生物医用高分子材料及应用
- 格式:pdf
- 大小:456.84 KB
- 文档页数:23
高分子材料在生物医学工程中的应用有哪些在当今生物医学工程领域,高分子材料正发挥着越来越重要的作用。
高分子材料具有独特的性能和多样化的特点,为解决众多医学难题提供了有效的解决方案。
高分子材料在人工器官领域的应用堪称一大亮点。
以人工心脏为例,其制造需要使用具有优异机械性能和生物相容性的高分子材料。
例如,聚氨酯具有良好的弹性和耐磨性,常被用于制造人工心脏的心室和瓣膜等部件。
这些高分子材料不仅能够模拟人体心脏组织的力学性能,还能有效抵抗血液的冲刷和侵蚀,延长人工心脏的使用寿命。
在组织工程中,高分子材料更是不可或缺。
组织工程旨在构建和修复受损的组织和器官。
高分子支架材料为细胞的生长和分化提供了适宜的环境。
聚乳酸(PLA)和聚乙醇酸(PGA)等可降解高分子材料,能够随着组织的再生逐渐被人体吸收,避免了二次手术取出的风险。
它们的孔隙结构和表面化学性质可以通过精心设计,以促进细胞的黏附、增殖和分化,从而实现组织的重建和修复。
药物输送系统也是高分子材料的重要应用方向之一。
传统的药物治疗往往存在药物浓度波动大、副作用多等问题。
高分子材料可以作为药物载体,实现药物的控释和靶向输送。
例如,纳米粒子包裹的高分子材料可以通过特定的修饰,使其能够识别病变细胞表面的标志物,从而将药物精准地输送到病灶部位,提高治疗效果的同时减少对正常组织的损伤。
高分子材料在医疗器械方面也有广泛的应用。
医用导管,如输液管、导尿管等,通常采用柔软且具有良好生物相容性的高分子材料,如聚氯乙烯(PVC)和硅橡胶。
这些材料不仅能够保证导管的柔韧性和通畅性,还能减少对人体组织的刺激和损伤。
在伤口敷料领域,高分子材料同样表现出色。
水凝胶类高分子敷料能够保持伤口湿润的环境,促进伤口愈合。
它们具有良好的透气性和吸水性,可以吸收伤口渗出液,同时防止外界细菌的侵入,为伤口的恢复创造了有利条件。
另外,高分子材料在牙科领域也有重要地位。
补牙材料、牙冠材料等常常基于高分子树脂。
生物医用高分子材料生物医用高分子材料是一类应用于生物医学领域的高分子材料,具有优良的生物相容性、生物降解性和生物活性等特点。
这类材料旨在解决生物医学领域中的各种问题,如组织工程、药物缓释、生物传感等。
以下将介绍几种常见的生物医用高分子材料及其应用。
首先是生物可降解高分子材料,如聚乳酸(PLA)和聚乳酸-羟基磷灰石(PLGA)。
这类材料能够在体内逐渐降解,并最终被代谢排出体外,具有较好的生物相容性。
它们主要应用于组织修复与再生领域,如制作支架用于骨骼修复、软组织修复和脑部损伤修复等。
其次是生物活性高分子材料,如天然高分子材料胶原蛋白和壳聚糖。
这些材料本身具有一定的生物活性,能够促进细胞黏附、分化和增殖。
它们常用于组织工程中的细胞载体和生物传感器的制备,如用胶原蛋白包裹干细胞用于皮肤再生、用壳聚糖包裹药物用于药物缓释等。
另外一类是生物仿生高分子材料,如聚乙二醇(PEG)。
这类材料模拟生物体内的液体环境,具有良好的生物相容性和抗生物粘附能力。
它们主要应用于制备人工器官、药物控释系统和生物分离材料等,如用PEG涂层改善人工心脏瓣膜的生物相容性、用PEG修饰纳米材料用于靶向药物传递等。
此外,还有一种重要的生物医用高分子材料是羟基磷灰石(HA)。
羟基磷灰石具有良好的生物相容性和生物活性,能够与骨组织有很好的结合性。
它常用于骨修复和牙科领域,如制备骨替代材料、牙齿填充材料和人工牙齿的固定材料等。
总之,生物医用高分子材料在生物医学领域中具有广泛的应用前景。
它们的出现为治疗和修复各种组织和器官提供了新的手段,将对人类健康产生深远影响。
然而,随着研究的深入,还需要克服一些挑战,如材料的稳定性、生物相容性和生物降解速度等问题,以进一步提高材料的应用性能和安全性。
生物高分子材料在医药领域中的应用生物高分子材料是一类具有自然来源、生物相容性、再生能力好、生物活性高等特点的高分子材料,在医药领域中得到广泛应用。
不同种类的生物高分子材料,具有不同的特性和功能,可以用于制备药物载体、组织修复材料、医用器械等医药产品。
一、药物载体生物高分子材料作为药物载体,能够通过调控药物的释放速率和控制性能,提高药物的疗效和降低副作用。
例如,聚乳酸、聚己内酯等生物高分子材料,可以制备成纳米颗粒、微球等形态,作为药物的载体,能够改善药物的生物利用度和药物在体内的分布,从而提高疗效和减少副作用。
与传统药物制剂相比,生物高分子材料制备的药物载体具有较高的稳定性和长时间的药物释放能力,能够满足临床上的需求。
二、组织修复材料生物高分子材料还可以作为组织修复材料,用于修复人体组织损伤和缺损。
例如,胶原蛋白、明胶、海藻酸等生物高分子材料,能够促进组织的再生和修复,具有良好的生物相容性和生物降解性。
这些材料可以制备成支架、薄膜、凝胶等形态,置于损伤区域进行修复。
与传统的人工材料相比,生物高分子材料不会引起免疫反应和排异反应,能够促进组织的再生和修复,从而达到良好的治疗效果。
三、医用器械生物高分子材料还可以用于制备医用器械,如输液管、人工关节、心脏支架等。
这些器械具有良好的生物相容性和生物降解性,可以与人体的组织和器官良好地接触,不会引起免疫反应和排异反应。
同时,生物高分子材料具有较高的弹性和可塑性,能够制备成各种形态的器械,满足临床上的需求。
总之,生物高分子材料在医药领域中的应用广泛,具有很好的应用前景。
随着技术的不断进步和研究的深入,生物高分子材料在医药领域中的应用将会更加广泛和深入。
生物高分子材料在生物医学领域中的应用研究随着生物医学技术的不断发展,生物高分子材料得到了广泛的关注和应用。
生物高分子材料是一类由天然或合成高分子组成的材料,具有良好的生物相容性、可降解性、可塑性、透明度高等优点,被广泛应用于药物传递、组织工程、生物检测以及医用材料等领域中。
本文将从生物高分子材料的种类、制备方法以及在生物医学领域中的应用研究等方面进行探讨。
一、生物高分子材料的种类生物高分子材料包括天然和人工合成两种类型。
天然高分子材料包括蛋白质、多糖、胶原蛋白、纤维素等,这些材料来源广泛,具有良好的生物相容性和生物相似性,适用于人体内的多种组织工程修复和药物传递。
人工合成高分子材料包括聚酯、聚酰胺、聚乳酸、聚醚酯等,这些材料可以通过化学方法进行修饰和改变材料的物理化学特性,从而得到更符合应用需求的材料。
二、生物高分子材料的制备方法生物高分子材料的制备方法主要有两类:天然高分子材料的提取和人工合成高分子材料的合成。
天然高分子材料的提取主要是通过生物菌群发酵、分离和提取等工艺,获取具有高纯度和生物活性的天然高分子材料。
人工合成高分子材料的合成主要是通过化学方法控制分子量、分子结构和官能团的引入等操作,制备具有特定功能和性能的高分子材料。
三、1.生物高分子材料在药物传递中的应用研究生物高分子材料在药物传递中的应用,主要是利用材料本身的可降解性和生物相容性,将药物载体嵌入到高分子材料中,从而达到控制释放、提高生物利用度和削减副作用等目的。
代表性的应用包括利用聚酯、聚糖等材料制备的颗粒或支架材料,用于胶囊、微小颗粒、纳米颗粒等形式进行药物的传递。
2.生物高分子材料在组织工程中的应用研究组织工程是一种利用生物学、医传工程等多学科和技术手段制备、修复、再生功能组织的技术,而生物高分子材料的应用可以实现组织工程的目的,诸如不同组织成分、强度、生物相容性、可降解性能或可辅助生物修复的性质。
代表性的应用包括利用蛋白质和碳水化合物等材料制备的支架材料,用于心脏、血管、骨骼、软骨等组织工程的应用。
高分子材料在生物医学领域的应用高分子材料是一类由大量分子组成的化合物,具有特殊的物理和化学性质,被广泛应用于生物医学领域。
随着技术的发展和不断的研究,高分子材料在生物医学领域的应用正在逐渐扩大。
一、生物医学材料的概述生物医学材料是指用于修复和替代人体组织和器官的材料,以及用于医疗器械的制造的材料。
高分子材料由于其独特的化学结构和性质,逐渐成为生物医学材料的重要组成部分。
它们可以用于制备人工关节、心脏支架、人工血管等医疗器械,也可以用于修复组织和器官缺损。
二、高分子材料在人工关节领域的应用人工关节是用高分子材料制造的,用于替代受损关节的功能。
高分子材料具有良好的生物相容性和机械性能,可以在人体内长期稳定地发挥作用。
人工关节的应用不仅可以缓解患者疼痛,还可以改善其生活质量。
三、高分子材料在心脏支架领域的应用心脏支架是一种用于治疗冠心病的设备,它可以帮助恢复血液流动,并防止再次闭塞血管。
高分子材料可以用于制备心脏支架,其特殊的化学结构可以使血管更加柔软和韧性,从而减少损伤并提高血管的耐久性。
四、高分子材料在人工血管领域的应用高分子材料还可以用于制备人工血管,用于治疗动脉粥样硬化等血管疾病。
人工血管具有良好的生物相容性和血流动力学性能,可以有效地改善患者的生活质量。
五、高分子材料在组织工程领域的应用组织工程是一种通过生物材料和细胞组成的人工组织的修复和再生技术。
高分子材料可以作为支架材料,为细胞提供生长和分化的环境,促进组织再生。
例如,高分子羟基磷灰石可以用于骨组织工程,高分子胶原蛋白可以用于软组织工程,这些材料都可以有效地修复和再生受损组织。
综上所述,高分子材料在生物医学领域的应用具有广阔的前景。
随着技术的不断创新和研究的深入,高分子材料的应用范围将进一步扩大,为人类的健康事业做出更大的贡献。
生物高分子材料在医学上的应用随着生物技术的发展,生物高分子材料在医学上的应用越来越广泛。
生物高分子材料是指来源于天然生物体的高分子物质,如蛋白质、多糖、核酸等。
这些材料因其生物相容性、可降解性、生物活性等特点,在医学上具有很大的应用潜力。
本文将从生物高分子材料在医用医学器械、组织工程、药物传递等方面的应用进行介绍。
一、生物高分子材料在医用医学器械上的应用1. 缝线在外科手术中使用排异性低、容易分解的缝线是非常重要的。
许多生物高分子材料已被制成缝线,如医用纤维素、明胶、聚乳酸、聚己内酯等。
这些材料在体内能被分解,避免了长时间的残留和不适感,而且对人体没有毒副作用,因此被广泛应用于外科手术中。
2. 口腔修复材料生物高分子材料也广泛应用于口腔修复领域。
明胶、壳聚糖、海藻酸钠等生物高分子材料可制成多种口腔修复材料,如口腔粘合剂、口腔填充材料、支架材料等。
这些材料能够与口腔组织良好地结合,提高修复效果,并降低了对口腔组织的损伤。
3. 包装材料生物高分子材料在医学包装领域也有广泛的应用,例如用明胶包裹胶囊、用海藻酸钠制作片剂包装等。
这些材料能够减少包装对药品的影响,确保药品的质量和功效。
二、生物高分子材料在组织工程上的应用1. 组织工程支架组织工程支架是一种用于支持和促进组织再生的三维结构。
生物高分子材料可用于制作组织工程支架,如聚乳酸、明胶、壳聚糖等,这些材料具有良好的成形性和生物相容性,能更好地支持细胞生长和组织再生。
2. 细胞培养基质生物高分子材料还可用于制作细胞培养基质,如明胶、壳聚糖等。
这些材料能够为细胞提供适当的支持和生长环境,促进细胞的增殖和分化,有助于细胞培养和研究。
三、生物高分子材料在药物传递上的应用1. 微球载药微球是一种用于药物传递的技术,通过将药物包装在微球内,可以将药物缓慢地释放到体内。
生物高分子材料如明胶、海藻酸钠、壳聚糖等,被制成微球,应用于药物传递。
这些材料具有优良的生物相容性和可降解性,不会对体内组织造成长期的负面影响。
生物医用高分子材料的研究与应用随着现代医学的不断发展,越来越多的疾病得以得到有效的治疗。
而在治疗过程中,材料的选择也起着至关重要的作用。
生物医用高分子材料是一类在医学领域中应用广泛的材料,它们具有良好的生物相容性、可调性、可加工性和可重复性等优点。
近年来,生物医用高分子材料在医疗、药物输送和组织工程等领域中的应用越来越广泛。
高分子材料是由高分子化合物制成的,它们通常是由单体通过聚合反应而形成的长链分子。
这些分子因其复杂的结构和可塑性,在医学领域中可以用来制造很多种不同的材料,例如人工关节、人造器官、药物传递系统、缝合线和接骨板等。
这些材料可以与人体组织相容,并被认为是一种极为有前途的材料类型。
1. 生物医用高分子材料的类型及其特点生物医用高分子材料的类型十分多样,下面简单介绍几种比较常见的类型。
(1) 人工关节的材料人工关节是治疗关节疾病的最有效方法之一。
目前,最流行的人工关节材料是聚乙烯、聚乙烯醇、尼龙、PTFE等。
这些材料均具备良好的生物相容性和机械性能。
(2) 缝合线缝合线是医生修复切口、牙龈和组织损伤时经常使用的一种材料。
常见的缝合线包括各种生物降解材料,例如聚乳酸、聚乙酸乙烯酯、聚己内酯等。
(3) 药物传递系统药物传递系统是一种在人体内释放药物的材料。
借助生物医用高分子材料可以制备出上述类型的药物释放系统。
例如聚乳酸-羟基乙酸共聚物、聚酸酯基等,这些材料因其生物降解性、可控释放性和生物相容性等优点,被广泛用于制备药物传递系统。
2. 生物医用高分子材料的应用随着现代医学的需求,生物医用高分子材料在医学领域的应用正在不断扩大。
以下列举几个例子。
(1) 肺癌有限化疗局部治疗系统该系统利用高分子材料包覆的药物,选择性地释放到病灶部位,并实现 sustained release (持续释放)。
这种方法具有显著的临床效果,能够提高癌细胞的转录和翻译内在抵抗力,抑制癌细胞的增殖,创造更好的治疗结果。
生物医用高分子材料生物医用高分子材料是一种具有广泛应用前景的新型材料,它在医学领域中发挥着越来越重要的作用。
生物医用高分子材料是指能够与生物体相容并在生物体内具有一定功能的高分子材料,其应用范围涉及医疗器械、医用材料、组织工程、药物传递系统等多个方面。
本文将从生物医用高分子材料的特点、应用领域、发展趋势等方面进行介绍。
首先,生物医用高分子材料具有良好的生物相容性和生物降解性。
这意味着这类材料可以与生物体组织相容,不会引起排斥反应或过敏反应,并且在一定条件下可以被生物体降解或代谢,不会对生物体造成长期的不良影响。
这一特点使得生物医用高分子材料在医学领域中得到广泛应用,例如可用于制备生物可降解的缝合线、修复骨折的支架材料等。
其次,生物医用高分子材料在医疗器械和医用材料领域有着重要的应用。
例如,生物医用高分子材料可以用于制备人工关节、心脏起搏器、血管支架等医疗器械,同时也可以用于制备医用敷料、人工皮肤、植入式医用材料等。
这些应用为医学诊疗和治疗提供了重要的支持,推动了医学技术的不断进步。
此外,生物医用高分子材料在组织工程和药物传递系统中也有着广泛的应用。
在组织工程领域,生物医用高分子材料可以被用于制备人工器官、组织修复材料等,为组织修复和再生提供了新的途径。
在药物传递系统方面,生物医用高分子材料可以被用于制备缓释药物载体、靶向输送系统等,提高了药物的疗效和降低了药物的副作用。
未来,随着生物医用高分子材料领域的不断发展,其在医学领域中的应用前景将会更加广阔。
例如,生物医用高分子材料的功能化设计和智能化材料的开发将会为医学诊疗提供更多的选择,同时生物医用高分子材料与生物学、医学、材料学等学科的交叉融合也将会带来更多的创新成果。
总之,生物医用高分子材料具有良好的生物相容性和生物降解性,其在医疗器械、医用材料、组织工程、药物传递系统等领域有着重要的应用。
随着生物医用高分子材料领域的不断发展,其在医学领域中的应用前景将会更加广阔,为医学技术的不断进步和医学治疗的不断改善提供重要支持。
生物医用仿生高分子材料是指通过模仿生物体结构和功能特点而设计和制造的高分子材料,用于医学领域的应用。
这些材料具有良好的生物相容性、生物活性和可控可调的特性,可以在医学上模拟和替代生物组织的功能,实现诊断、治疗和修复等应用。
以下是一些常见的生物医用仿生高分子材料及其应用:
1. 生物降解聚合物:如聚乳酸(Poly Lactic Acid, PLA)和聚乙二醇(Polyethylene Glycol, PEG),常用于制备可降解的植入型材料,如缝合线、支架和修复材料。
2. 水凝胶:如明胶、海藻酸钠(Sodium Alginate)和聚乙二醇二甲基丙烯酸酯(Polyethylene Glycol Diacrylate, PEGDA)等,可用于制备组织工程支架、脏器修复和药物传递等。
3. 多肽材料:如胶原蛋白和凝血蛋白,可用于修复软骨、皮肤和血管等组织。
4. 生物活性控释材料:如聚乳酸-羟基磷灰石(Poly Lactic Acid-Hydroxyapatite, PLA-HA)复合材料,可用于药物和生长因子的控释,促进组织修复和再生。
5. 智能材料:如形状记忆聚合物和响应性水凝胶,可根据环境条件(如温度、pH值、电场等)的变化实现形状转变、药物控释和传感应用。
这些生物医用仿真高分子材料在医学领域有着广泛的应用潜力,可以用于组织工程、细胞培养、药物传递、疾病诊断和治疗等方面。
通过不断的研究和创新,这些材料将有助于促进生物医学领域的发展和进步。
生物医用高分子材料及应用Polymeric bio -materials and its applications
生物医用高分子材料定义
生物医用高分子材料( Polymeric bio -materials) 是指在生理环境中使用的高
分子材料, 它们中有的可以全部植入体内, 有的也可以部分植入体内而部分暴露在体外, 或置于体外而通过某种方式作用于体内组织。
生物医用材料分类
◆天然生物材料( 如猪心瓣膜、牛心包、羊膜等) ◆金属材料( 如钛及其合金) 、
◆无机非金属材料( 如羟基磷灰石、生物玻璃等) ◆高分子材料
◆杂化生物医用材料。
生物医用高分子的发展
材料发展的第一阶段始于1937 年, 其特点是所用高分子材料都是已有的现成材料, 如用丙烯酸甲酯制造义齿的牙床。
第二阶段始于1953 年, 其标志是医用级有机硅橡胶的出现, 随后又发展了聚羟基乙酸酯缝合线以及四种聚(醚-氨) 酯心血管材料, 从此进入了以分子工程研究为基础的发展时期。
该阶段的特点是在分子水平上对合成高分子的组成、配方和工艺进行优化设计,
有目的地开发所需要的高分子材料。
目前的研究焦点已经从寻找替代生物组织的合成材料转向研究一类具有主动诱导、激发人体组织器官再生修复的新材料, 这标志着生物医用高分子材料的发展进入了第三个阶段。
其特点是这种材料一般由活体组织和人工材料有机结合而成, 在分子设计上以促进周围组织细胞生长为预想功能, 其关键在于诱使配合基和组织细胞表面的特殊位点发生作用以提高组织细胞的分裂和生长速度
医用高分子分类及应用
1与血液接触的高分子材料
与血液接触的高分子材料是指用来制造人工血管、人工心脏血囊、人工心瓣膜、人工肺等的生物医用材料, 要求这种材料要有良好的抗凝血性、抗细菌粘附性, 即在材料表面不产生血栓.不引起血小板变形, 不发生以生物材料为中心的感染。
◆人工血管
材料有尼龙、聚酯、聚四氟乙烯、聚丙烯及聚氨酯等。
◆人工心脏
材料多用聚醚氨酯和硅橡胶等。
◆人工肺
多用聚四氟乙烯、硅橡胶等材料
◆人工肾
材料除要求具备良好的血液相容性外, 还要求材料具有足够的湿态强度、有适宜的超滤渗透性等, 可充当这一使命的材料有乙酸纤维素、铜氨再生纤维素、尼龙、聚砜及聚醚砜等。
为提高人造器官的血液相容性, 现阶段的研究重点是对现有生物材料的表面进行改性和修饰, 其方法有:
◆接枝亲水性长侧链
◆引入生物活性物质抑制血液与外源材料的相互作用
◆使材料具有微相分离结构
◆聚合物表面种植内皮细胞等
2 组织工程用高分子材料
细胞大规模培养技术的日臻成熟和生物相容性材料的开发与研究, 使得创造由活细胞和生物相容性材料组成的人造生物组织或器官成为可能。
生物相容性材料的开发是组织工程核心技术之一。
组织工程中的生物材料主要发挥下列作用:
◆提供组织再生的支架或三维结构;
◆调节细胞生理功能;
◆免疫保护,当完成自己的使命后, 作为组织生长骨架的生物高分子材料则降解为无毒的小分子被机体吸收。
作为这种材料使用的聚合物主要有聚乳酸( PLA) 等。
3 药用高分子材料
作为药用高分子必须具备下列条件:
◆本身及其分解产物应无毒, 不会引起炎症, 无致癌性;
◆进入血液系统的药物不会引起血栓
◆具有水溶性, 能在体内水解为具有药理活性的基团◆能有效到达病灶处, 并积累一定浓度
◆口服药剂的高分子残基能通过排泄系统排出体外。
药用高分子可分为三类:
(1)具有药理活性的高分子药物。
它们本身具有药理作用, 断链后即失去药性, 是真正意义上的高分子药物。
天然药理活性高分子有激素、肝素、葡萄糖、酶制剂等。
合成药理活性高分子如聚4 -乙烯吡啶-N -氧撑是较早研究的代用血浆。
(2)低分子药物的高分子化。
低分子药物在体内新陈代谢速度快, 半衰期短, 体内浓度降低快, 从而影响疗效, 故需大剂量频繁进药, 而过高的药剂浓度又会加重副作用, 此外, 低分子药物也缺乏进入人体部位的选择性。
将低分子药物与高分子结合的方法有吸附、共聚、嵌段和接枝等。
第一个实现高分子化的药物是青霉素
(3)药用高分子微胶囊。
将细微的药粒用高分子膜包覆起来形成微小的胶囊是近年来生物医药工程的一场革命。
药物经微胶囊化处理后可以达到下列目的: 延缓、控制释放药物, 提高疗效; 掩蔽药物的毒性、刺激性和苦味等不良性质, 减小对人体的刺激; 使药物与空气隔离, 防止药物在存放过程中的氧化、吸潮等不良反应, 增加贮存的稳定性
4 医药包装用高分子材料
包装药物的高分子材料大体上可分为软、硬两种类型。
◆硬型材料如聚酯、聚苯乙烯、聚碳酸酯等, 由于其强度高、透明性好、尺寸稳定、气密性好,常用来代替玻璃容器和金属容器, 制造饮片和胶囊等固体制剂的包装。
◆软型材料如聚乙烯、聚丙烯、聚偏氯乙烯及乙烯-醋酸乙烯共聚物等, 常加工成复合薄膜, 主要用来包装固体冲剂、片剂等药物。
5 眼科用高分子材料
隐形眼镜是最常见的眼科用高分子材料制品,它对材料有如下要求:
◆具有优良的光学性质, 折光率与角膜相接近
◆良好的润湿性和透氧性;
◆生物惰性, 即耐降解且不与接触面发生化学反应
◆有一定的力学强度, 易于精加工及抗污渍沉淀等。
常用的隐形眼镜材料有聚甲基丙烯酸β-羟乙酯等,发生病变的角膜和晶状体也可用人工角膜和
人工晶状体替代。
6 医用粘合剂与缝合线
生物医用粘合剂是指将组织粘合起来的组织粘合剂, 医用粘合剂可粘合各种组织, 例如可进行牙齿粘合, 血管、组织、肌肉粘合, 脑动脉瘤表面补强、防止破裂粘合, 及骨粘合等。
常用的粘合剂有α-氰基丙烯酸烷基酯类, 甲基丙烯酸甲酯-苯乙烯共聚物等。
手术用缝合线可分为非吸收型和可吸收型两大类。
◆非吸收类包括天然纤维(如蚕丝、、马毛等) 和合成纤维。
◆可吸收类包括天然高分子材料(如、骨胶原、纤维蛋白等) 和合成高分子材料(如聚乙烯醇、聚乳酸等) 。
其中, 由聚乳酸制成的缝合线因性能优越而倍受关注。
这种缝合线强度可靠, 对创口缝合能力强, 又可生物降解而被肌体吸收, 是一种理想的医用缝合线。
7 医疗器件用高分子材料
高分子材料制的医疗器件有一次性医疗用品(注射器、输液器、检查器具、麻醉及手术室用具、血袋、尿袋等)。
◆血袋一般由软PVC 或LDPE 制成。
◆聚氨酯制的绷带固化速度快, 质轻层薄, 不易使
皮肤发炎, 可取代传统的固定材料—石膏
◆硅橡胶、聚四氟乙烯及聚乙烯醇等都是性能良好的矫形材料, 已
广泛用于假肢制造及整形外科等领域。
总结
生物技术将是21 世纪最有前途的技术, 生物
医用高分子材料将在其中扮演重要角色, 其性能将
不断提高, 应用领域也将进一步拓宽。
今后的发展趋势将主要体现在以下几个方面:
(1)医用可生物降解高分子材料因其具有良好
的生物降解性和生物相容性而受到高度重视, 论是作为缓释药物还是作为促进组织生长的骨架材料, 都将得到巨大的发展。
(2)复制具有人体各部天然组织的物理力学性质和生物学性质的生物医用材料, 达到高分子的生物功能化和生物智能化, 是医用高分子材料发展的重要方向。
此外, 用生物技术合成高分子的反应条件更温和、产物的生物降解性能更好, 因而具有诱人的前景。
(3)人工代用器官在材料本体及表面结构的有序化、复合化方面将取得长足进步, 以达到与生物体相似的结构和功能, 其生物相容性将大大提高。