2020-2021-1北雅八上第一次月考数学试卷(1)
- 格式:docx
- 大小:270.54 KB
- 文档页数:6
2020年八年级上学期第一次月考数学试卷4分,共40分)1.如图1,在△中,点是延长线上一点,=40°,=120°,则等于()A.60°B.70°C.80°D.90°2.如果一个三角形的两边长分别为2和4,则第三边长可能是( )A.2 B.4 C.6 D.83.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x + y =().A.7 B.8 C.10 D.114.用直尺和圆规作一个角等于已知角的示意图2如下,则说明∠A′O′B′=∠AOB的依据是()A.SSS B.SAS C.ASA D.AAS图1 图2 图3 图45.如图3,一副分别含有30°和45°角的两个直角三角板,拼成如图,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是( )A.15° B.25° C.30° D.10°6.过一个多边形的一个顶点的所有对角线把多边形分成6个三角形,则这个多边形的边数为( )A.5 B.6 C.7 D.87.如图4,已知点A、D、C、F在同一直线上,且AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加的一个条件是( )A.∠A=∠EDF B.∠B=∠E C.∠BCA=∠F D.BC∥EF8.如图5,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=2,则PQ的最小值为( )A.1 B.2 C.3 D.49.如图6,△ABC的三边AB、BC、CA长分别是20、30、40,其三条角平分线将△ABC分为三个三角形,则S△ABO︰S△BCO︰S△CAO等于()A.1︰1︰1 B.1︰2︰3 C.2︰3︰4 D.3︰4︰5图5 图6 图7 图810.如图7,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是( )A.4cm B.6cm C.8cm D.9cm二、填空题(每小题4分,共24分)11.如图8,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理_________________.12.如果一个等腰三角形有两边长分别为4和9,那么这个等腰三角形的周长为__________.13.小明不慎将一块三角形的玻璃摔碎成如图9所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一些块带去,就能配一块与原来一样大小的三角形?应该带_____.图9 图10 图11 图1214.如图10为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=________.15.如图11,已知∠B=46°,△ABC的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=_______.16.如图12,有一个直角三角形ABC,∠C=90°,AC=10,BC=5,一条线段PQ=AB,P,Q两点分别在AC和过点A且垂直于AC的射线AX上运动,问P点运动到______________位置时,才能使△ABC≌△QPA.年八年级上学期数学第一次月考答题卡二、填空题(本题共24分,每小题4分)11._________________ , 12._______________ , 13.________________ ,14.__________________ , 15._______________ , 16.________________ .三、解答题(共86分)17.(8分)一个多边形的外角和是内角和的,求这个多边形的边数.18.(8分)张峰同学沿一段笔直的人行道行走,在由A步行到达B处的过程中,通过隔离带的空隙O,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语.其具体信息汇集如下.如图,AB∥OH∥CD,OB=OD,AC,BD相交于点O,OD⊥CD,垂足为D,已知AB=20米请根据上述信息求标语CD的长度.19.(8分)如图,点D在△ABC的AB边上,且∠ACD=∠A.(1)作∠BDC的平分线DE,交BC于点E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线DE与直线AC的位置关系(不要求证明).20.(10分)如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D在l异侧,测得AB=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF; (2)指出图中所有平行的线段,并说明理由.21.(10分)如图,CD⊥AB于点D,BE⊥AC于点E,△ABE≌△ACD,∠C=42°,AB=9,AD=6,G为AB延长线上一点.(1)求∠EBG的度数.(2)求CE的长.22.(10分)如图,△ABC中,∠ACB=90°,DC=AE,AE是BC边上的中线,过点C作CF⊥AE,垂足为点F,过点B作BD⊥BC交CF的延长线于点D.(1)求证:AC=CB; (2)若AC=12 cm,求BD的长.23.(10分)如图所示,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB交AB于点E,点F在AC上,BD=DF.求证:(1)CF=EB; (2)AB=AF+2EB.24.(10分)两个大小不同的等腰直角三角形三角板,如图①所示放置,图②是由它抽象出的几何图像,点B,C,E在同一条直线上,连接DC.(1)请找出图②中的全等三角形,并给予证明.(说明:结论中不得含有未标识的字母)(2)证明:DC⊥BE. 25.(12分)已知Rt△ABC≌Rt△ADE,其中∠ACB=∠AED=90°.(1)将这两个三角形按图①方式摆放,使点E落在AB上,DE的延长线交BC于点F.求证:BF+EF=DE;(2)改变△ADE的位置,使DE交BC的延长线于点F(如图②),则(1)中的结论还成立吗?若成立,加以证明;若不成立,写出此时BF、EF与DE之间的等量关系,并说明理由.2020年八年级上学期第一次月考数学试卷(答案)4分,共40分)1.如图,在△中,点是延长线上一点,=40°,=120°,则等于(C)A.60°B.70°C.80°D.90°2.如果一个三角形的两边长分别为2和4,则第三边长可能是( B )A.2 B.4 C.6 D.83.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x + y =( D).A.7 B.8 C.10 D.114.用直尺和圆规作一个角等于已知角的示意图如下,则说明∠A′O′B′=∠AOB的依据是(A)A.SSS B.SAS C.ASA D.AAS图1 图2 图3 图45.如图3,一副分别含有30°和45°角的两个直角三角板,拼成如图,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是( A )A.15° B.25° C.30° D.10°6.过一个多边形的一个顶点的所有对角线把多边形分成6个三角形,则这个多边形的边数为( D )A.5 B.6 C.7 D.87.如图4,已知点A、D、C、F在同一直线上,且AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加的一个条件是( B )A.∠A=∠EDF B.∠B=∠E C.∠BCA=∠F D.BC∥EF8.如图5,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=2,则PQ的最小值为( B )A.1 B.2 C.3 D.49.如图5,△ABC的三边AB、BC、CA长分别是20、30、40,其三条角平分线将△ABC分为三个三角形,则S△ABO︰S△BCO︰S△CAO等于(C)A.1︰1︰1 B.1︰2︰3 C.2︰3︰4 D.3︰4︰5图5 图6 图7 图810.如图6,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是( C )A.4cm B.6cm C.8cm D.9cm二、填空题(每小题4分,共24分)11.如图7,李叔叔家的凳子坏了,于是他给凳子加了两根木条,这样凳子就比较牢固了,他所应用的数学原理是___三角形的稳定性_______.12.如果一个等腰三角形有两边长分别为4和9,那么这个等腰三角形的周长为____22______.13.小明不慎将一块三角形的玻璃摔碎成如图8所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一些块带去,就能配一块与原来一样大小的三角形?应该带__②___.图8 图9 图10 图1114.如图10为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=___135°_____.15.如图11,已知∠B=46°,△ABC的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=____67°___.16.如图,有一个直角三角形ABC,∠C=90°,AC=10,BC=5,一条线段PQ=AB,P,Q两点分别在AC和过点A且垂直于AC的射线AX上运动,问P点运动到__AC的中点_位置时,才能使△ABC≌△QPA.三、解答题(共86分)17.(8分)一个多边形的外角和是内角和的,求这个多边形的边数.解:设这个多边形的边数为n,依题意得:(n﹣2)180°=360°,解得n=9.答:这个多边形的边数为9.18.(8分)张峰同学沿一段笔直的人行道行走,在由A步行到达B处的过程中,通过隔离带的空隙O,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语.其具体信息汇集如下.如图,AB∥OH∥CD,OB=OD,AC,BD相交于点O,OD⊥CD,垂足为D,已知AB=20米请根据上述信息求标语CD的长度.解:∵ AB∥CD,∴∠ABO=∠CDO.(1分)又∵ OD⊥CD,∴∠CDO=90°.∴∠ABO=90°,即OB⊥AB.(3分)在△ABO与△CDO中,∴△ABO≌△CDO.(6分)∴ CD=AB=20米.(8分)(也可利用“AAS”证△ABO≌△CDO,其他过程相同).解析:根据AB∥OH∥CD,利用平行线的性质可知∠ABO=∠CDO(或者∠BAO=∠DCO).由题意可证明OD,OB分别是平行线AB与OH以及OH与CD之间的距离,故OD=OB,根据“ASA”或者“AAS”证明△ABO ≌△CDO,所以CD=AB,进而求出CD的长.19.(8分)如图,点D在△ABC的AB边上,且∠ACD=∠A.(1)作∠BDC的平分线DE,交BC于点E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线DE与直线AC的位置关系(不要求证明).解:(1)如图所示:(2)DE∥AC∵DE平分∠BDC,∴∠BDE=∠BDC,∵∠ACD=∠A,∠ACD+∠A=∠BDC,∴∠A=∠BDC,∴∠A=∠BDE,∴DE∥AC.20.(10分)如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D在l异侧,测得AB=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF;(2)指出图中所有平行的线段,并说明理由.(1)证明:∵ BF=EC,∴ BF+FC=EC+CF,即BC=EF.(3分)又AB=DE,AC=DF,∴△ABC≌△DEF.(5分)(2)AB∥DE,AC∥DF.(7分)理由:∵△ABC≌△DEF,∴∠ABC=∠DEF,∠ACB=∠DFE,∴ AB∥DE,AC∥DF. (10分)21.(10分)如图,CD⊥AB于点D,BE⊥AC于点E,△ABE≌△ACD,∠C=42°,AB=9,AD=6,G为AB延长线上一点.(1)求∠EBG的度数.(2)求CE的长.解:(1)∆ABE≅∆ACD∴∠EBA=∠C=42°(3分)∠EBG=0180—∠EBA=138°.(5分)(2) ∆ABE≅∆ACD∴AC=AB=9 AE=AD=6 .(8分)∴EC=AC-AE=9-6=3 . (10分)22.(10分)如图,△ABC中,∠ACB=90°,DC=AE,AE是BC边上的中线,过点C作CF⊥AE,垂足为点F,过点B作BD⊥BC交CF的延长线于点D.(1)求证:AC=CB;(2)若AC=12 cm,求BD的长.(1)证明:∵AF⊥DC,∴∠ACF+∠FAC=90°,∵∠ACF+∠FCB=90°,∴∠EAC=∠FCB,在△DBC和△ECA,⎩⎪⎨⎪⎧∠DBC=∠ACB=90°∠DCB=∠CAEDC=AE,∴△DBC≌△ECA(AAS),∴BC=AC(2)解:∵E是AC的中点,∴EC =12BC =12AC=12×12 cm=6 cm,又∵△DBC≌△ECA,∴BD=CE,∴BD=6 cm23.(10分)如图所示,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB交AB于点E,点F在AC上,BD=DF.求证:(1)CF=EB; (2)AB=AF+2EB.证明:(1)∵ AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴ DE=DC.又∵ BD=DF,∴ Rt△CDF≌Rt△EDB(HL),∴ CF=EB.(2)∵ AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴△ADC≌△ADE,∴ AC=AE,∴ AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB.24.(10分)两个大小不同的等腰直角三角形三角板,如图①所示放置,图②是由它抽象出的几何图像,点B,C,E在同一条直线上,连接DC.(1)请找出图②中的全等三角形,并给予证明.(说明:结论中不得含有未标识的字母)(2)证明:DC⊥BE.解:(1)△ABE≌△ACD,证明:∵AB=AC,AE=AD,∠BAC=∠EAD=90°,∴∠BAC+∠CAE=∠EAD+∠CAE,即∠BAE=∠CAD,∴△ABE≌△ACD(2)由△ABE≌△ACD得∠ACD=∠ABE=45°,又∵∠ACB=45°,∴∠BCD=∠ACB+∠ACD=90°,∴DC⊥BE 25.(12分)已知Rt△ABC≌Rt△ADE,其中∠ACB=∠AED=90°.(1)将这两个三角形按图①方式摆放,使点E落在AB上,DE的延长线交BC于点F.求证:BF+EF=DE;(2)改变△ADE的位置,使DE交BC的延长线于点F(如图②),则(1)中的结论还成立吗?若成立,加以证明;若不成立,写出此时BF、EF与DE之间的等量关系,并说明理由.证明:(1)如图①,连接AF,∵Rt△ABC≌Rt△ADE,∴AC=AE,BC=DE,∵∠ACB=∠AEF=90°,AF=AF,∴Rt△ACF≌Rt△AEF, (4分)∴CF=EF,∴BF+EF=BF+CF=BC,∴BF+EF=DE; (6分)(2)如图②,(1)中的结论不成立,有DE=BF﹣EF,(8分)理由是:连接AF,∵Rt△ABC≌Rt△ADE,∴AC=AE,BC=DE,∵∠E=∠ACF=90°,AF=AF,∴Rt△ACF≌Rt△AEF, (12分)∴CF=EF,∴DE=BC=BF﹣FC=BF﹣EF,即DE=BF﹣EF. (14分)。
2020-2021学年湖南省长沙市开福区北雅中学八年级(下)第一次月考数学试卷一、选择题(本大题共12小题,共36.0分)1. 一本笔记本5元,买x 本共付y 元,则常量和变量分别是( )A. 常量:5;变量:xB. 常量:5;变量:yC. 常量:5;变量:x ,yD. 常量:x ,y ;变量:52. 如图,点A 、B 在直线l 1上,点C 、D 在直线l 2上,l 1//l 2,CA ⊥l 1,BD ⊥l 2,AC =3cm ,则BD 等于( )cm .A. 1B. 2C. 3D. 43. 矩形具有而一般平行四边形不一定具有的性质是( )A. 对角线互相平分B. 邻角互补C. 对边相等D. 对角线相等4. 下列四点中,在函数y =3x 的图象上的是( )A. (0,3)B. (1,3)C. (1,−13)D. (13,−1) 5. 正常人的体温一般在37℃左右,但一天中的不同时刻不尽相同,如图反映了一天24小时内小明体温的变化情况,下列说法错误的是( )A. 清晨5时体温最低B. 下午5时体温最高C. 从5时至24时,小明体温一直是升高的D. 从0时至5时,小明体温一直是下降的6. 如图,公路AC ,BC 互相垂直,公路AB 的中点M 与点C 被湖隔开,若测得AB 的长为2.4km ,则M ,C 两点间的距离为( )A. 0.6kmB. 1.2kmC. 1.5kmD. 2.4km7.如图,在四边形ABCD中,对角线AC,BD相交于点O,下列条件中能够判定这个四边形是平行四边形的是()A. AB//DC,AD=BCB. AB=AD,CD=CBC. AO=BO,DO=COD. AO=CO,BO=DO8.如图,平行四边形ABCD的对角线AC、BD相交于点O,那么下列条件中,能判断平行四边形ABCD是菱形的为()A. AO=COB. AO=BOC. ∠AOB=90°D. ∠BAD=∠ABC9.如图,四边形ABCD的对角线互相平分,若∠ABC=90°,则四边形ABCD为()A. 菱形B. 矩形C. 菱形或矩形D. 无法判断10.如图,菱形ABCD中,∠D=120°,则∠1=()A. 30°B. 25°C. 60°D. 15°11.如果y=(a−1)x|a|是正比例函数,那么a的值为()A. 1B. −1C. ±1D. 212. 下列式子中,y 不是x 的函数的是( )A. y =x 2B. y =|x|C. y =2x +1D. y =±√x(x ≥0) 二、填空题(本大题共4小题,共12.0分) 13. 菱形ABCD 中,若对角线BD =8,AC =6,则该菱形的面积为______ .14. 已知(x 1,y 1)和(x 2,y 2)是直线y =3x 上的两点,若x 1>x 2,则y 1与y 2的大小关系是y 1______ y 2.(填“>”,“<”或“=”)15. 在函数y =√x −1中,自变量x 的取值范围是______.16. 如图,在正方形ABCD 中,点E 、F 、G 分别是AD 、DC 、BC 的中点,AF 与DG 交于点O ,连接OE 、OB.下列结论:①AF ⊥DG ;②BC =2OE ;③AB =BO ;④∠AOB =∠DGC ;⑤∠OED =∠ABO.其中正确的结论有______ .(请填写序号)三、计算题(本大题共1小题,共6.0分)17. 解方程:x+1x−1−4x 2−1=1.四、解答题(本大题共8小题,共66.0分)18. 计算:|−3|+(3−π)0−(12)−2+(−1)2021+√94.19.在八下书本49页中,我们得到了三角形中位线定理:三角形的中位线平行于三角形的第三边,并且等于第三边的一半.完成以下证明过程:已知:如右图,D、E分别是△ABC的边AB,AC的中点;______ .求证:DE//BC且DE=12证明:如图,延长DE到点F,使EF=DE,连接FC,DC,AF.∵AE=______ ,DE=EF,∴四边形ADCF是平行四边形,CF平行且等于DA,∴CF平行且等于______ .∴四边形DBCF是平行四边形,∴DF平行且等于______ .______ ,又∵DE=12BC.∴______ ,DE=1220.有一个水箱,它的容积500L,水箱内原有水200L,现往水箱注水,已知每分钟注入水10L.(1)写出水箱内水量Q(L)与时间t(min)的函数关系式;(2)求自变量t的取值范围;(3)求注水12min时水箱内的水量?21.已知函数,y=kx(k为常数且k≠0);(1)当x=1,y=2时,则函数解析式为______ ;(2)当函数图象过第一、三象限时,k______ ;(3)k______ ,y随x的增大而减小;(4)如图,在(1)的条件下,点A在图象上,点A的横坐标为1,点B(2,0),求△OAB的面积.22.如图,在四边形ABCD中,AD//BC,∠ABC=∠ADC=90°,对角线AC,BD交于点O,DE平分∠ADC交BC于点E,连接OE.(1)求证:四边形ABCD是矩形;(2)若∠BDE=15°;①求证:△OEC是等腰三角形;②求∠DOE的度数.23.如图,BD为矩形ABCD的对角线,将边AB沿BE折叠,使点A落在BD上的点F处,作FG//AE交BE于点G,连接AG,AB=6,AD=8;(1)求证:四边形AGFE是菱形;(2)求AE的长;(3)求菱形AGFE的面积.24.我们不妨约定:对角线互相垂直的凸四边形叫做“十字形”;对角线相等的凸四边形叫做“对等四边形”.(1)在“①平行四边形;②矩形;③菱形;④正方形”中一定是“十字形”的有______ ;一定是“对等四边形”的有______ ;(请填序号)(2)如图1:若凸四边形ABCD是“十字形”也是“对等四边形”,F,H,G,M分别是AD,DC,AB,BC的中点,求证,四边形FGMH为正方形.(3)如图2,在Rt△ABC中,∠B=90°,∠C=30°,AC=20,点D从点C出发沿CA方向以2个单位每秒向A匀速运动;同时点E从A出发沿AB方向以1个单位每秒向B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动,DF//AB,连接EF,是否存在时间t(秒),使得四边形ADFE为“十字形”或“对等四边形”,若存在,请求出t的值,若不存在,请说明理由.25.如图1,直线OA的解析式为y=kx(k≠0),过点A作x轴的垂线交x轴于点B.(1)若AB=OB,则直线OA的解析式为______ ;(2)在(1)的条件下,若OA=2√2,在平面直角坐标系中是否存在点C,使得以A,B,O,C为顶点的四边形为平行四边形,若存在,直接写出点C的坐标,若不存在,请说明理由;(3)如图2,若∠AOB=60°,以OA为边作菱形OADE,点E在x轴上,F为菱形OADE外一点,EF⊥OF,M为OF上一点,∠EMF=∠EMD,求证:DM=OM+kME.答案和解析1.【答案】C【解析】解:一本笔记本5元,买x本共付y元,则5是常量,x、y是变量.故选:C.在一个变化的过程中,数值发生变化的量称为变量,数值始终不变的量称为常量,所以5是常量,x、y是变量,据此判断即可.此题主要考查了常量与变量问题,要熟练掌握,解答此题的关键是要明确:常量与变量必须存在于同一个变化过程中,判断一个量是常量还是变量,需要看两个方面:一是它是否在一个变化过程中;二是看它在这个变化过程中的取值情况是否发生变化.2.【答案】C【解析】解:如图,CA⊥l1,BD⊥l2,∴AC//BD.又∵l1//l2,∴四边形ABDC是矩形.∴BD=AC.又∵AC=3cm,∴BD=3cm.故选:C.根据题意判断四边形ABDC是矩形,则BD=AC.考查了矩形的判定与性质,在处理许多几何问题中,若能灵活运用矩形的性质,则可以简捷地解决与角、线段等有关的问题.3.【答案】D【解析】解:A、平行四边形与矩形都具有两条对角线互相平分的性质,故A不符合题意;B、平行四边形与矩形都不具有邻角互补的性质,故B不符合题意;C、平行四边形与矩形都具有两组对边分别相等的性质,故C不符合题意;D、平行四边形的两条对角线不相等,矩形具有两条对角线相等的性质,故D符合题意.故选:D .根据矩形和平行四边形的性质判断即可.此题考查矩形的性质,关键是根据矩形的性质和平行四边形的性质解答.4.【答案】B【解析】解:将x =0代入y =3x 可得y =0≠3,所以(0,3)不在函数y =3x 的图象上,故A 选项不符合题意;将x =1代入y =3x 可得y =3,所以(1,3)在函数y =3x 的图象上,故B 选项符合题意; 将x =1代入y =3x 可得y =3≠−13,所以(1,−13)不在函数y =3x 的图象上,故C 选项不符合题意;将x =13代入y =3x 可得y =1≠−1,所以(13,−1)不在函数y =3x 的图象上,故D 选项不符合题意.故选:B .将各选项的点的坐标分别代入函数解析式计算可求解.本题主要考查函数图象上点的坐标特征,将各点坐标代入解析式计算是解题的关键. 5.【答案】C【解析】【分析】本题考查了自变量与因变量之间的关系图,从图中得到必要的信息是解决本题的关键. 分析折线统计图,根据折线图的信息求解即可.【解答】解:由自变量与因变量之间的关系图可知:最底部的数据,则是温度最低的时刻,最高位置的数据则是温度最高的时刻; 则清晨5时体温最低,下午5时体温最高;从0时至5时,小明体温一直是下降的,从5时到17时,小明的体温一直是升高的趋势,而17时到24时的体温是下降的趋势.所以错误的是从5时到24时,小明的体温一直是升高的.故选C .6.【答案】B【解析】解:∵AC⊥BC,∴∠ACB=90°,∵M为AB的中点,∴CM=1AB,2∵AB=2.4km,∴CM=1.2km,故选:B.AB,代入求出即可.根据直角三角形斜边上的中线性质得出CM=12本考考查了直角三角形斜边上的中线性质,能根据直角三角形斜边上的中线性质得出AB是解此题的关键.CM=127.【答案】D【解析】解:A、由AB//DC,AD=BC,不能判定四边形ABCD是平行四边形,故选项A不符合题意;B、由AB=AD,CD=CB,不能判定四边形ABCD是平行四边形,故选项B不符合题意;C、由AO=BO,DO=CO,不能判定四边形ABCD是平行四边形,故选项C不符合题意;D、由AO=CO,BO=DO,能判定四边形ABCD是平行四边形,故选项D符合题意;故选:D.由平行四边形的判定方法分别对各个选项进行判断即可.本题考查了平行四边形的判定;熟练掌握平行四边形的判定方法是解题的关键.8.【答案】C【解析】解:A、∵四边形ABCD是平行四边形,∴AO=CO,故选项A不符合题意;B、∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,∵AO=BO,∴AC=BD,∴平行四边形ABCD是矩形,故选项B不符合题意;C、∵∠AOB=90°,∴AC⊥BD,∴平行四边形ABCD是菱形,故选项C符合题意;D、∵四边形ABCD是平行四边形,∴AD//BC,∴∠BAD+∠ABC=180°,∵∠BAD=∠ABC,∴∠BAD=∠ABC=90°,∴平行四边形ABCD是矩形,故选项D不符合题意;故选:C.由菱形的判定、平行四边形的性质和矩形的判定分别对各个选项进行判断即可.本题考查了菱形的判定、矩形的判定以及平行四边形的性质等知识;熟练掌握菱形的判定和矩形的判定是解题的关键.9.【答案】B【解析】解:∵四边形ABCD的对角线互相平分,∴四边形ABCD是平行四边形,∵∠ABC=90°,∴平行四边形ABCD是矩形,故选:B.先证四边形ABCD是平行四边形,再由∠ABC=90°,即可得出平行四边形ABCD是矩形.本题考查了矩形的判定、平行四边形的判定与性质等知识;熟练掌握矩形的判定和平行四边形的判定与性质是解题的关键.10.【答案】A【解析】解:∵四边形ABCD是菱形,∴AB=BC,∠B=∠D=120°,∴∠1=30°,故选:A.由菱形的性质可得AB=BC,∠B=∠D=120°,由菱形的性质可求解.本题考查了菱形的性质,等腰三角形的性质,掌握菱形的性质是本题的关键.11.【答案】B【解析】解:∵y=(a−1)x|a|是正比例函数,∴a−1≠0,|a|=1,解得a=−1,故选:B.一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.本题主要考查了正比例函数的定义,注意定义中对比例系数的要求:k是常数,k≠0.12.【答案】D【解析】解:A、y=x2,y是x的函数,故此选项不合题意;B、y=|x|,y是x的函数,故此选项不合题意;C、y=2x+1,y是x的函数,故此选项不合题意;D、y=±√x,y不是x的函数,故此选项符合题意;故选:D.利用函数的定义:给定一个自变量的值,都有唯一确定的函数值与其对应可得答案.此题主要考查了函数的概念,对于函数概念的理解:①有两个变量;②一个变量的数值随着另一个变量的数值的变化而发生变化;③对于自变量的每一个确定的值,函数值有且只有一个值与之对应,即单对应.13.【答案】24【解析】解:∵四边形ABCD是菱形,∴菱形的面积=AC⋅BD2=6×82=24,故答案为24.由菱形的面积公式可求解.本题考查了菱形的性质,掌握菱形的面积公式是本题的关键.14.【答案】>【解析】解:∵k=3>0,∴y随x的增大而增大.又∵(x1,y1)和(x2,y2)是直线y=3x上的两点,且x1>x2,∴y1>y2.故答案为:>.由k=3>0,利用正比例函数的性质可得出y随x的增大而增大,结合(x1,y1)和(x2,y2)是直线y=3x上的两点且x1>x2,即可得出y1>y2.本题考查了一次函数图象上点的坐标特征以及正比例函数的性质,牢记“当k>0时,y 随x的增大而增大;当k<0时,y随x的增大而减小”是解题的关键.15.【答案】x≥1【解析】解:根据题意得:x−1≥0,解得:x≥1.故答案为:x≥1.因为当函数表达式是二次根式时,被开方数为非负数,所以x−1≥0,解不等式可求x 的范围.此题主要考查函数自变量的取值范围,解决本题的关键是当函数表达式是二次根式时,被开方数为非负数.16.【答案】①②③④⑤【解析】解:连接BE交AF于点M,如图所示,∵四边形ABCD是正方形,∴AD=CD=BC=AB,∠ADC=∠C=90°,∵点F、点G分别是CD、BC的中点,∴DF=CG,在△ADF和△DCG中,{AD=DC∠ADF=∠C DF=CG,∴△ADF≌△DCG(SAS),∴∠FAD=∠CDG,∵∠CDG+∠ADO=90°,∴∠FAD+∠AOD=90°,∴∠AOD=90°,即AF⊥DG,∴结论①正确;∵∠AOD=90°,∴△AOD为直角三角形,∵点E是AD的中点,∴OE=12AD,∵AD=BC,∴BC=2OE,∴结论②正确;∵AD=BC,点E、G分别是AD、BC中点,∴DE=BG,∵AD//BC,∴四边形BGDE是平行四边形,∴DG//BE,∵DG⊥AF,∴BE⊥AF,∵AE=EO,∴BE垂直平分AO,∴AB=BO,∴结论③正确;∵△ADF≌△DCG,∴∠AFD=∠DGC,∵AB//CD,∴∠BAO=∠AFD,∵AB=BO,∴∠AOB=∠BAO,∴∠BAO=∠DGC,∴结论④正确;∵∠ADO=∠AFD,∠AFD=∠BAO,∴∠ADO=∠BAO,∵EO=ED,∴∠EDO=∠EOD,∵∠BAO=∠AOB,∴∠ABO+∠AOB=∠EOD+∠EDO,∴180°−(∠ABO+∠AOB)=180°−(∠EOD+∠EDO),即∠OED=∠ABO,∴结论⑤正确.故答案为:①②③④⑤.通过“SAS”可证明△ADF≌△DCG,得到∠FAD=∠CDG,由∠ADC=90°得∠CDG+∠ADO=90°,运用等量代换得∠FAD+∠ADO=90°,从而证明结论①;由直角三角形斜边中线的性质可得AD=2OE,由于AD=BC,可证结论②;连接BE交AF于点M,由GD//BE,得到BE是AO的垂直平分线,从而证得结论③;通过AB=OB得∠AOB=∠OAB,由△ADF≌△DCG得∠∠AFD=∠DGC,根据两直线平行、内错角相等可得∠OAB=∠AFD,运用等量代换可证结论④;由于△AOB和△EOD都是等腰三角形,且底角相等,可得顶角相等,可证结论⑤.此题考查了正方形的性质,全等三角形的判定与性质,等腰三角形的性质以及垂直平分线的性质等知识.此题综合性很强,难度较大,解题的关键是注意数形结合思想的应用.17.【答案】解:方程两边同乘(x+1)(x−1),得(x+1)2−4=(x+1)(x−1),整理得2x−2=0,解得x=1.检验:当x=1时,(x+1)(x−1)=0,所以x=1是增根,应舍去.∴原方程无解.【解析】观察可得方程最简公分母为:(x+1)(x−1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解分式方程的关键是两边同乘最简公分母,将分式方程转化为整式方程,易错点是忽视检验.18.【答案】解:原式=3+1−4−1+32=1.2【解析】直接利用零指数幂的性质以及负整数指数幂的性质、二次根式的性质、绝对值的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.19.【答案】BC CE BD BC DF DE//BC【解析】解:如图,延长DE到点F,使EF=DE,连接FC,DC,AF.∵AE=CE,DE=EF,∴四边形ADCF是平行四边形,CF平行且等于DA,∴CF平行且等于BD.∴四边形DBCF是平行四边形,∴DF平行且等于BC.DF,又∵DE=12BC.∴DE//BC,DE=12故答案为:BC,CE,BD,BC,DF,DE//BC.先证四边形ADCF是平行四边形,则CF平行且等于DA,得CF平行且等于BD.再证四边形DBCF是平行四边形,得DF平行且等于BC,即可得出结论.本题考查了平行四边形的判定与性质、三角形中位线定理等知识;熟练掌握三角形中位线定理,证明四边形DBCF为平行四边形是解题的关键.20.【答案】解:(1)根据题意,得:Q=200+10t;(2)令200≤Q=200+10t≤500则0≤t≤30;(3)当t=12时,Q=200+10×12=320(L).答:注水12min时水箱内的水量是320升.【解析】(1)根据等量关系“箱内水量=每分钟注入的量×时间+原有的水量”列出函数关系式;(2)根据水箱内水量应在200和500之间,且包含边界点,即200≤Q≤500,求出自变量t的取值范围;(3)把t=12代入解析式就可以求出池中的水量.本题考查了求一次函数的应用,利用解析式求自变量和函数的值.解答本题的关键是求出函数的解析式.21.【答案】y=2x>0<0【解析】解:(1)当x=1,y=2时,2=k,∴y=2x,故答案为y=2x;(2)∵函数图象过第一、三象限,∴k>0,故答案为>0;(3)∵y随x的增大而减小,∴函数图象经过第二、四象限,∴k<0,故答案为<0;(4)∵y=2x,点A的横坐标为1,∴A(1,2),∵B(2,0),∴OB=2,×2×2=2.∴△OAB的面积=12(1)将x=1,y=2代入y=kx即可求k的值,进而确定函数解析式;(2)根据正比例函数的图象特点与k的关系,可得k>0;(3)根据正比例函数的图象特点可确定,y随x的增大而减小时k<0;×2×2=2.(4)求出A(1,2),OB=2,则△OAB的面积=12本题考查正比例函数的图象及性质,熟练掌握k的取值与函数图象的关系是解题的关键.22.【答案】(1)证明:∵AD//BC,∴∠ABC+∠BAD=180°,∵∠ABC=90°,∴∠BAD=90°,∴∠BAD=∠ABC=∠ADC=90°,∴四边形ABCD是矩形;(2)①证明:∵四边形ABCD是矩形,DE平分∠ADC,∴∠CDE=∠CED=45°,∴EC=DC,又∵∠BDE=15°,∴∠CDO=60°,又∵矩形的对角线互相平分且相等,∴OD=OC,∴△OCD是等边三角形,∴OC=CD,∴CO=CE,∴△OEC是等腰三角形;②解:∵△OCD是等边三角形,∴∠DOC=∠OCD=60°,∴∠OCB=90°−∠DCO=30°,∵CO=CE,∴∠COE=(180°−30°)÷2=75°,∴∠DOE=∠DOC+∠COE=60°+75°=135°.【解析】(1)由平行线的性质易证∠BAD=90°,得出∠BAD=∠ABC=∠ADC=90°,即可得出结论;(2)①由矩形和角平分线的性质得出∠CDE=∠CED=45°,则EC=DC,推出∠CDO= 60°,证明△OCD是等边三角形,推出CO=CE,即可得出结论;②求出∠OCB=30°,得出∠COE=75°,即可得出结果.本题考查了矩形的判定与性质、平行线的性质、角平分线的性质、等边三角形的判定与性质、等腰三角形的判定与性质、三角形内角和定理等知识;熟练掌握矩形的判定与性质和等边三角形的判定与性质是解题的关键.23.【答案】解:(1)由折叠得,∠=∠2,,3=∠4,AE=EF,AG=FG,∵FG//AE,∴∠1=∠4,∴∠1=∠2=∠3=∠4,∴AE=EF=FG=AG,∴四边形AGFE是菱形;(2)在Rt△BCD中,BC=8,CD=6,∴BD=√BC2+CD2=√82+62=10,由折叠可得BF=BA=6,AE=EF,∴DF=BD−BF=10−6=4,设AE=x,则EF=x,DE=8−x,在Rt△DEF中,EF2+DF2=DE2,即x2+42=(8−x)2,解得x=3,即AE=3;(3)过点F作FH⊥AD,垂足为H,在Rt△DEF中,EF=3,DE=8−3=5,DF=4,由三角形的面积公式得,1 2EF⋅FD=12DE⋅FH,即3×4=5×FH,∴FH=125,∴菱形AGFE的面积为AE⋅FH=3×125=365.【解析】(1)根据折叠和平行线的性质,可得出∠1=∠2=∠3=∠4,进而得出四边形的四条边相等,得出结论;(2)由勾股定理求出BD,利用折叠和直角三角形的勾股定理可求出AE;(3)在直角三角形DEF中,由三角形的面积公式求出DE边上的高FH,利用菱形的面积公式求解即可.本题考查矩形、菱形的性质,折叠轴对称以及直角三角形的边角关系,掌握矩形、菱形的性质,直角三角形的边角关系是解决问题的关键.24.【答案】③④②④【解析】(1)解:∵正方形,菱形的对角线互相垂直,∴正方形,菱形是“十字形”,∵矩形,正方形的对角线相等,∴矩形,正方形是“对等四边形”,故答案为:③④,②④;(2)证明:如图1,∵凸四边形ABCD是“十字形”也是“对等四边形”,∴AC=BD,AC⊥BD,∵AC⊥BD,∴∠AEB=90°,∵F,H,G,M分别是AD,DC,AB,BC的中点,∴FH=12AC,GM=12AC,FG=12BD,MH=12BD,GM//AC,FG//BD,∴四边形NGPE是平行四边形,∴∠AEB=∠FGP=90°,∵AC=BD,∴FH=FG=GM=MH,∴四边形FGMH菱形,∵∠FGP=90°,∴菱形FGMH是正方形;(3)解:如图2,连接AF,DE,由题意得:CD=2t,AE=t,则AD=20−2t,Rt△ABC中,∠C=30°,∠B=90°,AC=20,∴AB=12AC=10,∵DF//AB,∴∠DFC=∠B=90°,CD=t,∴DF=12∴DF=AE,∴四边形ADFE是平行四边形,∵∠A=60°,∴▱ADFE不可能是矩形,当AD=DF时,▱ADFE是菱形,则AF⊥DE,此▱ADFE是“十字形”,∴t=20−2t,∴t=20,3∴当t=20时,四边形ADFE为“十字形”.3(1)根据“十字形”和“对等四边形”的定义判断即可;(2)先根据“十字形”和“对等四边形”的定义可知:AC=BD,AC⊥BD,根据三角形的中位线的性质可证得四边形FGMH四边相等,且有一个角是直角,可得结论;(3)先证明四边形ADFE是平行四边形,若四边形ADFE为“十字形”,则要满足对角线互相垂直,若四边形ADFE“对等四边形”,则要满足对角线相等,则要满足四边形ADFE是菱形或矩形,因为∠A=60°,所以四边形ADFE不可能是矩形,根据菱形列方程可得t的值.本题属于四边形综合题,考查了动点运动的问题,矩形的性质和判定,平行四边形的判定和性质,菱形的判定和性质,“对等四边形”和“十字形”的定义等知识,解题的关键是正确运用中位线定理和掌握矩形和菱形对角线的关系.25.【答案】y=x【解析】解:(1)∵AB=OB,∴设A的坐标为(a,a)且a≠0,将A代入直线y=kx,得:a=ka,∴k=1,故答案为:y=x;(2)∵∠AOB=90°∴OB²+AB²=OA²,∵OA=2√2,AB=OB∴OB=AB=2,∴A的坐标为(2,2),①若四边形为平行四边形AOBC,∵AC//OB,AC=OB=2,∴C的坐标为(4,2),②若四边形为平行四边形AOCB,∵AB//OC,AB=OC=2,∴C的坐标为(0,−2),③若四边形为平行四边形ABOC,∵AC//OB,AC=OB=2,∴C的坐标为(0,2),综上,C的坐标为(4,2)或(0,−2)或(0,2);(3)证明:如图,过点E作EG⊥DM,∵EF⊥OF,∠EMF=∠EMD,∴EF=EG,∵四边形OADE是菱形,∴OE=DE,∠AOB=∠ADE,在Rt△DGE与Rt△OFE中,{OE=DEEF=EG,∴Rt△DGE≌Rt△OFE(HL),∴DG=OF,∠EDG=∠EOF,在Rt△MEG与Rt△MEF中,{ME=MEGE=EF,∴Rt△MEG≌Rt△MEF(HL),∴MG=MF,设∠EOF=α,∵∠AOB=60°,∴∠AOM=60°+α,∠ADM=60°−α,∴∠AOM+∠ADM=120°,∵四边形ADMO的内角和为(4−2)×180°=360°,∴∠OAD+∠OMD=240°,∵∠OAD=180°−∠AOB=120°,∴∠OMD=120°,∴∠GMF=60°,∴∠GME=∠FME=30°,ME,∴EF=12∵MF²+EF²=ME²,ME²=ME²,∴MF²+14解得:√3ME=2MF,∵∠AOB=60°,OA,∴OB=12∵OB²+AB²=OA²,∴AB=√3OB,设A的坐标为(m,√3m),m≠0,将A代入直线y=kx,得:√3m=km,∴k=√3,∵DM=DG+MG=OF+MF=OM+2MF=OM+√3ME,∴DM=OM+kME.(1)由AB=OB,设A的坐标为(a,a),代入直线求出k=1,写出直线y=x即可;(2)由OA=2√2、AB=OB求出A的坐标为(2,2),再分四边形为平行四边形AOBC或平行四边形AOCB或平行四边形ABOC讨论,根据平行四边形性质两组对边分别平行且相等求出C的坐标即可;(3)由∠EMF=∠EMD,得EF=EG,由四边形OADE是菱形,得OE=DE,证出Rt△DGE≌Rt△OFE,得DG=OF,再△MEG≌Rt△MEF,得MG=MF,再设∠EOF=α,得∠AOM=60°+α,∠ADM=60°−α,即∠AOM+∠ADM=120°,结合四边形内角和为360°得∠OAD+∠OMD=240°,得∠GMF=60°,再用勾股定理得MF²+EF²=ME²,得√3ME=2MF,再由AOB=60°,得k=√3,故D M=DG+MG=OF+MF=OM+ 2MF=OM+√3ME=OM+kME.本题是一次函数综合题,考查了一次函数待定系数法,勾股定理,全等的判定与性质,平行四边形的性质,菱形的性质,角平分线的性质,直角三角形30°所对的边等于斜边的一半,四边形的内角和,根据平行四边形边的性质分类讨论是(2)小问的关键,利用角平分线性质证全等作为突破口是(3)小问关键.。
2020-2021学年八年级上学期数学第一次月考试卷一、选择题(本大题共10小题,每小题4分,满分40分.)1.在平面直角坐标系中,点M(2019,-2019)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限2.下列函数:①y= 12x2-x;②y=-x+10;③y=2x;④y= x2-1.其中是一次函数的有()A. 1个B. 2个C. 3个D. 4个3.如图,在围棋盘上有三枚棋子,如果黑棋的位置用坐标表示为(0,-1),黑棋的位置用坐标表示为(-3,0),则白棋③的位置坐标表示为()A. (4,2)B. (-4,2)C. (4,-2)D. (-4,-2)4.若点(2-3m,-m)在第三象限,则m的取值范围是()A. m<0B. m<23C. 23<m<0 D. m>235.用固定的速度向容器里注水,水面的高度h和注水时间t的函数关系的大致图象如图,则该容器可能是()A. B. C. D.6.已知点M(-4,2),若点N是y轴上一动点,则M,N两点之间的距离最小值为()A. -4B. 2C. 4D. -27.若k<0,则在平面直角坐标系中,y=2kx-k+1的图象大致是()A. B. C. D.8.如图,在平面直角坐标系xOy中,将四边形ABCD先向下平移,再向右平移得到四边形A1B1C1D1,已知A(-3,5),B(-4,3),A1(3,3),则B1的坐标为()A. (1,2)B. (1,4)C. (2,1)D. (4,1)9.已知A(2,a)、B(-1,b)、C(c,0)都在一次函数y=kx+3(k<0)的图象上,则下列结论一定正确的是()A. a<bB. a>bC. a>3D. c<010.某乡村盛产葡萄,果大味美,甲、乙两个葡萄采摘园为吸引游客,在销售价格一样的基础上分别推出优惠方案,甲采摘园的优惠方案:游客进园需购买门票,采摘的所有葡萄按六折优惠.乙采摘园的优惠方案:游客无需买票,采摘葡萄超过一定数量后,超过的部分打折销售.活动期间,某游客的葡萄采摘量为xkg,若在甲采摘园所需总费用为y甲元,若在乙采摘园所需总费用为y乙元,y甲、y乙与x之间的函数图象如图所示,则下列说法错误的是()A. 甲采摘园的门票费用是60元B. 两个采摘园优惠前的葡萄价格是30元/千克C. 乙采摘园超过10kg后,超过的部分价格是12元/千克D. 若游客采摘18kg葡萄,那么到甲或乙两个采摘园的总费用相同二、填空题(本大题共4小题,每小题5分,满分20分)11.若(2,1)表示教室里第2列第1排的位置,则教室里第5列第6排的位置表示为________ 。
2020年秋季第一次月考八年级上学期数学试题含答案(人教版)一、精心选一选(每小题3分,共30分)1.的算术平方根是( )A .4 B. 2 C.-2 D. ±22.下面四个图形中,∠1与∠2是对顶角的是( )3.线段CD 是由线段AB 平移得到的,点A (-1,4)的对应点为C (4,7),则点B (-4,-1)的对应点D 的坐标为( )A.(2,9)B.(5,3)C.(1,2)D.(-9,-4)4.下列调查,适合用全面调查的事件是( )A.了解一批炮弹的杀伤半径B.了解枣阳电视台《聚焦》栏目的收视率C.了解汉江中鱼的种类D.了解某班学生对“枣阳一城两花”的知晓率5.一个长方形在直角坐标系中三个顶点的坐标为(-1,-1),(-1,2),(3,-1),则第四个顶点的坐标为( )A.(2,2)B.(3,2)C.(3,3)D.(2,3)6.下列四组值中不是二元一次方程12=-y x 的解的是( ) A.⎪⎩⎪⎨⎧-==21,0y x B.⎩⎨⎧==1,1y x C.⎩⎨⎧==0,1y x D.⎩⎨⎧-=-=1,1y x 7.如图,直线AB,CD 相交于点O ,OA 平分∠EOC.若∠EOC ︰∠EOD=2︰3,则∠BOD 的度数为( )A.36°B.40°C.35°D.45°8.如图是小刚画的一张脸,他对妹妹说“如果我用(1,3)表示左眼,用(3,3)表示右眼,那么嘴的位置可以表示为( )A.(1,2)B.(1,3)C.(2,1)D.(3,2)9.下列说法正确的是( )A.22是分数 B.圆周率π是无理数 C.38是无理数 D.无限小数都是无理数10. 已知点P (a ,1-a )在平面直角坐标系的第一象限内,则a 的取值范围在数轴上可表示为( )二.细心填一填(每题3分,共30分)21,358;x y x y -=⎧⎨-=⎩①②11.把命题“同角的补角相等”改写成“如果……,那么……”的形式是 。
湖南省长沙市长沙市开福区北雅中学2020-2021学年八年级上学期10月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列图形中,是轴对称图形的是( )A .B .C .D . 2.点 M(3,-2)关于 y 轴对称的点的坐标为( )A .(﹣3,2)B .(3,﹣2)C .(﹣3,﹣2)D .(3,2) 3.到ABC ∆的三顶点距离相等的点是ABC ∆的是( )A .三条中线的交点B .三条角平分线的交点C .三条高线的交点D .三条边的垂直平分线的交点 4.已知等腰三角形的一边长为2,周长为8,那么它的腰长为 ( ) A .2 B .3 C .2或3 D .不能确定 5.如图,在ABC ∆中,AB=AC ,D 是BC 的中点,下列结论不正确的是( )A .AD ⊥BCB .∠B=∠C C .AB=2BD D .AD 平分∠BAC6.如图,在ΔABC 中, AB 的垂直平分线交AC 于点D ,已知AC=10cm ,BC=7cm , 则△BCD 的周长为( )A .17cmB .18cmC .19cmD .20cm 7.如图,Rt △ABC 中,∠C=90°,AD 平分∠BAC ,交BC 于点D ,AB=10,S △ABD =15,则CD 的长为( )A.3 B.4 C.5 D.68.如图,在△ABC 中AB=AC,D、E 两点分别在AC、BC 上,BD 是∠ABC 的平分线,DE∥AB,若BE=5cm,CE=3cm,则△CDE 的周长是()A.13cm B.11cm C.9cm D.8cm9.下列条件①有一个角为60°的三角形;②三个外角都相等的三角形;③一边上的高与中线重合的三角形;④有一个角为60°的等腰三角形.能判定三角形为等边三角形的有()A.1个B.2个C.3个D.4个10.已知∠AOB=30°,点P在∠AOB的内部,点P1和点P关于OA对称,点P2和点P关于OB对称,则P1、O、P2三点构成的三角形是()A.直角三角形B.钝角三角形C.等腰直角三角形D.等边三角形11.如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM 周长的最小值为()A.6 B.8 C.10 D.1212.如图,已知AD 为△ABC 的高线,AD=BC,以AB 为底边作等腰Rt△ABE,连接ED,EC,延长CE 交AD 于F 点,下列结论:①△ADE≌△BCE;②CE⊥DE;③BD=AF;④S△BDE=S△ACE,其中正确的有()A.①③B.①②④C.①②③④D.②③④二、填空题13.Rt△ABC中,∠C=90°,∠B=2∠A,BC=3cm,AB=_________cm.14.如图,在△ABC 中,∠BAC=120°,点D 是BC 上一点,BD 的垂直平分线交AB 于点E,将△ACD 沿AD 折叠,点C 恰好与点E 重合,则∠B 等于_______°;15.如图,△ABC的面积为1cm2,BP平分∠ABC,AP⊥BP于P,则△PBC的面积为________.16.如图,已知△ABC 为等边三角形,点D、E 分别在边BC、AC 上,且AE=CD,AD 与BE相交于点F.则∠DFE 的度数为_____°;17.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD,BE=CF,则下列结论:①DE =DF;②AD平分∠BAC;③AE=AD;④AC﹣AB=2BE中正确的是_____.18.若等腰三角形一腰上的高与腰长之比为1∶2,则该等腰三角形顶角的度数为________.三、解答题19.按要求用尺规作图(要求:不写作法,但要保留作图痕迹.)(1)已知:线段AB求作:线段AB 的垂直平分线MN .(2)已知:AOB ∠求作:AOB ∠的角平分线OC .20.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC 的顶点A ,C 的坐标分别为A (-4,5),C (-1,3).(1)请在如图所示的网格内作出x 轴、y 轴;(2)请作出△ABC 关于y 轴对称的△A 1B 1C 1;(3)写出点B 1的坐标并求出△A 1B 1C 1的面积.21.已知,如图,在△ABC 中,∠ACB=90°,AC=BC ,BE ⊥CE 于点E ,AD ⊥CE 于点D .求证:△BEC ≌△CDA .22.如图,已知在ABC ∆中,AB AC =,D 为BC 边的中点,过点D 作DE AB ⊥,DF AC ⊥,垂足分别为E ,F .(1)求证:DE DF =;(2)若60A ∠=︒,1BE =,求ABC ∆的周长.23.如图,△ABC 中,AC 的垂直平分线DE 与∠ABC 的角平分线相交于点D ,垂足为点E ,若∠ABC =72°,求∠ADC 的度数.24.已知:三角形ABC 中,∠A=90∘,AB=AC ,D 为BC 的中点,如图,E ,F 分别是AB ,AC 上的点,且BE=AF ,求证:△DEF 为等腰直角三角形.25.若等腰三角形的顶角为36°,则这个三角形就是黄金三角形。
2020-2021学年八年级(上)第一次月考数学试卷一、选择题(本题共10小题,每小题4分,满分40分)1.下列函数中是一次函数的是()A.y=B.y=C.y=ax+b D.y=x22.下列各点中位于第二象限的是()A.(﹣2,0)B.(8,﹣2)C.(0,3)D.(﹣,4)3.已知过A(﹣1,a),B(2,﹣2)两点的直线平行于x轴,则a的值为()A.﹣1 B.1 C.2 D.﹣24.关于函数y=﹣﹣1,下列说法错误的是()A.当x=2时,y=﹣2B.y随x的增大而减小C.若x1>x2,则y1>y2D.图象经过第二、三、四象限5.下面四条直线,其中直线上的每一个点的坐标都是二元一次方程2x﹣3y=6的解的是()A.B.C.D.6.已知y﹣1与x成正比例,当x=3时,y=2.则当x=﹣1时,y的值是()A.﹣1 B.0 C.D.7.实践证明1分钟跳绳测验的最佳状态是前20秒速度匀速增加,后10秒冲刺,中间速度保持不变,则跳绳速度v(个/秒)与时间t(秒)之间的函数图象大致为()A.B.C.D.8.一次函数y=ax+b与y=abx在同一个平面直角坐标系中的图象不可能是()A.B.C.D.9.若点(﹣1,m)和(2,n)在直线y=﹣x+b上,则m、n、b的大小关系是()A.m>n>b B.m<n<b C.m>b>n D.b<m<n10.甲车从A地到B地,乙车从B地到A地,乙车先出发先到达,甲乙两车之间的距离y(千米)与行驶的时间x(小时)的函数关系如图所示,则下列说法中不正确的是()A.甲车的速度是80km/hB.乙车的速度是60km/hC.甲车出发1h与乙车相遇D.乙车到达目的地时甲车离B地10km二、填空题(共4题,每题5分)11.函数中,自变量x的取值范围是.12.已知关于x的方程mx+n=0的解是x=﹣2,则直线y=mx+n与x轴的交点坐标是.13.若点P的坐标是(2a+1,a﹣4),且P点到两坐标轴的距离相等,则P点的坐标是.14.直线y=kx﹣2与直线y=x﹣1(1≤x≤4)有交点,则k的取值范围是.三、解答题(共8题,共90分)15.已知一次函数的图象平行于y=﹣x,且截距为1.(1)求这个函数的解析式;(2)判断点P(﹣2,)是否在这个函数的图象上.16.若函数y=(m+1)x+m2﹣1是正比例函数.(1)求该函数的表达式.(2)将该函数图象沿y轴向上或者向下平移,使其经过(1,﹣2),求平移的方向与距离.17.如图,先将△ABC向上平移2个单位再向左平移5个单位得到△A1B1C1(1)画出△A1B1C1,并写出点A1、B1、C1的坐标.(2)求△A1B1C1的面积.18.画出函数y=﹣x+3的图象,并利用图象解下列问题:(1)求方程﹣x+3=0的解.(2)求不等式﹣x+3>0的解集.(3)若﹣3≤y<6,求x的取值范围.19.如图,大拇指与小拇指尽量张开时,两指尖的距离称为指距.人体构造学的研究成果表明,一般情况下人的指距d和身高h成如下所示的关系.指距d(cm)20 21 22 23身高h(cm)160 169 178 187 (1)直接写出身高h与指距d的函数关系式;(2)姚明的身高是226厘米,可预测他的指距约为多少?(精确到0.1厘米)20.如图,直线l1:y=2x﹣2与x轴交于点D,直线l2:y=kx+b与x轴交于点A,且经过点B,直线l1,l2交于点C(m,2).(1)求m的值;(2)求直线l2的解析式;(3)根据图象,直接写出1<kx+b<2x﹣2的解集.(4)求△ACD的面积.21.甲、乙两个工程队完成某项工程,先由甲单独做10天,乙队再加入合作.工进度满足如图所示.(1)求工作量y与工作时间x(天)之间的函数关系式;(2)这项工程全部完成需要多少天?(3)求乙队单独完成这项工程的天数.22.甲、乙两人分别安装同一种零件40个,其中乙在安装两小时后休息了2小时,后继续按原来进度工作,他们每人安装的零件总数y(个)与安装时间x(小时)的函数关系如图1所示,两人安装零件总数之差z(件)与时间x(小时)的函数关系如图2所示.(1)a=;b=.(2)求出甲工作2小时后的安装的零件数y与时间x的函数关系.(3)甲、乙两人在什么时间生产的零件总数相差8个?参考答案与试题解析一.选择题(共10小题)1.下列函数中是一次函数的是()A.y=B.y=C.y=ax+b D.y=x2【分析】根据一次函数的定义解答.【解答】解:A、是正比例函数,特殊的一次函数,故本选项符合题意;B、自变量次数不为1,不是一次函数,故本选项不符合题意;C、单a=0时,它不是一次函数,故本选项不符合题意;D、自变量次数不为1,不是一次函数,故本选项不符合题意.故选:A.2.下列各点中位于第二象限的是()A.(﹣2,0)B.(8,﹣2)C.(0,3)D.(﹣,4)【分析】依据位于第二象限的点的横坐标为负,纵坐标为正,即可得到结论.【解答】解:∵位于第二象限的点的横坐标为负,纵坐标为正,∴位于第二象限的是(﹣,4)故选:D.3.已知过A(﹣1,a),B(2,﹣2)两点的直线平行于x轴,则a的值为()A.﹣1 B.1 C.2 D.﹣2【分析】根据两点所在直线平行于x轴,那么这两点的纵坐标相等解答即可.【解答】解:∵过A(﹣1,a),B(2,﹣2)两点的直线平行于x轴,∴a=﹣2,故选:D.4.关于函数y=﹣﹣1,下列说法错误的是()A.当x=2时,y=﹣2B.y随x的增大而减小C.若x1>x2,则y1>y2D.图象经过第二、三、四象限【分析】根据一次函数的性质判定即可.【解答】解:关于函数y=﹣﹣1,A、当x=2时,y=﹣﹣1=﹣2,说法正确,不合题意;B、∵k=﹣,∴y随x的增大而减小,说法正确,不合题意;C、∵k=﹣,∴y随x的增大而减小,∴若x1>x2,则y1<y2,说法错误,符合题意;D、图象经过第二、三、四象限,说法正确,不合题意;故选:C.5.下面四条直线,其中直线上的每一个点的坐标都是二元一次方程2x﹣3y=6的解的是()A.B.C.D.【分析】根据两点确定一条直线,当x=0,求出y的值,再利用y=0,求出x的值,即可得出一次函数图象与坐标轴交点,即可得出图象.【解答】解:∵2x﹣3y=6,∴y=x﹣2,∴当x=0,y=﹣2;当y=0,x=3,∴一次函数y=x﹣2,与y轴交于点(0,﹣2),与x轴交于点(3,0),即可得出选项D符合要求,故选:D.6.已知y﹣1与x成正比例,当x=3时,y=2.则当x=﹣1时,y的值是()A.﹣1 B.0 C.D.【分析】设y﹣1=kx(k≠0),把x=3,y=2代入求出k的值,把x=﹣1代入函数关系式即可得到相应的y的值;【解答】解:设y﹣1=kx(k≠0),则由x=3时,y=2,得到:2﹣1=3k,解得k=.则该函数关系式为:y=x+1;把x=﹣1代入y=x+1得到:y=﹣+1=;故选:D.7.实践证明1分钟跳绳测验的最佳状态是前20秒速度匀速增加,后10秒冲刺,中间速度保持不变,则跳绳速度v(个/秒)与时间t(秒)之间的函数图象大致为()A.B.C.D.【分析】根据前20秒匀加速进行,20秒至50秒保持跳绳速度不变,后10秒继续匀加速进行,得出速度y随时间x的增加的变化情况,即可求出答案.【解答】解:随着时间的变化,前20秒匀加速进行,所以此时跳绳速度y随时间x的增加而增加,再根据20秒至50秒保持跳绳速度不变,所以此时跳绳速度y随时间x的增加而不变,再根据后10秒继续匀加速进行,所以此时跳绳速度y随时间x的增加而增加,故选:C.8.一次函数y=ax+b与y=abx在同一个平面直角坐标系中的图象不可能是()A.B.C.D.【分析】根据a、b的取值,分别判断出两个函数图象所过的象限,要注意分类讨论.【解答】解:当ab>0,a,b同号,y=abx经过一、三象限,同正时,y=ax+b过一、三、二象限;同负时过二、四、三象限,当ab<0时,a,b异号,y=abx经过二、四象限a<0,b>0时,y=ax+b过一、三、四象限;a>0,b<0时,y=ax+b过一、二、四象限.故选:D.9.若点(﹣1,m)和(2,n)在直线y=﹣x+b上,则m、n、b的大小关系是()A.m>n>b B.m<n<b C.m>b>n D.b<m<n【分析】根据一次函数的解析式判断出其增减性,再根据点的横坐标的特点即可得出结论.【解答】解:∵直线y=﹣x+b中,k=﹣1<0,∴y随x的增大而减小.∵﹣1<0<2,∴m>b>n.故选:C.10.甲车从A地到B地,乙车从B地到A地,乙车先出发先到达,甲乙两车之间的距离y(千米)与行驶的时间x(小时)的函数关系如图所示,则下列说法中不正确的是()A.甲车的速度是80km/hB.乙车的速度是60km/hC.甲车出发1h与乙车相遇D.乙车到达目的地时甲车离B地10km【分析】根据已知图象分别分析甲、乙两车的速度,进而分析得出答案.【解答】解:根据图象可知甲用了(3.5﹣1)小时走了200千米,所以甲的速度为:200÷2.5=80km/h,故选项A不合题意;由图象横坐标可得,乙先出发的时间为1小时,两车相距(200﹣140)=60km,故乙车的速度是60km/h,故选项B不符合题意;140÷(80+60)=1(小时),即甲车出发1h与乙车相遇,故选项C不合题意;200﹣(200÷60﹣1)×80=km,即乙车到达目的地时甲车离B地km,故选项D符合题意.故选:D.二.填空题(共4小题)11.函数中,自变量x的取值范围是x>﹣2 .【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,就可以求解.【解答】解:根据题意得:被开方数x+2≥0,解得x≥﹣2,根据分式有意义的条件,x+2≠0,解得x≠﹣2,故x>﹣2.故答案为x>﹣2.12.已知关于x的方程mx+n=0的解是x=﹣2,则直线y=mx+n与x轴的交点坐标是(﹣2,0).【分析】求直线与x轴的交点坐标,需使直线y=mx+n的y值为0,则mx+n=0;已知此方程的解为x=﹣2.因此可得答案.【解答】解:∵方程的解为x=﹣2,∴当x=﹣2时mx+n=0;又∵直线y=mx+n与x轴的交点的纵坐标是0,∴当y=0时,则有mx+n=0,∴x=﹣2时,y=0.∴直线y=mx+n与x轴的交点坐标是(﹣2,0).13.若点P的坐标是(2a+1,a﹣4),且P点到两坐标轴的距离相等,则P点的坐标是(﹣9,﹣9)或(3,﹣3).【分析】根据点到两坐标轴的距离相等列出绝对值方程求出a的值,然后求解即可.【解答】解:∵点P(2a+1,a﹣4)到两坐标轴的距离相等,∴|2a+1|=|a﹣4|,∴2a+1=a﹣4或2a+1=﹣(a﹣4),解得a=﹣5或a=1,当a=﹣5时,点P的坐标为(﹣9,﹣9),当a=1时,点P的坐标为(3,﹣3),综上所述,点P的坐标为(﹣9,﹣9)或(3,﹣3),故答案为:(﹣9,﹣9)或(3,﹣3).14.直线y=kx﹣2与直线y=x﹣1(1≤x≤4)有交点,则k的取值范围是≤k≤2 .【分析】根据已知条件得到直线y=kx﹣2与y轴的交点坐标为C(0,﹣2),求得直线y=x﹣1过A(1,0),B(4,3),设直线AC的解析式为y=mx+n,得到直线AC的解析式为y=2x﹣2,设直线BC的解析式为y=ex+f,得到直线BC的解析式为y=x﹣2,于是得到结论.【解答】解:令x=0,则y=0•k﹣2=﹣2,所以直线y=kx﹣2与y轴的交点坐标为C(0,﹣2),∵当x=1时,y=x﹣1=0,当x=4时,y=x﹣1=3,∴直线y=x﹣1过A(1,0),B(4,3),设直线AC的解析式为y=mx+n,则,解得.所以直线AC的解析式为y=2x﹣2,设直线BC的解析式为y=ex+f,则,解得.所以直线BC的解析式为y=x﹣2,若直线y=kx﹣2与直线y=x﹣1(1≤x≤4)有交点,则k的取值范围是≤k≤2,故答案为≤k≤2:三.解答题(共8小题)15.已知一次函数的图象平行于y=﹣x,且截距为1.(1)求这个函数的解析式;(2)判断点P(﹣2,)是否在这个函数的图象上.【分析】(1)根据两平行直线的解析式的k值相等求出k,然后根据截距为1求出b值,即可得解;(2)把点P(﹣2,)代入解析式,检验即可.【解答】解:(1)设这个函数的解析式为y=kx+b,∵一次函数的图象平行于y=﹣x,且截距为1,∴k=﹣,b=1,∴这个函数的解析式为y=﹣x+1;(2)当x=﹣2时,y=+1=,故点P(﹣2,)不在这个函数的图象上.16.若函数y=(m+1)x+m2﹣1是正比例函数.(1)求该函数的表达式.(2)将该函数图象沿y轴向上或者向下平移,使其经过(1,﹣2),求平移的方向与距离.【分析】(1)根据正比例函数的定义列式计算即可得解;(2)设平移后的函数的解析式为y=2x+b,把(1,﹣2)代入求得b的值,即可求得结论.【解答】解:(1)根据题意得,m2﹣1=0且m+1≠0,解得m=±1且m≠﹣1,所以m=1.所以该函数的表达式为y=2x;(2)设平移后的函数的解析式为y=2x+b,∵经过(1,﹣2),∴﹣2=2+b,∴b=﹣4,∴函数图象沿y轴向下平移4个单位,使其经过(1,﹣2).17.如图,先将△ABC向上平移2个单位再向左平移5个单位得到△A1B1C1(1)画出△A1B1C1,并写出点A1、B1、C1的坐标.(2)求△A1B1C1的面积.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)利用△A1B1C1所在矩形面积减去周围三角形面积得出答案.【解答】解:(1)如图所示:△A1B1C1,点A1(﹣1,5),B1(﹣2,3),C1(﹣4,4);(2)△A1B1C1的面积为:2×3﹣×1×3﹣×2×1﹣×1×2=2.5;18.画出函数y=﹣x+3的图象,并利用图象解下列问题:(1)求方程﹣x+3=0的解.(2)求不等式﹣x+3>0的解集.(3)若﹣3≤y<6,求x的取值范围.【分析】(1)先利用描点法画出一次函数图象,然后利用直线与x轴的交点坐标确定方程﹣x+3=0的解;(2)利用x轴上方所对应的自变量的范围确定不等式的解集;(3)利用图象确定y=﹣3和y=6对应的自变量的值,从而得到对应的x的取值范围.【解答】解:(1)如图,∵直线与x轴的交点坐标为(2,0),∴方程﹣x+3=0的解为x=2,(2)如图,∵x<2时,y>0,∴不等式﹣x+3>0的解集为x<2;(3)如图,﹣2<x≤4时,﹣3≤y<6.19.如图,大拇指与小拇指尽量张开时,两指尖的距离称为指距.人体构造学的研究成果表明,一般情况下人的指距d和身高h成如下所示的关系.指距d(cm)20 21 22 23身高h(cm)160 169 178 187 (1)直接写出身高h与指距d的函数关系式;(2)姚明的身高是226厘米,可预测他的指距约为多少?(精确到0.1厘米)【分析】(1)运用待定系数法求解即可;(2)把h=226代入(1)中的结论即可.【解答】解:根据表格中数据,d每增加1,身高增加9cm,故d与h是一次函数关系,设这个一次函数的解析式是:h=kd+b,,解得,故一次函数的解析式是:h=9d﹣20;(2)当h=226时,9d﹣20=226,解得d=27.3.即姚明的身高是226厘米,可预测他的指距约为27.3厘米.20.如图,直线l1:y=2x﹣2与x轴交于点D,直线l2:y=kx+b与x轴交于点A,且经过点B,直线l1,l2交于点C(m,2).(1)求m的值;(2)求直线l2的解析式;(3)根据图象,直接写出1<kx+b<2x﹣2的解集.(4)求△ACD的面积.【分析】(1)把C(m,2)代入y=2x﹣2中可求出m的值;(2)利用待定系数法求直线l2的解析式;(3)结合图象写出y=kx+b的函数值大于2且直线l1在直线l2上方对应的自变量的范围;(4)根据两直线解析式确定A、D点的坐标,然后利用三角形面积公式计算.【解答】解:(1)把C(m,2)代入y=2x﹣2得2m﹣2=2,解得m=4;(2)把C(2,2),B(3,1)代入y=kx+b得,解得,∴直线l2的解析式为y=﹣x+4;(3)2<x<3;(3)当y=0时,2x﹣2=0,解得x=1,则C(1,0),当y=0时,﹣x+4=0,解得x=4,则A(4,0),∴S△ACD=×(4﹣1)×2=3.21.甲、乙两个工程队完成某项工程,先由甲单独做10天,乙队再加入合作.工进度满足如图所示.(1)求工作量y与工作时间x(天)之间的函数关系式;(2)这项工程全部完成需要多少天?(3)求乙队单独完成这项工程的天数.【分析】(1)分段函数,运用待定系数法解答即可;(2)根据(1)的结论解答即可;(3)根据(1)可得乙队的工作效率,从而计算出乙队单独完成这项工程要60天.【解答】解:(1)当x≤10时,设y=kx,根据题意得,解得k=,∴y=;当x>10时,设y=k1x+b,根据题意得:,解得,∴y=.(天)∴10<x≤28,∴;(2)由(1)得,当y=1时,,解得x=28.答:这项工程全部完成需要28天;(3)(1﹣)÷(28﹣10)=(天),(天),答:乙队单独完成这项工程需要60天.22.甲、乙两人分别安装同一种零件40个,其中乙在安装两小时后休息了2小时,后继续按原来进度工作,他们每人安装的零件总数y(个)与安装时间x(小时)的函数关系如图1所示,两人安装零件总数之差z(件)与时间x(小时)的函数关系如图2所示.(1)a= 4 ;b=10 .(2)求出甲工作2小时后的安装的零件数y与时间x的函数关系.(3)甲、乙两人在什么时间生产的零件总数相差8个?【分析】(1)根据题意和图象中的数据可以求得a、b的值;(2)根据函数图象中的数据可以求得甲工作2小时后的安装的零件数y与时间x的函数关系;(3)根据函数图象,利用分类讨论的方法可以求得甲、乙两人在什么时间生产的零件总数相差8个.【解答】解:(1)由图可得,a=10﹣6=4,b=4+(40﹣10)÷(10÷2)=4+30÷5=4+6=10,故答案为:4,10;(2)甲后来的速度为:=6件/小时,甲做完40个需要的时间为:2+(40﹣4)÷6=2+36÷6=2+6=8,设甲工作2小时后的安装的零件数y与时间x的函数关系是y=kx+b,∵甲工作2小时后的安装的零件数y与时间x的函数图象过点(2,4),(8,40),∴,得,即甲工作2小时后的安装的零件数y与时间x的函数关系是y=6x﹣8(2<x≤8);(3)设t小时时,甲、乙两人生产的零件总数相差8个,乙的速度为:10÷2=5件/小时,当4<t≤8时,6+(t﹣4)×(6﹣5)=8,解得,t=6,当8<t<10时,5(10﹣t)=8,解得,t=8.4,答:甲、乙两人在6小时或8.4小时时生产的零件总数相差8个.2020-2021学年度第一学期第一次月考八年级数学试题卷考试方式:闭卷考试时间:100 分钟满分:120 分一.选择题(共10小题,每题3分,共30分,请把正确答案写在答案卷上.)1.下列四个图案是我国几家银行的标志,其中是轴对称图形的有()A.1个 B.2个 C.3个 D.4个2.下列各条件不能作出唯一直角三角形的是()A.已知两直角边 B.已知两锐角C.已知一直角边和它们所对的锐角 D.已知斜边和一直角边3.下列语句中正确的有几个()①关于一条直线对称的两个图形一定能重合;②两个能重合的图形一定关于某条直线对称;③两个轴对称图形的对应点一定在对称轴的两侧;④一个圆有无数条对称轴.A.1 B.2 C.3 D.44.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的()A.CB=CD B.BAC=∠DAC C.BCA=DCA D.∠B=∠D=9005.如图,请仔细观察用直尺和圆规作一个角等于已知角AOB ∠的示意图,请你根据所学的图形的全等这一章的知识,说明画出'''A O B AOB ∠=∠的依据是( )A.SASB.ASAC.AASD.SSS6.如图,将三角形纸片ABC 折叠,使点C 与点A 重合,折痕为DE . 若∠B =80°,∠BAE =26°,则∠EAD 的度数为( )A.36°B. 37°C.38°D.45°7.如图,将一张正方形纸片对折两次,然后在上面打3个洞,则纸片展开后是( )8.如图,工人师傅做了一个长方形窗框ABCD,E,F,G,H 分别是四条边上的中点,为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在( )A. A,C 两点之间B. E,G 两点之间C. B,F 两点之间D. G,H 两点之间9.如图,在△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,△ABC 的面积是28cm 2,AB =20cm ,AC =8cm ,则DE 的长是( )A .4cmB .3cmC .2cmD .1cm10.如图,在△ABC 中,∠A=∠B ,∠ACB=90°,点D 、E 在AB 上,将△ACD 、△B CE 分别沿CD 、CE 翻折,点A 、B 分别落在点A′、B′的位置,再将△A′CD 、△B′CE 分别沿A′C 、B′C 翻折,点D 与点E 恰好重合于点O ,则∠A′OB′的度数是( ) A .90°B .120°C .135°D .150°二.填空题(共8小题,每题2分,共16分,请把结果直接填在答案卷上.)11.下列图形:①角;②直角三角形;③等边三角形;④线段;⑤等腰三角形;⑥平行四边形.其中一定是轴对称图形的有 个.AC OB DA'C O'B'DBAE DC第3题B CDA(第4题图) (第5题图)(第6题图)(第8题图) (第9题图) (第10题图)12.小明从平面镜子中看到镜中电子钟示数的像如图所示,这时的时刻应是 .13.如图,AC=BD ,要使△ABC ≌△DCB (SAS ),只要添加一个条件 .14.如图,△ABC 的周长为32,且BD=DC ,AD ⊥BC 于D ,△ACD 的周长为24,那么AD 的长为 . 15.如图,已知AB ∥CF ,E 为DF 的中点,若AB =8 cm ,BD =3 cm ,则CF = cm .16.如图,点D 在边BC 上,DE ⊥AB ,DF ⊥BC ,垂足分别为点E ,D ,BD =CF ,BE =CD .若∠AFD =155°,则∠EDF = .17.如图,方格纸中△ABC 的3个顶点分别在小正方形的顶点(格点)上,这样的三角形叫格点三角形,图中与△ABC 全等的格点三角形共有 个(不含△ABC ).18.已知在△ABC 中,AB=5,BC=7,BM 是AC 边上的中线,则BM 的取值范围为 .三.解答题(共8小题,共74分. 解答需写出必要的文字说明或演算步骤.)19.(本题满分12分)如图,在3×3的正方形网格中,有一个以格点为顶点的三角形.(1)请你在图①,图②,图③中,分别画出一个与该三角形成轴对称且以格点为顶点的三角形,并将所画三角形涂上阴影.(注:所画的三幅图不能重复).(2)格纸中所有与该三角形成轴对称且以格点为顶点的三角形共有 个.20.(本题满分8分)如图,在所给正方形网格图中完成下列各题:①画出格点△ABC (顶点均在格点上)关于直线DE 对称的△A 1B 1C 1;FEDCB A(第15题图) (第16题图)(第17题图)(第12题图)(第13题图) (第14题图)②在DE上画出点Q,使QA+QC最小.(用直尺画图,保留痕迹)21.(本题满分8分)已知△ABC,按下列要求作图:(尺规作图,保留痕迹不写作法。
2020-2021八年级上第一次月考数学试卷一、选择题(每小题3分,共30分)1. 在平面直角坐标系中,点P(-2,2x +1)所在的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限2. 一次函数34y x =-的图象不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 小虫在小方格上沿着小方格的边爬行,它的起始位置是A (2,2)先爬到B (2,4),再爬到C (5,4),最后爬到D(5,6),则小虫共爬了( )A. 7个单位长度B. 5个单位长度C. 4个单位长度D. 3个单位长度4. 函数3x y x =-中自变量x 的取值范围是( ) A. 0x > B. 3x ≠ C. 3x o x >≠且 D. 3x x ≥0≠且 5. 一辆客车从霍山开往合肥,设客车出发t h 后与合肥的距离为s km ,则下列图象中能大致反映s 与t 之间函数关系的是( )A.B. C. D. 6. 若以周长为12长方形的长为自变量x ,宽的长度y 为x 的函数,则它的表达式是( )A. y=-x+6(0<x <6)B. y=-x+6(0<x≤3)C. y=-2x+12(0<x <6)D. y=-x+6(3<x <6) 7. 在平面直角坐标系中,点A(x ,1-x)一定不在( )A . 第一象限 B. 第二象限 C. 第三象限 D. 第四象限8. 如果函数()0,0y ax b a b =+<<和()0y kx k =>的图象交于点P ,那么点P 应该位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限9. 如图,函数y=2x 和y=ax+4的图像相交于点A (m ,3),则不等式2x <ax+4的解集为( )A. x >32B. x <3C. x<32 D. x >310. 在今年我市初中学业水平考试体育学科的女子800米耐力测试中,某考点同时起跑的小莹和小梅所跑的路程S (米)与所用时间t (秒)之间的函数图象分别为线段OA 和折线OBCD ,下列说法正确的是( )A. 小莹的速度随时间的增大而增大B. 小梅的平均速度比小莹的平均速度大C. 在起跑后180秒时,两人相遇D. 在起跑后50秒时,小梅在小莹的前面二、填空题(每小题3分,共18分)11. 若教室中的5排3列记为(5,3),则3排5列记为_____.12. 根据下表中一次函数的自变量x 与函数y 的对应值,可得p 的值为____________.x-2 0 1 y3 p 013. 已知点P(m -3,1-2m)在第三象限,则由所有满足题意的整数m 组成的最大两位数是____. 14. 一次函数 y =kx +b (k ≠0)的图象如图所示,当 y >0 时,则 x <________.15. 若点()35,62P a a +--到 两坐标轴的距离相等,则a 的值为____________16. “龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场,图中的函数图象刻画了“龟免再次赛跑”的故事(x 表示乌龟从起点出发所行的时间,y 1表示乌龟所行的路程,y 2表示兔子所行的路程),有下列说法:①兔子和乌龟同时从起点出发;②“龟兔再次赛跑”的路程为1000米;③乌龟在途中休息了10分钟; ④兔子比乌龟早10分钟到达终点.其中正确的说法是_____(把你认为正确说法的序号都填上);三、解答题(共52分)17. 一次函数的图像经过点(-2,3)和(1,-3)(1)一次函数解析式;(2)判定(-1,1)是否在此直线上?18. 一根弹簧的原长是10cm ,且每挂重1kg 就伸长0.5cm ,它的挂重不超过10kg . (1)挂重后弹簧的长度y (cm )与挂重x (kg )之间的函数关系式;(2)写出自变量的取值范围;(3)挂重多少千克时,弹簧长度为12.5cm ?19. 在如图所示的直角坐标系中,画图并解答下列问题:(1)分别写出A 、B 两点的坐标;(2)将△ABC 先向上平移4个单位,再向左平移3个单位得到△A 1B 1C 1;请你在图中画出△A 1B 1C 1. (3)求出线段A 1B 1所在直线l 的函数解析式,并写出在直线l 上线段A 1B 1从B 1到A 1的自变量x 的取值范围.20. 已知2y-3与3x+1成正比例,且x=2时,y=5.(1)求y 与x 之间的函数关系式;(2)求该函数与坐标轴围成的图形面积;21. 定义[p ,q ]为一次函数y =px +q 的特征数.(1)若特征数是[k-1,k2-1]的一次函数为正比例函数,求k的值;(2)在平面直角坐标系中,有两点A(-m,0),B(0,-2m),且△OAB的面积为4(O为原点),若一次函数的图象过A,B两点,求该一次函数的特征数.22. 双休日小明同学和爸爸约定从家出发到滨海森林湿地公园游玩,路途中经过安徽名人馆,因爸爸已经参观过安徽名人馆,所以小明提前从家骑自行车出发到达安徽名人馆参观一会后按照相同的速度前往滨湖森林湿地公园.小明同学出发45分钟后爸爸骑摩托车以小明2倍的速度直接前往滨湖森林湿地公园,爸爸出发半小时后在途中遇到小明,爸爸没有停留直接前往公园.结果爸爸比小明早7.5分钟到达滨湖森林湿地公园.如图是小明和爸爸各自行走路与骑车时间的函数图象.(1)小明的速度是:,爸爸的速度是,点A的坐标;(2)求小明家到滨湖森林湿地公园的路程.(3)直接写出小明行走路程y(km)与行走时间x(h)的函数关系式.2020-2021八年级上第一次月考数学试卷—解析卷一、选择题(每小题3分,共30分)1. 在平面直角坐标系中,点P(-2,2x +1)所在的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】【详解】∵-20,2x +10,∴点P (-2,2x +1)在第二象限,故选B .2. 一次函数34y x =-的图象不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 【答案】B【解析】根据一次函数的性质即可得到结果.,图象经过一、三、四象限,不经过第二象限,故选B.3. 小虫在小方格上沿着小方格的边爬行,它的起始位置是A (2,2)先爬到B (2,4),再爬到C (5,4),最后爬到D(5,6),则小虫共爬了( )A. 7个单位长度B. 5个单位长度C. 4个单位长度D. 3个单位长度 【答案】A【解析】本题考查了平面直角坐标系内点的位置的变化,注意小虫是沿横坐标爬行还是沿纵坐标爬行即可. 分析小虫的爬行路线即可得解.解:从A (2,2),爬行到B (2,4),爬行了4-2=2个单位,再爬行到C (5,4),又爬行了5-2=3个单位,最后爬行到D (5,6),又爬行了6-4=2个单位,所以小虫一共爬行了2+3+2=7个单位.故选A .4. 函数3x y x =-中自变量x 的取值范围是( ) A. 0x >B. 3x ≠C. 3x o x >≠且D. 3x x ≥0≠且【答案】D【解析】【分析】 让二次根式的被开方数大于等于0,原式的分母不等于0,列不等式组求解即可解答.【详解】解:根据题意得:x≥0且3-x≠0,∴x 的取值范围是x≥0且x≠0.故选D.【点睛】本题考查二次根式和分式有意义是条件,二次根式的被开方数必须是非负数,分式的分母不能为0.5. 一辆客车从霍山开往合肥,设客车出发t h 后与合肥的距离为s km ,则下列图象中能大致反映s 与t 之间函数关系的是( )A. B. C. D.【答案】B【解析】分析:因为匀速行驶,图象为线段,时间和路程是正数,客车从霍山出发开往合肥,客车与合肥的距离越来越近,路程由大变小,由此选择合理的答案.详解:客车是匀速行驶的,图象为线段,s 表示客车从霍山出发后与合肥的距离,s 会逐渐减小为0;A 、C 、D 都不符.故选B . 点睛:本题主要考查了函数图象,解题时应首先看清横轴和纵轴表示量,然后根据实际情况采用排除法求解.6. 若以周长为12长方形的长为自变量x ,宽的长度y 为x 的函数,则它的表达式是( )A. y=-x+6(0<x <6)B. y=-x+6(0<x≤3)C. y=-2x+12(0<x <6)D. y=-x+6(3<x <6) 【答案】D【解析】【分析】根据长方形的周长公式,可得y 和x 之间的函数解析式,由x >0,-x+6>0,x >y ,从而可以得出x 的取值范围.【详解】解:∵长方形的周长为12∴y=-x+6∵x >0,-x+6>0,x >y∴3<x <6故选:D【点睛】本题考查了函数关系式,函数自变量的取值范围,利用矩形周长公式得出不等式组是解题关键. 7. 在平面直角坐标系中,点A(x ,1-x)一定不在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】分析:分x 是正数和负数两种情况讨论求解.详解:x >0时,1﹣x 可以是负数也可以是正数,∴点P 可以在第一象限也可以在第四象限,x <0时,1﹣x >0,∴点P 在第二象限,不在第三象限.故选C .点睛:本题考查了点的坐标,根据x 的情况确定出1﹣x 的正负情况是解题的关键.8. 如果函数()0,0y ax b a b =+<<和()0y kx k =>的图象交于点P ,那么点P 应该位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 【答案】C【解析】【分析】先根据a 、b 的取值范围,判断出一次函数所过的象限,再根据k 的取值范围,判断出正比例函数所过的象限,那么二者所过的公共象限即为点P 所在象限.【详解】解:∵函数y=ax+b (a<0,b <0)的图象经过第二、三、四象限,y=kx (k>0)的图象过原点、第一、三象限,∴点P 应该位于第三象限.故选C .9. 如图,函数y=2x 和y=ax+4的图像相交于点A (m ,3),则不等式2x <ax+4的解集为( )A. x>32B. x<3C. x<32D. x>3【答案】C【解析】【分析】将点A(m,3)代入y=2x得到A的坐标,再根据图形得到不等式的解集.【详解】解:将点A(m,3)代入y=2x得,2m=3,解得,m=3 2∴点A的坐标为(32,3),∴由图可知,不等式2x<ax+4的解集为x<3 2故选:C【点睛】此题考查的是用图象法来解不等式,充分理解一次函数与不等式的联系是解决问题的关键.10. 在今年我市初中学业水平考试体育学科的女子800米耐力测试中,某考点同时起跑的小莹和小梅所跑的路程S(米)与所用时间t(秒)之间的函数图象分别为线段OA和折线OBCD,下列说法正确的是()A. 小莹的速度随时间的增大而增大B. 小梅的平均速度比小莹的平均速度大C. 在起跑后180秒时,两人相遇D. 在起跑后50秒时,小梅在小莹的前面【答案】D【解析】A、∵线段OA表示所跑的路程S(米)与所用时间t(秒)之间的函数图象,∴小莹的速度是没有变化的,故选项错误;B、∵小莹比小梅先到,∴小梅的平均速度比小莹的平均速度小,故选项错误;C、∵起跑后180秒时,两人的路程不相等,∴他们没有相遇,故选项错误;D、∵起跑后50秒时OB在OA的上面,∴小梅是在小莹的前面,故选项正确.故选D.二、填空题(每小题3分,共18分)11. 若教室中的5排3列记为(5,3),则3排5列记为_____.【答案】(3,5)【解析】【分析】根据有序数对的第一个数表示排数,第二个数表示列式解答.【详解】∵5排3列记为(5,3),∴3排5列记为(3,5).故答案为(3,5).【点睛】本题考查的知识点是坐标确定位置,解题的关键是熟练的掌握坐标确定位置. 12. 根据下表中一次函数的自变量x与函数y的对应值,可得p的值为____________.【答案】1【解析】一次函数的解析式为y=kx+b(k≠0),∵x=−2时y=3;x=1时y=0,∴23k bk b-+=⎧⎨+=⎩,解得11kb=-⎧⎨=⎩,∴一次函数的解析式为y=−x+1,∴当x=0时,y=1,即p=1.故答案为1.13. 已知点P(m-3,1-2m)在第三象限,则由所有满足题意的整数m组成的最大两位数是____.【答案】21【解析】【分析】根据点P(m-3,1-2m)在第三象限,可求出m的取值,再根据m为整数得出m的值,即可解答.【详解】∵点P (m -3,1-2m )在第三象限,∴m -3<0,1-2m <0,解得12<m <3, ∴m 可以求得的整数值为1,2,故所有满足题意的整数m 组成的最大两位数是21,故答案为21. 【点睛】此题主要考查列不等式,解题的关键是熟知坐标系的坐标特点列出不等式.14. 一次函数 y =kx +b (k ≠0)的图象如图所示,当 y >0 时,则 x <________.【答案】1【解析】【分析】直接根据一次函数的图象进行解答即可.【详解】解:由一次函数y=kx+b 的图象可知,当x<1时,函数的图象在x 轴上方,∴当y>0时,x<1.故答案为:1.【点睛】本题主要考查一次函数的图像与性质.15. 若点()35,62P a a +--到 两坐标轴的距离相等,则a 的值为____________ 【答案】1或79-; 【解析】 【分析】 点坐标到x 轴的距离是纵坐标的绝对值,到y 轴的距离是横坐标的绝对值,根据它们相等列式求出a 的值.【详解】解:点()35,62P a a +--到x 轴的距离是62a --,到y 轴的距离是35a +,列式:6235a a --=+,6235a a --=+,解得79a =-,符合题意, ()6235a a --=-+,解得1a =,符合题意.故答案是:1或79 .【点睛】本题考查点坐标的意义和解绝对值方程,解题的关键是掌握点坐标的定义和解绝对值方程的方法.16. “龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场,图中的函数图象刻画了“龟免再次赛跑”的故事(x表示乌龟从起点出发所行的时间,y1表示乌龟所行的路程,y2表示兔子所行的路程),有下列说法:①兔子和乌龟同时从起点出发;②“龟兔再次赛跑”的路程为1000米;③乌龟在途中休息了10分钟;④兔子比乌龟早10分钟到达终点.其中正确的说法是_____(把你认为正确说法的序号都填上);【答案】②③④.【解析】【分析】①由当x=40时,y2=0,可得出兔子比乌龟晚出发40分钟,说法①错误;②由两函数图象的终点纵坐标均为1000,可得出“龟兔再次赛跑”的路程为1000米,说法②正确;③观察y1与x之间的函数图象结合40﹣30=10,可得出乌龟在途中休息了10分钟,说法③正确;④观察y1,y2与x之间的函数图象结合60﹣50=10,可得出兔子比乌龟早10分钟到达终点,说法④正确.综上即可得出结论.【详解】①∵当x=40时,y2=0,∴兔子比乌龟晚出发40分钟,说法①错误;②∵两函数图象的终点纵坐标均为1000,∴“龟兔再次赛跑”的路程为1000米,说法②正确;③∵40﹣30=10(分钟),∴乌龟在途中休息了10分钟,说法③正确;④∵60﹣50=10(分钟),∴兔子比乌龟早10分钟到达终点,说法④正确.综上所述:正确的说法有②③④.故答案为②③④.【点睛】本题考查了一次函数的应用,观察函数图象逐一分析四条结论的正误是解题的关键.三、解答题(共52分)17. 一次函数的图像经过点(-2,3)和(1,-3)(1)一次函数解析式;(2)判定(-1,1)是否在此直线上?【答案】(1)y=-2x-1; (2)在;【解析】【分析】(1)先把点(-2,3)和(1,-3)代入y=kx+b ,得到关于k 、b 的方程,然后解方程组即可;(2)把x=-1代入①中的一次函数中计算出对应的函数值,然后进行判断.【详解】解:(1)设一次函数解析式为y=kx+b ,把(2,3)与(-1,-3)代入得:233k b k b -+=⎧⎨+=-⎩解得:21k b =-⎧⎨=-⎩一次函数解析式为:y=-2x-1(2)一次函数解析式为y=-2x-1,当x=-1时,y=-2x-1=-2×(-1)-1=2-1=1,所以点(-1,1)在直线y=-2x-1上.【点睛】本题考查了待定系数法求一次函数解析式:(1)先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b ;(2)将自变量x 的值及与它对应的函数值y 的值代入所设的解析式,得到关于待定系数的方程或方程组;(3)解方程或方程组,求出待定系数的值,进而写出函数解析式.也考查了一次函数图象上点的坐标特征.18. 一根弹簧的原长是10cm ,且每挂重1kg 就伸长0.5cm ,它的挂重不超过10kg .(1)挂重后弹簧的长度y (cm )与挂重x (kg )之间的函数关系式;(2)写出自变量的取值范围;(3)挂重多少千克时,弹簧长度为12.5cm ?【答案】(1)100.5y x =+ ;(2)010x ≤≤ ;(3)5kg【解析】【分析】(1)根据题意列出长度y 和挂重x 之间的函数关系式;(2)根据挂重不超过10kg ,得到自变量的取值范围;(3)令125y .=,代入函数解析式求出x 的值.【详解】解:(1)每挂重1kg 就伸长0.5cm ,挂重x kg 就伸长0.5x cm ,100.5y x =+;(2)∵挂重不超过10kg ,∴010x ≤≤;(3)令125y .=,则100.512.5x +=,解得5x =,答:挂重5kg 时,弹簧长度是12.5cm .【点睛】本题考查一次函数的应用,解题的关键是根据题意列出一次函数解析式进行求解.19. 在如图所示的直角坐标系中,画图并解答下列问题:(1)分别写出A 、B 两点的坐标;(2)将△ABC 先向上平移4个单位,再向左平移3个单位得到△A 1B 1C 1;请你在图中画出△A 1B 1C 1. (3)求出线段A 1B 1所在直线l 的函数解析式,并写出在直线l 上线段A 1B 1从B 1到A 1的自变量x 的取值范围.【答案】(1)()()2,0,1,4A B --;(2)见解析;(3)41633y x =+,()41x -≤≤- 【解析】【分析】(1)根据A 、B 所在位置,写出点坐标;(2)根据点的平移画出111A B C △; (3)利用待定系数法求出一次函数解析式并写出自变量的取值范围.【详解】解:(1)根据A 、B 所在位置,写出它们的坐标,()2,0A ,()1,4B --;(2)如图所示:(3)()11,4A -,()14,0B -, 设直线l 的解析式为:y kx b =+,440k b k b -+=⎧⎨-+=⎩,解得43163k b ⎧=⎪⎪⎨⎪=⎪⎩, ()4164133y x x =+-≤≤-. 【点睛】本题考查平面直角坐标系中的点坐标和点坐标的平移以及一次函数解析式的求解,解题的关键是掌握点坐标的平移方法和待定系数法求函数解析式的方法.20. 已知2y-3与3x+1成正比例,且x=2时,y=5.(1)求y 与x 之间的函数关系式;(2)求该函数与坐标轴围成的图形面积;【答案】(1)322y x =+;(2)43【解析】【分析】(1)设()2331y k x -=+,将题目所给的x 和y 的值代入,求出k 的值,得到关系式;(2)求出一次函数与坐标轴的交点坐标,再求出围成的三角形的面积.【详解】解:(1)设()2331y k x -=+,当2x =时,5y =,则()253321k ⨯-=⋅⨯+,解得1k =,∴2331y x -=+,整理得322y x =+; (2)令0x =,得2y =,与y 轴交于点()0,2,令0y =,得43x =-,与x 轴交于点4,03⎛⎫- ⎪⎝⎭, ∴该函数图象与坐标轴围成的三角形面积是1442233⨯⨯=. 【点睛】本题考查正比例的定义,一次函数图象与坐标轴的交点,解题的关键是掌握用待定系数法求解析式的方法和一次函数图象与坐标轴交点坐标的求解方法.21. 定义[p ,q ]为一次函数y =px +q 的特征数.(1)若特征数是[k -1,k 2-1]的一次函数为正比例函数,求k 的值;(2)在平面直角坐标系中,有两点A (-m ,0),B (0,-2m ),且△OAB 的面积为4(O 为原点),若一次函数的图象过A ,B 两点,求该一次函数的特征数.【答案】(1)-1;(2)[-2,-4]或[-2,4].【解析】分析:(1)根据题意中特征数的概念,可得k ﹣1与k 2﹣1的关系;进而可得k 的值;(2)根据△OAB 的面积为4,可得m 的方程,解即可得m 的值,进而可得答案.详解:(1)∵特征数为[k ﹣1,k 2﹣1]的一次函数为y =(k ﹣1)x +k 2﹣1,∴k 2﹣1=0,k ﹣1≠0,∴k =﹣1;(2)∵A (﹣m ,0),B (0,﹣2m ),∴OA =|﹣m |,OB =|﹣2m |,若S △OBA =4,则12•|﹣m |•|﹣2m |=4,m =±2,∴A (2,0)或(﹣2,0),B (0,4,)或(0,﹣4),∴一次函数为y =﹣2x ﹣4或y =﹣2x +4,∴过A ,B 两点的一次函数的特征数[﹣2,﹣4],[﹣2,4].点睛:本题要理解题目中的定义以及正比例函数的概念,根据正比例函数中的b =0,即可列方程求解.22. 双休日小明同学和爸爸约定从家出发到滨海森林湿地公园游玩,路途中经过安徽名人馆,因爸爸已经参观过安徽名人馆,所以小明提前从家骑自行车出发到达安徽名人馆参观一会后按照相同的速度前往滨湖森林湿地公园.小明同学出发45分钟后爸爸骑摩托车以小明2倍的速度直接前往滨湖森林湿地公园,爸爸出发半小时后在途中遇到小明,爸爸没有停留直接前往公园.结果爸爸比小明早7.5分钟到达滨湖森林湿地公园.如图是小明和爸爸各自行走路与骑车时间的函数图象.(1)小明的速度是:,爸爸的速度是 ,点A 的坐标 ;(2)求小明家到滨湖森林湿地公园的路程.(3)直接写出小明行走路程y (km )与行走时间x (h )的函数关系式.【答案】(1)16/km h ,32/km h ,5,164⎛⎫ ⎪⎝⎭;(2)20km ;(3)11602138243316442x x y x x x ⎧⎛⎫<< ⎪⎪⎝⎭⎪⎪⎛⎫=≤<⎨ ⎪⎝⎭⎪⎪⎛⎫-≤≤⎪ ⎪⎝⎭⎩【解析】【分析】(1)根据图象求出小明速度,再得到爸爸的速度,用爸爸追上小明所走的路程求出点A 坐标;(2)设从爸爸追上小明的地点到公园路程为n (km ),列式求出n 的值,再加上16得到整个路程长; (3)用待定系数法求出一次函数解析式,并利用分段函数的形式表示.【详解】解:(1)小明的速度1816/2km h =÷=, 爸爸的速度16232/km h =⨯=, 53321644km ⎛⎫⨯-= ⎪⎝⎭,则5,164A ⎛⎫ ⎪⎝⎭, 故答案是:16/km h ,32/km h ,5,164⎛⎫ ⎪⎝⎭; (2)设从爸爸追上小明地点到公园路程为n (km ),7.5163260n n -=,解得4n =, ∴小明家到滨湖森林湿地公园的路程16420km =+=;(3)设直线AB 的解析式为:116y x b =+131684b ⨯+=,解得14b =-, ∴直线AB 的解析式为:164y x =-,∴小明行走路程y (km )与行走时间x (h )的函数关系式为:11602138243316442x x y x x x ⎧⎛⎫<< ⎪⎪⎝⎭⎪⎪⎛⎫=≤<⎨ ⎪⎝⎭⎪⎪⎛⎫-≤≤⎪ ⎪⎝⎭⎩. 【点睛】本题考查一次函数的实际应用,解题的关键是能够通过函数图象分析出运动过程,并结合一次函数的解析式进行求解.。
(第6小题)(第3小题)CBA2020-2021学年度(上)八年级数学第一次月考试卷一、选择题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项) 1、下列各数是无理数的是( )A 、73 B 、4 C 、5 D 、••10.2 2、下列说法错误的是( )A 、1的平方根是1B 、-1的立方根是-1C 、2是2的算术平方根D 、0是0的平方根3、如图,在Rt △ABC 中,∠B=90°,以AC 为直径的圆恰好过点B .若AB=8,BC=6,则 阴影部分的面积是( ) A 、24-100πB 、48-100πC 、24-25πD 、48-25π4、如图,一圆柱高8㎝,底面半径2㎝,一只蚂蚁从A 点爬到点B 处 吃食,要爬行的最短路程(π取3)是( ) A 、20㎝ B 、10㎝ C 、14㎝ D 、无法确定5、已知实数086=-+-y x y x 满足、,那么以y x 、的值为两边长作直角三角形, 它的第三边长为( )A 、10B 、72C 、10或72D 、以上均不对 6、如图,已知△ABC 中,∠ABC=90°,AB=BC ,三角形的顶点在相互平行的三条直线l 1、l 2、l 3上,且相邻两平行线之间的距离均为1,则AC 的长是( )A 、5B 、6C 、3D 、10二、填空题(本大题共6小题,每小题3分,共18分) 7、6的相反数是 .8、81的平方根是 .9、在Rt △ABC 中,斜边AB =2,则AB 2+BC 2+CA 2= . 10、若n 20是整数,则正整数n 的最小值为 .11、如图,数轴上有三点A 、B 、C,其中点A 表示的数是2-,点B 表示的数是1,且AB=BC,则点C表示的数是 .12、锐角等腰三角形的腰长为10㎝,一边上的高为8㎝,则这个锐角等腰三角形的底边长是㎝.三、(本大题共5小题,每小题6分,共30分)13、(1)计算: 331327+-(2)如图,已知Rt ∆ABC,∠ACB=90︒,AC=15和BC=20,求斜边上的高CD 的长.14、计算: 22832--15、计算 :()()()2323522-+--16、求等式 ()1612=-x 中x 的值.17、如下图,正方形网格中的每个小正方形边长都是1,任意连结这些小正方形的顶点,可得到一些线段.请按要求作三角形(要求三角形各顶点落在小正方形的顶点上): (1)在图1中作ABC Rt ∆,使三边长都为有理数;(第4小题)BAADCB0 B C-2 1 3 42•••2-A(2)在图2中作ABC ∆,使得三边边长分别是5、10、17.四、(本大题共3小题,每小题8分,共24分)18、若12+x 的平方根是±5,52-+y x 的立方根是3,求22y x +的平方根.19、已知10的整数部分是a,小数部分是b ,求31a ()310+b 的值.20、两张同样大小的长方形纸片,每张分成7个大小相同的小长方形,且每个小长方形的宽均为a(如图),如图放置,重合的顶点记作A ,顶点C 在另一张纸的其中一条分隔线DE 上,若 262=CD ,求AB 的长是多少?五、(本大题共2小题,每小题9分,共18分)21、如图,在长方形ABCD 中,AD =8,CD =6,将长方形ABCD 沿CE 折叠后,使点D 恰好落 在对角线AC 上的点F 处. (1)求EF 的长; (2)求梯形ABCE 的面积.22、观察下列一组式子的变形过程,然后回答问题:①()1212121212)12)(12()12(11212-=--=--=-+-⨯=+;②()()();2323232323)23)(23(23123122-=--=--=-+-⨯=+③()()()4545454545)45)(45(45145122-=--=--=-+-⨯=+.(1)561+= ;991001+= ;(2)请你用含n (n 为正整数)的关系式表示上述各式子的变形规律;(3)利用上面的结论,求下列式子的值.99100198991341231121++++++++++六、(本大题共1小题,共12分)23.已知:如图,在Rt △ABC 中,∠C=90°,AB=5cm ,AC=3cm ,动点P 从点B 出发沿射线BC 以1cm/s 的速度移动,设运动的时间为t 秒. (1)求BC 边的长;(2)当△ABP 为直角三角形时,求t 的值; (3)当△ABP 为等腰三角形时,求t 的值.图2DEa aa a a a a图12020-2021学年度(上)八年级数学第一次月考参考答案一.选择题1.C2.A3.C4.B5.C6.D 二.填空题7. 6- 8. 3± 9. 8 10. 5 11. 22+ 12. 12或 5413.(1) ………3分(2)解:,625201522222=+=+=∆BC AC AB ABC Rt 中,在25=∴AB CD CD AB BC AC SABC2521201521,2121⨯=⨯⨯⋅=⋅=∴∆即 )(12cm CD =∴ ………6分 14. 0………6分 15. 548-………6分16. 35-==x x 或 ………6分(写对1个得3分) 17.………3分………6分18. 解:由题意得32352,)5(12=+-±=+y x x4,12==∴y x………4分1044122222±=+±=+±∴y x ………8分19. 解:由题意得310,3-==b a………4分1910)310)(310(331)310(31=-=-+⨯=+∴b a………8分 20. 解:由题意得AD=6a,AC=7a26)6(7,22222=-=-∆a a CD AD AC ACD )即(中,在2=∴a 6分 277==∴a AB ………8分21. 解:设DE=x ,则AE=8-x ,由折叠性质得,EF=DE=x ,CF=CD=6,则AE=8-x 在Rt ACD ∆中,1006822222=+=+=CD AD AC 10=∴AC 4610=-=∴AF 在RT AEF ∆,222)8(4x x -=+ 533==∴=∴AE EF x ,………6分396)85(21=⨯+=∴ABCE S 梯形 ………9分22. (1)99100;56--………2分 (2)n n nn -+=++111………5分(3)99-10098-993-42-31-2+++++=解:原式1001-+= 9101-=+= ………9分23.(1)在Rt △ABC 中,BC 2=AB 2-AC 2=52-32=16,∴BC=4(cm );………3分(2)由题意知BP=tcm ,①如图①,当∠APB 为直角时,点P 与点C 重合,BP=BC=4cm ,即t=4s ; ②如图②,当∠BAP 为直角时,BP=tcm ,CP=(t-4)cm ,AC=3cm , 在Rt △ACP 、Rt △BAP 中,由勾股定理得AP 2=32+(t-4)2225-=t ,解得:t=425故当△ABP 为直角三角形时,t=4s 或t=s425………7分32图1B C A图2ABC(3)①如图③,当AB=BP时,t=5s;………8分②如图④,当AB=AP时,BP=2BC=8cm, t=8s;………9分③如图⑤,当BP=AP时,AP=BP=tcm,CP=(4-t)cm,AC=3cm,在Rt△ACP中,AP2=AC2+CP2,即t2=32+(4-t)2,25解得:t=825………12分综上所述:当△ABP为等腰三角形时,t=5s或t=8s或t=s8。
2020—2021年人教版八年级数学上册第一次月考考试及答案【审定版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.-2的倒数是( )A .-2B .12-C .12D .22.下列各数中,313.14159 8 0.131131113 25 7π-⋅⋅⋅--,,,,,,无理数的个数有( )A .1个B .2个C .3个D .4个3.设42-的整数部分为a ,小数部分为b ,则1a b-的值为( ) A .2- B .2 C .212+ D .212- 4.已知a b 3132==,,则a b 3+的值为( ) A .1 B .2 C .3 D .275.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 ( )A .20{3210x y x y +-=--=, B .210{3210x y x y --=--=, C .210{3250x y x y --=+-=, D .20{210x y x y +-=--=, 6.如图,两条直线l 1∥l 2,Rt △ACB 中,∠C=90°,AC=BC ,顶点A 、B 分别在l 1和l 2上,∠1=20°,则∠2的度数是( )A .45°B .55°C .65°D .75°7.下列图形中,是轴对称图形的是( )A .B .C .D .8.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .809.如图在正方形网格中,若A (1,1),B (2,0),则C 点的坐标为( )A .(-3,-2)B .(3,-2)C .(-2,-3)D .(2,-3)10.下列图形中,是中心对称图形的是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)13的整数部分是a ,小数部分是b 3a b -=______.2.函数32y x x =-+x 的取值范围是__________.3.9的算术平方根是________.4.如图,AB∥CD,则∠1+∠3—∠2的度数等于 _________.5.如图,已知函数y=2x+b与函数y=kx-3的图象交于点P(4,-6),则不等式kx-3>2x+b的解集是__________.6.已知∠AOB=60°,OC是∠AOB的平分线,点D为OC上一点,过D作直线DE⊥OA,垂足为点E,且直线DE交OB于点F,如图所示.若DE=2,则DF=________.三、解答题(本大题共6小题,共72分)1.解方程:(1)211x x-=+(2)2216124xx x--=+-2.先化简,再求值:24211326x xx x-+⎛⎫-÷⎪++⎝⎭,其中21x=.3.若关于x、y的二元一次方程组2133x y mx y-=+⎧⎨+=⎩的解满足x+y>0,求m的取值范围.4.如图,A(4,3)是反比例函数y=kx在第一象限图象上一点,连接OA,过A作AB∥x轴,截取AB=OA(B在A右侧),连接OB,交反比例函数y=kx的图象于点P.(1)求反比例函数y=kx的表达式;(2)求点B的坐标;(3)求△OAP的面积.5.如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE.(1)求证:AC=CD;(2)若AC=AE,求∠DEC的度数.6.某中学为打造书香校园,计划购进甲、乙两种规格的书柜放置新购进的图书,调查发现,若购买甲种书柜3个、乙种书柜2个,共需资金1020元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元.(1)甲、乙两种书柜每个的价格分别是多少元?(2)若该校计划购进这两种规格的书柜共20个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金4320元,请设计几种购买方案供这个学校选择.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、D4、B5、D6、C7、B8、C9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、1.2、23x -<≤3、3.4、180°5、x <46、4.三、解答题(本大题共6小题,共72分)1、(1)x=1;(2)方程无解2.3、m >﹣24、(1)反比例函数解析式为y=12x ;(2)点B 的坐标为(9,3);(3)△OAP 的面积=5.5、(1)略;(2)112.5°.6、(1)设甲种书柜单价为180元,乙种书柜的单价为240元.(2)学校的购买方案有以下三种:方案一:甲种书柜8个,乙种书柜12个方案二:甲种书柜9个,乙种书柜11个,方案三:甲种书柜10个,乙种书柜10个.。
实验中学2020-2021学年度初二上第一次月考数学试卷本试卷满分150分,考试时间120分钟一、选择题:本小题共10小题,每小题3分,共30分.每小题给出的四个选项中,只有一项是符合题目要求的,将此选项的代号填入题后的括号.1.在△ABC中,已知∠B=40°,∠C=90°,则∠A的度数为()A. 40° B. 50° C. 60° D.70°2.下列长度的三条线段能组成三角形的是()A. 1cm、2cm、3.5cm B. 4cm、5cm、9cmC. 5cm、8cm、15cm D. 6cm、8cm、9cm3. 到△ABC的三条边距离相等的点是 ( )A、三条中线的交点B、三条角平分线的交点C、三条高线的交点D、以上都不是4. 某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是()A、带①去;B、带②去;C、带③去;D、①②③都带去.5.等腰三角形的一个角是50,则它的底角是()A. 50B. 50或65 C、80. D、656.能确定△ABC≌△DEF的条件是()A.∠A=∠D,AB=DE,∠B=∠EB.AB=DE,BC=EF,∠C=∠EC.∠A=∠E,AB=EF,∠B=∠DD. AB=DE,BC=EF,∠A=∠E7. 在△ABC中,满足下列条件:①∠A=60°,∠C=30°;②∠A+∠B=∠C;③∠A:∠B:∠C=3:4:5;④∠A=90°﹣∠C,能确定△ABC是直角三角形的有()A. 1个 B. 2个 C. 3个 D. 4个8.如图,若OP平分∠AOB,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论中错误的是()A.PC=PD B.OC=ODC.∠CPO=∠DPO D.OC=PC 9.下列命题中,真命题的个数是()①全等三角形的周长相等②全等三角形的对应角相等③全等三角形的面积相等④面积相等的两个三角形全等A.4 B.3 C.2 D.110.下列说法正确的是()A.一直角边对应相等的两个直角三角形全等B.斜边相等的两个直角三角形全等C.斜边相等的两个等腰直角三角形全等D.两角相等的两个直角三角形全等二、填空题:本大题共8小题,每小题4分,共32分.把答案写在题中的横线上..11.如果ΔABC≌ΔDEF,则AB的对应边是_____,AC的对应边是_____,∠C的对应角是_____,∠DEF的对应角是_____.13题图15题图18题图12. △ABC≌△DEF,且△ABC的周长为12,若AB =3,EF =4,则AC= .13. △ABC中,∠A=90°,BD平分∠ABC交AC于点D,且AD=6cm,则点D到BC•的距离是________.14.若代数式的值为6,则代数式的值为 .15.如图,在△ABC中,∠ACB=90°,∠A=20°.若将△ABC沿CD所在直线折叠,使点B落在AC边上的点E处,则∠CDE的度数是________.16. 如图,在⊿ABC中,AD是中线,则⊿ABD的面积⊿ACD的面积(填“>”“<”“=”)17. 一个多边形的每一个外角都等于30°,这个多边形的边数是,它的内角和是。
长沙市北雅中学秋季学期10月份测数学试题
满分:120分时量:120分钟
一、选择题(本大题共12小题,共36分)
1.下面四个手机应用图标中是轴对称图形的是( )
A. B. C. D.
2.点(3,2)
--关于x轴的对称点是( )
A.(3,2)
-- B.(3,2) C.(3,2)
-
- D.(2,3)
3.如图,在△ABC中,AB AD DC
∠=︒,则∠ADC的度数为( )
==,70
B
A.75°
B.70°
C.65°
D.35°
4.一个等腰三角形的底角等于40°,则这个等腰三角形的顶角度数是( )
A.40°
B.100°
C.120°
D.140°
第3题图第5题图第6题图
5.如图,在△ABC和△DEF中,B DEF
∠=∠,AB DE
=,添加下列一个条件后,仍然不能证明△≌△,这个条件是( )
ABC DEF
A.A D
∠=∠ B.BC EF
=
C..ACB F
=
∠=∠ D.AC DF
6.如图,等腰三角形ABC中,AB AC
∠=︒,则∠1的度数为( )
=,BD平∠ABC,72
C
A.36°
B.60°
C.72°
D.108°
7.如图,等边三角形ABC中,AD BC
∠=︒,则∠ACE等于( )
EBC
⊥,垂足为D,点E在线段AD上,45
A.15°
B.30°
C.45°
D.60°
8.如图,AD ,CE 分别是△ABC 的中线和角平分线.若AB AC =,20CAD ︒∠=,则∠ACE 的度数是( )
A.20°
B.35°
C.40°
D.70°
9.如图,在△ABC 中,45A ∠=︒,30B ∠=︒,CD AB ⊥,垂足为D ,1AD =,则BD 的长为( )
A.1
B.2
C.3
D.4
第8题图 第8题图 第10题图
10.如图,△ABC 中,5AB =,6AC =,4BC =,
边AB 的垂直平分线交AC 于点D ,则△BDC 的周长是( ) A.8
B.9
C.10
D.11
11.如图,Rt △ABC 中,90C ∠=︒,
AD 平分∠BAC ,交BC 于点D ,10AB =,15ABD S =△,则CD 的长为( ) A.3
B.4
C.5
D.6
12.如图,在等边△ABC 中,AD 是BC 边上的高,30BDE CDF ∠=∠=︒,在下列结论中:①ABD ACD △≌△;②22DE DF AD ==;③ADE ADF △≌△;④44BE CF AB ==.正确的个数是( )
A.1
B.2
C.3
D.4
第11题图 第12题图 第13题图
二、填空题(本大题共6小题,共18分)
13.如图,在△ABC 中,AB AC =,AD 是BC 边上的高,4cm BD =,则BC =________cm. 14.如果点(),2P m 关于y 轴的对称点在第二象限,则m 的取值范围为________.
15.如图,在△ABC 中,32B ∠=︒,AB 的垂直平分线DE 交BC 于点D ,连接AD ,则∠DAB 的度数为________.
16.如图,把一个长方形纸片ABCD 沿EF 折叠后,点D ,C 分别落在D ',C '的位置,若65DEF ∠=︒,则
AED '∠为________.
第16题图 第17题图 第18题图
17.如图,△ABC 中,AB AC =,AD 是BC 边上的中线,∠ABC 的平分线交AD 于点E ,EF AB ⊥于点F ,若3EF =,则ED 的长度为________.
18.如图15AOP BOP ∠=∠=︒,PC//OA ,PD OA ⊥于点D ,若1PD =,则PC 等于________. 三、解答题(本大题共66分)
19.(6分)已知等腰三角形的顶角是底角的4倍,求顶角的度数.
20.(6分)如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A 、B 、C 在小正方形的顶点上.
(1)在图中画出与△ABC 关于直线L 成轴对称的A B C '''△;
(2)在直线L 上找一点P (在答题纸上图中标出),使PB PC +的长最小.
21.(8分)已知:如图,AP DP =,A D ∠=∠.求证:
(1)ABP DCP △≌△; (2)12∠=∠.
22.(8分)如图,90BAD CAE ∠=∠=︒,AB AD =,AE AC =,AF CB ⊥,垂足为F .
(1)求证:ABC ADE △≌△; (2)求∠BCA 和∠F AE 的度数.
23.(9分)如图,在△ABC 中,AE 是∠BAC 的角平分线,交BC 于点E ,DE//AB 交AC 于点D .
(1)求证AD ED =;
(2)若AC AB =,求证C DEC ∠=∠; (3)在(2)的条件下,若3DE =,求AC 的长.
24.(9分)如图,点E 在△ABC 的外部,点D 边BC 上,DE 交AC 于点F ,若12∠=∠,AE AC =,BC DE =.
(1)求证:ABC ADE △≌△;
(2)若160∠=︒,求证△ABD 为等边三角形.
25.(10分)如图,在等边△ABC中,10
DC=厘米.如果点M以3厘米/秒的速度运
===厘米,4
AB AC BC
动,设运动时间为t秒.
(1)如果点M在线段CB上由点C向点B运动,点N在线段BA上由B点向A点运动.它们同时出发,若点N的运动速度与点M的运动速度相等.
①请用含t的式子表示CM=________,BM=________;
②当两点的运动时间为多少时,△BMN是一个直角三角形?
(2)若点N的运动速度与点M的运动速度不相等,点N从点B出发,点M以原来的运动速度从点C 同时出发,都顺时针沿△ABC三边运动,经过25秒点M与点N第一次相遇,则点N的运动速度是多少?(直接写出答案)
26.(10分)已知:△ABC为等边三角形,点E为射线AC上一点,点D为射线CB上一点,AD DE
=.
(1)如图1,当E在AC的延长线上且CE CD
=;
=时,求证BD CD
(2)如图2,当E在AC的延长线上时,AB BD
+等于AE吗?请说明理由;
(3)如图3,当D在线段CB的延长线上,E在线段AC上时,请直接写出AB、BD、AE的数量关系,并证明.。