=AD2+BD2,∴△ADB是直角三角形,∠ADB=90°,∴△ADC是直角三角形,在Rt△ADC中,CD==9.【解析】根据勾股定理的逆定理可判断出△ADB为直角三角形,即∠ADB=90°,在Rt△ADC中利用勾股定理可得出CD的长度.21.【答案】解令a+4=3k,b+3=2k,c+8=4k,∴a=3k-4,b=2k-3,c=4k-8.又∵a+b+c=12,∴(3k-4)+(2k-3)+(4k-8)=12,∴k=3.∴a=5,b=3,c=4.∵b2+c2=a2,∴△ABC是直角三角形.【解析】根据已知比:令a+4=3k,b+3=2k,c+8=4k,代入a+b+c=12中求k的值,再计算三角形三边的长,根据勾股定理的逆定理得:△ABC是直角三角形.。
人教版八年级数学下册第十七章《勾股定理》单元练习题(含答案)一、单选题1.如图,25和169分别是两个正方形的面积,字母B 所代表的正方形的面积是( )A .12B .13C .144D .1942.下列说法正确的是( )A .平方根和立方根都等于本身的数是0和1B .一个直角三角形的两边分别为3和4,则第三边为5C .-2是4的平方根D .两个无理数的和一定是无理数3.下列说法正确的是( )A .若 a 、b 、c 是△ABC 的三边,则a 2+b 2=c 2B .若 a 、b 、c 是Rt△ABC 的三边,则a 2+b 2=c 2C .若 a 、b 、c 是Rt△ABC 的三边,90ACB ∠=︒,则a 2+b 2=c 2D .若 a 、b 、c 是Rt△ABC 的三边,90A ∠=︒,则a 2+b 2=c 24.下列各组数中不能作为直角三角形的三边长的是( )A .6,12,8B .7,24,25C .1.5,2,2.5D .9,12,15 5.如图所示,一场暴雨过后,垂直于地面的一棵树在距地面2 m 处折断,树尖B 恰好碰到地面,经测量AB =4 m ,则折断之前树高为( )A .25B .23C .(252) mD .4 m6.下列四组数据中,不能..作为直角三角形的三边长是( ) A .32,42,52 B .7,24,25 C .6,8,10 D .9,12,157.下列各组数中,不是直角三角形的三条边的长的是( )A .3,4,5B .6,8,10C .5,12,13D .4,5,68.以下列几组数为三角形的边,能组成直角三角形的是( )A .5、10、12B .6、8、10C .2、3、4D .4、5、69.下列各组数据中,能够成为直角三角形三条边长的一组数据是( ).A .111,,345B .2223,4,5C .3,4,5D .0. 3,0. 4,0. 510.勾股定理的内容为:90ABC ∠=︒,222AB BC AC +=. 若如图,数轴上A 表示数-2,过数轴上表示1的点B 作BC ⊥x 轴,若BC=2,以A 为圆心,AC 为半径作圆弧交数轴于点P ,那么数轴上点P 所表示的数是( )A .13B .132-C .133-D .413-11.判断由线段 a ,b ,c 能组成直角三角形的是( )A .a =32,b =42,c =52B .a =2 ,b =3 ,c =5C .a =5 ,b =12 ,c =13D .a =3-1,b =4-1,c =5-112.下列长度的三条线段,能组成三角形的是( )A .1,2,4B .2,3,5C .3,4,8D .4,5,6二、填空题13.如图,将一根长9cm 的筷子,置于底面直径为3cm ,高为4cm 的圆柱形水杯中,设筷子露在杯子外面的长度是为hcm ,则h 的取值范围是_____________________.14.将面积为2π的半圆与两个正方形拼接成如图所示的图形,则这两个正方形面积的和为_____.15.汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝,如图是由“赵爽弦图”变化得到的,它由八个全等直角三角形拼接而成,记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,若S1+S2+S3=24,则S2的值为_____.16.如图,每个小方格都是边长为1的正方形,点,是方格纸的两个格点(即正方形的顶点).在这张的方格纸中,找出格点,使为面积为1的直角三角形,则点的个数是________.17.如图,在△ABC中,AB=6,AC=10,BC边上的中线AD=4,则△ABC的面积为___________;18.已知直角三角形两边的长分别为3cm,4cm, 则以第三边为边长的正方形的面积为 .19.小东拿着一根长竹竿进一个宽为4米的城门,他先横着拿不进去,又竖起来拿,结果竿比城门高0.5米,当他把竿斜着时,两端刚好顶着城门的对角,则竿长_____.20.课间,小聪拿着老师的等腰直角三角板玩,不小心掉到两墙之间(如图),90ACB ∠=,AC BC =,从三角板的刻度可知20AB cm =,小聪很快就知道了砌墙砖块的厚度的平方(每块砖的厚度相等)为________cm 2.三、解答题21.(8分)如图,在△ABC 中,∠B=90°,AB=BC=4,点E 在BC 上,将△ABC 沿AE 折叠,使点B 落在AC 边上的点F 处.(1)求BE 的长;(2)判断△CEF 是什么特殊三角形.22.如图,在图1中,△ABC 与△ADE ,90BAC DAE ∠=∠=︒,AC=AB ,AD=AE ,点D 在AC 上,连接BD 并延长BD 交CE 于点F .(1)请判断BD 与CE 是否相等;(直接写出结论,不需说明理由)(2)求∠BFC 的度数;(直接写出结论,不需说明理由)(3)将△ADE 按逆时针方向旋转一定角度,如图2,连接BD ,CE 交于点F.(1)、(2)中的结论是否仍成立?请说明理由.23.如图,ABC 和BDE 均为等腰直角三角形,90ACB BDE ∠=∠=︒,E 在AB 上,P 为AE 的中点,//EF AC 交射线CP 于F ,连接PD .求证:(1)AC EF =;(2)PD CF ⊥.24.如图,在△ABC 中,D 是BC 上一点,若AB =10,BD =6,AD =8,AC =17,求CD 的长及△ABC 的面积.25.如图,在△ABC 中,D 为AB 边上一点、F 为AC 的中点,过点C 作CE//AB 交DF 的延长线于点E ,连结AE .(1)求证:四边形ADCE为平行四边形.(2)若EF=2,,求DC的长.26.已知:如图1,过等腰直角三角形ABC的直角顶点A作直线AP,点B关于直线AP的对称点为E,连接BE,CE,其中CE交直线AP于点F.(1)依题意补全图形;(2)若∠PAB=16°,求∠ACF的度数;(3)如图2,若45°<∠PAB<90°,用等式表示线段AB,FE,FC之间的数量关系,并证明.27.如图,在离水面高度为5米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为13米,此人以0.5米/秒的速度收绳,6秒后船移动到点D的位置,问船向岸边移动了大约多≈)少米?(假设绳子是直的,结果精确到0.12 1.414≈3 1.73228.如图,正方形网格中每个小正方形的边长都为1.(1)以图中线段为AB 腰、A ∠为顶角作等腰ABC ∆,要求点C 在小方格的顶点上(只需作一个三角形)(2)请求出图(1)中已作的ABC 的腰AB 上的高.29.勾股定理神秘而美妙,它的证法多样,其中的“面积法”给了李明灵感,他惊喜地发现;当两个全等的直角三角形如图(1)摆放时可以利用面积法”来证明勾股定理,过程如下如图(1)∠DAB=90°,求证:a 2+b 2=c 2证明:连接DB ,过点D 作DF ⊥BC 交BC 的延长线于点F ,则DF=b-aS 四边形ADCB =21122ADC ABC SS b ab +=-+ S 四边形ADCB =211()22ADB BCD S S c a b a +=+-∴221111()2222b abc a b a +=+-化简得:a 2+b 2=c 2 请参照上述证法,利用“面积法”完成如图(2)的勾股定理的证明,如图(2)中∠DAB=90°,求证:a 2+b 2=c 2参考答案1.C2.C3.C4.A5.C6.A7.D8.B9.D10.B11.B12.D13.4≤h≤514.1615.816.617.2418.7cm 2或25cm 2.19.16m 20.2001321.BE=4-4 22.(1)BD CE =;(2)90BFC ∠=︒;(3),90BD CE BFC =∠=︒.24.15;84.25.(2)2+226.(2)29°;(3)FE 2+FC 2=2AB 227.船向岸边移动了大约3.3m .28.(245。
人教版八年级数学下册 第十七章 勾股定理 复习题一、选择题(30分)1.下列各组数是勾股数的是()A .8,15,17B .1.5,2,2.5C .5,8,10D .3,4,62.如图,在△ABC 中,∠A =30°,45B ∠=︒,CD 平分∠BCA 交AB 于点D ,DE ⊥AC 于点E ,若1DE =,则线段AB 的长度为( )A .3B .2C +D 23.如图,在△ABC 中,∠90C =︒,∠30A =︒,2AB =;以点B 为圆心,BC 为半径画弧交AB 于点D ,再以点A 为圆心,AD 为半径画弧交AC 于点E ,则CE 的长等于( )A 1BCD .14.如图,在5×5的网格中,每个格点小正方形的边长为1,ABC 的三个顶点A ,B ,C 都在网格格点的位置上,则ABC 的边AB 上的高为( )A B C D 5.在我国古代数学著作《九章算术》“勾股”章中有一题:“今有开门去阃(kǔn )一尺,不合二寸,问门广几何?”大意是说:如图,推开双门(AD 和BC ),门边缘D ,C 两点到门槛AB 的距离为1尺(1尺10=寸),双门间的缝隙CD 为2寸,那么门的宽度(两扇门的和)AB 为( )A .103寸B .102寸C .101寸D .100寸6.下列各组数中,能作为直角三角形三边长度的是( )A .1、1、2B .3、4、5C .1、2、3D .4、5、67.已知ABC ∆的三边a ,b ,c 2|4|10250b c c -+-+=,则c 边上的高为( )A .1.2B .2C .2.4D .4.88.已知实数a ,b 为ABC 2b 4b 40+-+=,第三边c =c 上的高的值是( )A B C D 9.《九章算术》是我国古代数学的重要著作,其中有一道题,原文是:今有户不知高、广,从之不出二尺,斜之适出,不知其高、宽,有竿,竿比门宽长出4尺;竖放;斜放,竿与门对角线恰好相等问.问门高、宽、对角线长分别是多少?若设门对角线长为x 尺,则可列方程( )A .x 2=(x ﹣4)2+(x ﹣2)2B .2x 2=(x ﹣4)2+(x ﹣2)2C .x 2=42+(x ﹣2)2D .x 2=(x ﹣4)2+2210.如图,一艘轮船在A 处测的灯塔C 在北偏西15°的方向上,该轮船又从A 处向正东方向行驶20海里到达B 处,测的灯塔C 在北偏西60°的方向上,则轮船在B 处时与灯塔C 之间的距离(即BC 的长)为( )A .B .()10+海里C .40海里D .()10+海里二、填空题(15分)11.若15,25,x 三个数构成勾股数,则x =___12.在直角坐标系中,点(A 到原点的距离是_________.13.已知在Rt △ABC 中,∠A =90°,AB =AC ,BC =4,则Rt △ABC 的面积为_______.14.已知直角坐标平面内的点()1,3A ,()3,1B -和()0,0O ,那么ABC 的形状是______.15.如图,在Rt ABC △中,直角边6AC =,斜边10AB =,现将ABC 折叠,使点B 与点A 重合,折痕为DE ,则AD =________.三、解答题(75分)16.如图:正方形网格中每个小方格的边长为1,且点A 、B 、C 均为格点.(1)求△A BC 的面积.(2)通过计算判断ABC 的形状.17.如图,某斜拉桥的主梁AD 垂直于桥面MN 与点D ,主梁上有两根拉索分别为AB 、AC .(1)若拉索AB AC ⊥,AB 、BC 的长度分别为10米、26米,则拉索AC = 米;(2)若AB 、AC 的长分别为13米,20米,且固定点B 、C 之间的距离为21米,求主梁AD 的高度.18.为了绿化环境,我县某中学有一块四边形的空地ABCD ,如图所示,学校计划在空地上种植草皮,经测量,90ADC ∠=︒,3CD =米,4=AD 米,13AB =米,12BC =米,(1)求出空地ABCD 的面积.(2)若每种植1平方米草皮需要200元,问总共需投入多少元?19.一架云梯AB 斜靠在墙上,梯子顶端距墙脚的距离AC =24米,梯子底端距墙脚的距离BC =7米.(1) 求梯子的长度.(2) 如果梯子的顶端下滑了4米,那么梯子的底端在水平方向也滑动4米吗? 为什么?20.若图是一个高为3米,长为5米的楼梯表面铺地毯.(1)求地毯的长是多少米?(2)如果地毯的宽是2米,地毯每平方售价是10元,铺这个楼梯一共需要多少元?21.在我国古代数学著作《九章算术》中记载了一个有趣的问题,这个问题的意思是:如图,有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根新生的芦苇,它高出水面1尺,如果把这根芦苇沿与一边垂直的方向拉向岸边,它的顶端恰好到达岸边的水面,求池水的深度.22.在Rt ABC △中,90ACB ∠=︒,8AC =,10AB =.(1)如图1,求点C 到边AB 的距离;(2)点M 是AB 上一动点.①如图2.过点M 作MN AB ⊥交AC 于点N ,当MN CN =时,求AM 的长;②如图3,连接CM ,当AM 为何值时,BCM 为等腰三角形?23.勾股定理现约有500种证明方法,是用代数思想解决几何问题的最重要的工具之一.中国古代最早对勾股定理进行证明的是三国时期吴国的数学家赵爽,赵爽创制了如图1所示的“勾股圆方图”,在该图中,以弦c 为边长所得到的正方形ABCD 是由4个全等的直角三角形再加上中间的小正方形EFGH 组成的,其中BF a =,AF b =.(1)请利用面积相等证明勾股定理;(2)在图1中,若大正方形ABCD 的面积是13,2BF =,求小正方形EFGH 的面积;(3)图2是由“勾股圆方图”变化得到的,正方形MNKT 由八个全等的直角三角形和正方形EFGH 拼接而成,记图中正方形MNKT ,正方形ABCD ,正方形EFGH 的面积分别为1S ,2S ,3S .若12348S S S ++=,求边AB 的长度.【参考答案】1.A 2.B 3.A 4.C 5.C 6.B 7.C 8.D 9.A 10.D 11.2012.13.414.等腰直角三角形.15.25 416.(1)5;(2)ABC是直角三角形.17.(1)24米;(2)12米18.(1)24平方米;(2)4800元19.(1)25米;(2)梯子底部在水平方向滑动了8米20.(1)7米;(2)140元21.池水的深度为12尺22.(1)245;(2)①4;②5,4或145.23.(1)证明略;(2)1;(3)4。
第17章勾股定理一.选择题(共10小题)1.下列结论中,错误的有()①在Rt△ABC中,已知两边长分别为3和4,则第三边的长为5;②△ABC的三边长分别为AB,BC,AC,若BC2+AC2=AB2,则∠A=90°;③在△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形;④若三角形的三边长之比为3:4:5,则该三角形是直角三角形;A.0个B.1个C.2个D.3个2.如图,将一副三角板如图放置,如果DB=2,那么点E到BC的距离为()A.﹣1 B.3﹣C.2﹣2 D.+13.如图,在△ABC中,∠ACB=90°,CD⊥AB于D,若AC=2,BC=,则CD为()A.B.2 C.D.34.如图,将△ABC放在正方形网格中(图巾每个小正方形边长均为1)点A,B,C恰好在网格图中的格点上,那么∠ABC的度数为()A.90°B.60°C.45°D.30°5.如图,已知数轴上点P表示的数为﹣1,点A表示的数为1,过点A作直线l垂直于PA,在l上取点B,使AB=1,以点P为圆心,以PB为半径作弧,弧与数轴的交点C所表示的数为()A.B.C.D.6.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D.已知AB=15,Rt△ABC的周长为15+9,则CD的长为()A.5 B.C.9D.67.如图,设小方格的面积为1,则图中以格点为端点且长度为的线段有()A.2条B.3条C.4条D.5条8.如图,已知在Rt△ABC中,E,F分别是边AB,AC上的点,AE=AB,AF=AC,分别以BE、EF、FC为直径作半圆,面积分别为S1,S2,S3,则S1,S2,S3之间的关系是()A.S1+S3=2S2 B.S1+S3=4S2C.S1=S3=S2 D.S2=(S1+S3)9.如图,有一个池塘,其底面是边长为10尺的正方形,一个芦苇AB生长在它的中央,高出水面部分BC为1尺.如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B恰好碰到岸边的B′.则这根芦苇的长度是()A.10尺B.11尺C.12尺D.13尺10.一云梯AB长25米,如图那样斜靠在一面墙上,云梯底端离墙7米,如果云梯的顶端下滑了4米,那么它的底端在水平方向滑动BB'的长是()A.10米B.8米C.6米D.4米二.填空题(共6小题)11.若△ABC的三边长分别为a,b,c.下列条件:①∠A=∠B﹣∠C;②a2=(b+c)(b﹣c);③∠A:∠B:∠C=3:4:5;④a:b:c=5:12:13.其中能判断△ABC是直角三角形的是(填序号).12.已知,△ABC的三边长分别为:2,,,则△ABC的面积是.13.如图,BD为△ABC的中线,AB=10,AD=6,BD=8,△ABC的周长是.14.若8,a,17是一组勾股数,则a=.15.如图,在Rt△ABC中,∠B=90°,AB=6,BC=8.AD平分∠BAC交BC边于点D,则BD=.16.如图,在四边形ABCD中,AD∥BC,∠B=90°,AD=8cm,AB=6cm,BC=10cm,点Q 从点A出发以1cm/s的速度向点D运动,点P从点B出发以2cm/s的速度向C点运动,P、Q两点同时出发,其中一点到达终点时另一点也停止运动.若DP≠DQ,当t=s 时,△DPQ是等腰三角形.三.解答题(共6小题)17.如图,在Rt△ABC中,∠B=90°.点D为BC边上一点,线段AD将Rt△ABC分为两个周长相等的三角形.若CD=2,BD=6,求△ABC的面积.18.如图,在△ABC中,AB=AC,△ABC的高BH,CM交于点P.(1)求证:PB=PC.(2)若PB=5,PH=3,求AB.19.已知:如图,在△ABC中,CD⊥AB,垂足为点D,AC=20,BC=15,DB=9.(1)求CD的长.(2)求AB的长.20.平面直角坐标系中如果任意两点A、B的坐标分别为(x1,y1)、(x2,y2),则A、B两点之间的距离可表示为|AB|=;在平面直角坐标系中.(1)若点C的坐标为(3,4),O为坐标原点,则C、O两点之间的距离为.(2)若点E(﹣2,3)、F(4,﹣5),求E、F两点之间的距离.21.如图,正方形网格的每个小方格都是边长为1的正方形,△ABC的顶点都在格点上.(1)分别求出AB,BC,AC的长;(2)试判断△ABC是什么三角形,并说明理由.22.阅读下列材料:小明遇到一个问题:在△ABC中,AB,BC,AC三边的长分别为、、,求△ABC 的面积.小明是这样解决问题的:如图1所示,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),从而借助网格就能计算出△ABC的面积.他把这种解决问题的方法称为构图法.参考小明解决问题的方法,完成下列问题:(1)图2是一个6×6的正方形网格(每个小正方形的边长为1).①利用构图法在答卷的图2中画出三边长分别为、、的格点△DEF;②计算①中△DEF的面积为;(直接写出答案)(2)如图3,已知△PQR,以PQ,PR为边向外作正方形PQAF,正方形PRDE,连接EF.①判断△PQR与△PEF面积之间的关系,并说明理由.②若PQ=,PR=,QR=3,直接..写出六边形AQRDEF的面积为.参考答案一.选择题(共10小题)1.解:①在Rt△ABC中,已知两边长分别为3和4,则第三边的长为5或,错误;②△ABC的三边长分别为AB,BC,AC,若BC2+AC2=AB2,则∠C=90°,错误;③在△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形,正确;④若三角形的三边长之比为3:4:5,则该三角形是直角三角形,正确;故选:C.2.解:作EF⊥BC于F,设EF=x,则BF=x,BE=x,CE=2x,则AC=,AE=﹣x,则(﹣x)2+()2=(2x)2,x2+2x﹣6=0,解得x1=3﹣,x2=﹣3﹣(舍去).故点E到BC的距离为3﹣.故选:B.3.解:在Rt△ABC中,AC=2,BC=,根据勾股定理得:AB==3,∵△ABC中,∠C=90°,CD⊥AB,∴S△ABC=AC•BC=AB•CD,即AC•BC=AB•CD,∴CD==2,故选:B.4.解:由勾股定理得:AC2=12+22=5,BC2=12+32=10,AB2=12+22=5,∴AB=AC,AC2+AB2=BC2,∴△ACB是等腰直角三角形,∴∠ABC=45°,故选:C.5.解:PB=,∴PB=PC,∴OC=PC﹣1=﹣1,∴点C的数为﹣1,故选:B.6.解:如图所示:∵Rt△ABC的周长为15+9,∠ACB=90°,AB=15,∴AC+BC=9,AC2+BC2=AB2=152=225,∴(AC+BC)2=(9)2,即AC2+2AC×BC+BC2=405,∴2AC×BC=405﹣225=180,∴AC×BC=90,∵AB×CD=AC×BC,∴CD===6;故选:D.7.解:∵=,∴是直角边长为2,3的直角三角形的斜边,如图所示,AB,CD,BE,DF的长都等于;故选:C.8.解:∵在Rt△ABC中,AE=AB,AF=AC,∴AE=BE,AF=CF,EF2=AE2+AF2,∴EF2=BE2+CF2.∴π•EF2=π•(BE2+CF2),即S2=(S1+S3).∴S1+S3=4S2.故选:B.9.解:设芦苇长AB=AB′=x尺,则水深AC=(x﹣1)尺,因为边长为10尺的正方形,所以B'C=5尺在Rt△AB'C中,52+(x﹣1)2=x2,解之得x=13,即水深12尺,芦苇长13尺.故选:D.10.解:由题意可得:AB=25m,OB=7m,则OA==24(m),当云梯的顶端下滑了4米,则A′O=24﹣4=20(m),故OB′==15(m),则BB′=CB′﹣BC=(15﹣7)m=8m.答:它的底部在水平方向滑动了8米,故选:B.二.填空题(共6小题)11.解:∵∠A=∠B﹣∠C,∴∠A+∠C=∠B,∵∠A+∠C+∠B=180°,∴∠B=90°,∴△ABC是直角三角形,故①符合题意;∵a2=(b+c)(b﹣c)∴a2+c2=b2,∴△ABC是直角三角形,故②符合题意;∵∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,∴∠A=45°,∠B=60°,∠C=75°,∴△ABC不是直角三角形,故③不符合题意;∵a:b:c=5:12:13,∴a2+b2=c2,∴△ABC是直角三角形,故④符合题意;故答案为:①②④.12.解:∵△ABC的三边长分别为:2,,,∴22+()2=()2,∴△ABC是直角三角形,斜边为,∴△ABC的面积为=,故答案为:.13.解:∵AB=10,AD=6,BD=8,∴AB2=AD2+BD2=100,∴△ABD是直角三角形且AD⊥BD.又BD为△ABC的中线,∴AB=BC=10,AD=CD=6.∴,△ABC的周长=AB+BC+AD=2AB+2AD=20+12=32.故答案是:32.14.解:①a为最长边,a==,不是正整数,不符合题意;②17为最长边,a==15,三边是整数,能构成勾股数,符合题意.故答案为:15.15.解:作DE⊥AC于E,如图所示:∵∠B=90°,AB=6,BC=8.∴DB⊥AB,AC==10,∵AD平分∠BAC,DE⊥AC,∴DE=DB,在Rt△AED和Rt△ABD中,,∴Rt△AED≌Rt△ABD(HL),∴AE=AB=6,∴CE=AC﹣AE=4,设DE=DB=x,则CD=8﹣x,在Rt△CDE中,由勾股定理得:x2+42=(8﹣x)2,解得:x=3,∴BD=3;故答案为:3.16.解:由运动知,AQ=t,BP=2t,∵AD=8,BC=10,∴DQ=AD﹣AQ=(8﹣t)(cm),PC=BC﹣BP=(10﹣2t)(cm),∵△DPQ是等腰三角形,且DQ≠DP,∴①当DP=QP时,∴点P在DQ的垂直平分线上,∴AQ+DQ=BP,∴t+(8﹣t)=2t,∴t=,②当DQ=PQ时,如图,Ⅰ、过点Q作QE⊥BC于E,∴∠BEQ=∠OEQ=90°,∵AD∥BC,∠B=90°,∴∠A=∠B=90°,∴四边形ABEQ是矩形,∴EQ=AB=6,BE=AQ=t,∴PE=BP﹣BE=t,在Rt△PEQ中,PQ==,∵DQ=8﹣t∴=8﹣t,∴t=,∵点P在边BC上,不和C重合,∴0≤2t<10,∴0≤t<5,∴此种情况符合题意,即t=或s时,△DPQ是等腰三角形.故答案为:或.三.解答题(共6小题)17.解:根据题意可知,△ACD与△ADB的周长相等,∴AC+CD+AD=AD+BD+AB.∴AC+CD=BD+AB.∵CD=2,BD=6,∴AC+2=6+AB,BC=CD+BD=8,∴AC=AB+4,设AB=x,则AC=4+x.在Rt△ABC中,AB2+BC2=AC2,∴x2+82=(x+4)2.∴x2+64=16+x2+8x.∴x=6.∵经检验,x=6为原方程的解,∴原方程的解为x=6.∴.18.(1)证明:∵AB=AC,∴∠ABC=∠ACB.∵BH,CM为△ABC的高,∴∠BMC=∠CHB=90°.∴∠ABC+∠BCM=90°,∠ACB+∠CBH=90°.∴∠BCM=∠CBH.∴PB=PC.(2)解:∵PB=PC,PB=5,∴PC=5.∵PH=3,∠CHB=90°,∴CH=4.设AB=x,则AH=x﹣4.在Rt△ABH中,∵AH2+BH2=AB2,∴(x﹣4)2+(5+3)2=x2.∴x=10.即AB=10.19.解:(1)∵CD⊥AB,∴∠CDB=∠CDA=90°,在Rt△BCD中,∵BC=15、DB=9,∴CD===12;(2)在Rt△ACD中,∵AC=20、CD=12,∴AD===16,则AB=AD+DB=16+9=25.20.解:(1)∵O为原点,∴O坐标为(0,0),∵点C的坐标为(3,4),∴CO==5,故答案为:5;(2)∵点E(﹣2,3)、F(4,﹣5),E、F两点之间的距离可表示为|EF|=,∴EF===10.21.解:(1),,;(2)△ABC是直角三角形,理由如下:∵,AC2=52=25,∴AB2+BC2=AC2,∴△ABC是直角三角形.22.解:(1)①如图所示:②△DEF的面积为4×5﹣×2×3﹣×2×4﹣×2×5=8;(2)①如图3,△PEF的面积为6×2﹣×1×6﹣×1×3﹣×3×2=,△PQR的面积为×3×3=,∴△PQR与△PEF面积相等;②六边形AQRDEF的面积为()2+++()2=13+9+10=32.故答案为:8;32.。