电场等效重力法
- 格式:ppt
- 大小:461.50 KB
- 文档页数:10
等效法处理重力场和电场的复合场问题教学目标(一)知识与技能1.了解带电粒子在匀强电场中的运动——只受电场力,带电粒子做匀变速运动。
2.重点掌握物理中等效代换法3.把物体在重力场中运动的规律类比应用到复合场中分析解决问题。
(二)过程与方法培养学生综合运用力学和电学知识,分析解决带电粒子在复合场中的运动的能力。
(三)情感态度与价值观1.渗透物理学方法的教育:复合场与重力场类比。
2.培养学生综合分析问题的能力,体会物理知识的实际应用。
重点:带电粒子在复合场(重力场与电场)中的运动规律 难点:复合场的建立。
教学过程:复习提问:重力、电场力做功的特点?(强调类比法)我们今天就研究重力和电场力的这个相同点!一、等效法二、1、振动对称性:如图所示,在水平方向的匀强电场中的O 点,用长为l 的轻、软绝缘细线悬挂一质量为m 的带电小球,当小球位于B 点时处于静止状态,此时细线与竖直方向(即OA 方向)成θ角.现将小球拉至细线与竖直方向成2θ角的C 点,由静止将小球释放.若重力加速度为g ,则对于此后小球的受力和运动情况,下列判断中正确的是EE重力环境对比:小球在A —B —C 之间往复运动,则α 、β的关系为:A .α = βB .α > βA .小球所受电场力的大小为mg tan θB .小球到B 点的速度最大C .小球可能能够到达A 点,且到A 点时的速度不为零D .小球运动到A 点时所受绳的拉力最大2、“竖直上抛运动”在竖直向下的匀强电场中,以V 0初速度竖直向上发射一个质量为q 的带正电小球,求上升的最大高度。
3、“单摆”摆球质量为m ,带电量为+q ,摆线为绝缘细线,摆长为L 场强为E ,求单摆振动的周期。
g’=+g,所以T=2π=2m qE'g L 4、“竖直平面圆周运动”水平向右的匀强电场中,用长为R 的轻质细线在O A 处,AO 的连线与竖直方向夹角为370V 0,小球便在竖直面内运动,为使小球能在竖直面内完成圆周运动,这个初速度V 静止时对球受力分析如右图0=mg,43BAV 0初速度竖直m )最高点的最小速)为使小球能在竖“等效”场力G’==mg22)(Fmg 45与T 反向“等效”场加速度g’=g45与重力场相类比可知: 小球能在竖直面内完成圆周运动的临界速度位置在AO 连线B 处, 且最小的V B =Rg '从B 到A 运用动能定理: G’2R=m V 0 2-- m V B 22121mg2R=m V 0 2-- m gR 45212145 V 0 =25gR5、类平抛运动水平放置带电的两平行金属板,相距d,质量为mq ,仍以电性?,带电后,应根据极板电性不同分两种情况讨论(1)若上极板带正电,下极板带负电(如图a )微粒水平方向仍作匀速直线运动时间为t 重力和电场力均向下,竖直位移s=1/2(g+qU/md) t 微粒不再射出电场,则s>d/2,解得U>mgd/q.(2)若上极板带负电,下极板带正电(如图b )重力环境对比:平抛运动规律:分析方法上同,只是此时电场力向上,竖直位移s=1/2(qU/md-g) t 2,要使微粒不再射出电场,则s>d/2,解得U>3mgd/q.由于微粒不带电时能射出电场,故当重力大于电场力时,微粒一定能射出,满足条件。
将等效重力场法运用到底物体仅在重力场中的运动是最常见、最基本的运动,但是对处在匀强电场中的宏观物体而言,它的周围不仅有重力场,还有匀强电场,同时研究这两种场对物体运动的影响,问题就会变得复杂一些。
此时,若能将重力场与电场合二为一,用一个全新的“复合场”(可形象称之为“等效重力场”)来代替,不仅能起到“柳暗花明”的效果,同时也是一种思想的体现。
那么,如何实现这一思想方法呢?一、概念的全面类比为了方便后续处理方法的迁移,必须首先搞清“等效重力场”中的部分概念与复合之前的相关概念之间关系。
具体对应如下:等效重力场重力场、电场叠加而成的复合场等效重力重力、电场力的合力等效重力加速度等效重力与物体质量的比值等效“最低点”物体自由时能处于稳定平衡状态的位置等效“最高点”物体圆周运动时与等效“最低点”关于圆心对称的位置等效重力势能等效重力大小与物体沿等效重力场方向“高度”的乘积二、处理方法的迁移例 1 如图所示,倾角的光滑绝缘斜面处于水平向右的匀强电场中,电场强度,有一个质量为的带电小球,以速度沿斜面匀速下滑,求:(1)小球带何种电荷?电荷量为多少?(2)在小球匀速下滑的某一时刻突然撤去斜面,此后经内小球的位移是多大?(取)解析:(1)由于小球匀速运动,所受重力与电场力的合力和斜面对小球的支持力平衡,如图可知,小球必带正电,且,所以;从“等效重力场”观点看,实际上就是小球所受等效重力与斜面对小球的支持力平衡,故等效重力大小、等效重力加速度大小可分别表示为、。
(2)撤去斜面后,小球仅受等效重力作用,且具有与等效重力方向垂直的初速度,所以小球做“平抛运动”(严格地讲是类平抛运动,这里只是为了方便说明和处理,以下带引号的名称意义同样如此。
),基本处理的方法是运动的分解。
如图,小球在轴方向做匀速直线运动,在轴方向做“自由落体运动”,则有,其中,,解得:,所以内的总位移大小为考虑到分析习惯,实际处理时可将上述示意图顺时针转过角,让小球的运动和重力场中的平抛运动更接近。
难点分析:为了方便后续处理方法的迁移,必须首先搞清“等效重力场”中的部分概念与复合之前的相关概念之间关系。
具体对应如下:等效重力场: 重力场、电场叠加而成的复合场。
等效重力: 重力、电场力的合力。
等效重力加速度: 等效重力与物体质量的比值。
等效“最低点”: 物体自由时能处于稳定平衡状态的位置。
等效“最高点”: 物体圆周运动时与等效“最低点”关于圆心对称的位置。
等效重力势能: 等效重力大小与物体沿等效重力场方向“高度”的乘积。
突破策略在解答重力不可忽略的带电物体在匀强电场中运动问题及相关的能量问题时,我们常采用的方法是:把物体的运动分解成沿重力和电场力方向的两个分运动,然后根据要求解答有关的问题。
用该种方法处理一些电场问题时,显的烦琐。
根据匀强电场和重力场的等效性,如果把重力场和匀强电场两场的问题转化为一个场的问题——建立“等效重力场”来处理该类有些题目,就会显得简洁,而且便于理解。
“等效重力场”建立方法当一个质量为m 、带电量为q 的物体同时处在重力场和场强为E 的匀强电场中,可将两场叠加为一个等效的重力场。
等效重力场的“重力加速度”可表示为qEg g m'=+,g '的方向与重力mg 和电场力qE 合力的方向一致;若合力的方向与重力mg 方向夹角为θ,则g 也可表示为cos gg θ=。
解题应用解圆周运动例. 如图所示,在沿水平方向的匀强电场中有一固定点O ,用一根长度0.40m L =的绝缘细绳把质量为0.10kg m =、带有正电荷的金属小球悬挂在O 点,小球静止在B 点时细绳与竖直方向的夹角为37θ=。
现将小球拉至位置A 使细线水平后由静止释放,求:⑴小球通过最低点C 时的速度的大小; ⑵小球在摆动过程中细线对小球的最大拉力。
(210m/s g =,sin 370.60=,cos370.80=)解析: ⑴建立“等效重力场”如图8所示,“等效重力加速度”g ', 方向:与竖直方向的夹角30,大小: 1.25cos 37gg g '==由A 、C 点分别做绳OB 的垂线,交点分别为A'、C',由动能定理得带电小球从A 点运动到C 点等效重力做功21m ()(cos sin )2OA OC Cg L L mg L mv θθ''''-=-= 代入数值得 1.4C v ≈m/s(2)当带电小球摆到B 点时,绳上的拉力最大,设该时小球的速度为B v ,绳上的拉力为F ,则21sin 2B mg L L mv θ'-=() ① 2B v F mg mL'-=②联立①②两式子得 2.25F =N 。
用“等效法”处理带电粒子在电场和重力场中的运动1.等效重力法将重力与电场力进行合成,如图所示,则F 合为等效重力场中的“重力”,g ′=F 合m 为等效重力场中的“等效重力加速度”,F 合的方向等效为“重力”的方向,即在等效重力场中的“竖直向下”方向. 2.物理最高点与几何最高点在“等效力场”中做圆周运动的小球,经常遇到小球在竖直平面内做圆周运动的临界速度问题.小球能维持圆周运动的条件是能过最高点,而这里的最高点不一定是几何最高点,而应是物理最高点.几何最高点是图形中所画圆的最上端,是符合人眼视觉习惯的最高点.而物理最高点是物体在圆周运动过程中速度最小的点.【题型1】在水平向右的匀强电场中,有一质量为m 、带正电的小球,用长为l 的绝缘细线悬挂于O 点,当小球静止时,细线与竖直方向夹角为θ,如图所示,现给小球一个垂直于悬线的初速度,小球恰能在竖直平面内做圆周运动,试问:(1)小球在做圆周运动的过程中,在哪一位置速度最小?速度最小值多大? (2)小球在B 点的初速度多大?【题型2】如图所示的装置是在竖直平面内放置的光滑绝缘轨道,处于水平向右的匀强电场中,带负电荷的小球从高为h 的A 处由静止开始下滑,沿轨道ABC 运动并进入圆环内做圆周运动.已知小球所受电场力是其重力的34,圆环半径为R ,斜面倾角为θ=60°,s BC =2R .若使小球在圆环内能做完整的圆周运动,h 至少为多少?(sin 37°=0.6,cos 37°=0.8)【题型3】如图所示,一质量为m1=1 kg,带电荷量为q=+0.5 C的小球以速度v0=3 m/s,沿两正对带电平行金属板(板间电场可看成匀强电场)左侧某位置水平向右飞入,极板长0.6 m,两极板间距为0.5 m,不计空气阻力,小球飞离极板后恰好由A点沿切线落入竖直光滑圆弧轨道ABC,圆弧轨道ABC的形状为半径R<3 m的圆截去了左上角127°的圆弧,CB为其竖直直径,在过A点竖直线OO′的右边界空间存在竖直向下的匀强电场,电场强度为E =10 V/m.(取g=10 m/s2)求:(1)两极板间的电势差大小U;(2)欲使小球在圆弧轨道运动时不脱离圆弧轨道,求半径R的取值应满足的条件.【题型4】如图所示,竖直平面内的直角坐标系O–xy中,第二象限内有一半径为R的绝缘光滑管道,其圆心坐标为(0,R),其底端与x轴相切于坐标原点处,其顶端与y轴交于B点(0,2R);第一象限内有一与x轴正方向夹角为45°、足够长的绝缘光滑斜面,其底端坐标为(R,0);x轴上0≤x≤R范围内是水平绝缘光滑轨道,其左端与管道底端相切、右端与斜面底端平滑连接;在第二象限内有场强大小E1=3mg、方向水平向右的匀强电场区域Ⅰ;在第一象限内x≥R范围内有场强大小E2=mgq、方向水平向左的匀强电场区域Ⅱ。
等效重力等效重力是在学习电场部分时,带电物体在匀强电场中且考虑重力时提出的一个等效概念,在匀强电场中,电场力恒定,物体重力也恒定,因此合力恒定(大小和方向都恒定),我们将电场力和重力的合力叫等效重力,那么处理以后物体就只受一个力即等效重力,这是将复杂问题简单化的常用方法。
楼上几位说的是等效重力加速度,是在计算悬挂在车速运动的物体上的单摆的振动周期时用到的一个等效概念。
其大小为单摆不摆动时对悬线对摆球的拉力与其质量的比值。
不能给一个公式,因此加速度是矢量,只有当悬点加速度竖直向上时,等效重力加速度g'=g+a,当悬点加速度竖直向下时,g'=g-a,当加速度是水平方向时,g'^ 2=g^2+a^2,各不相同。
类如;一个物体受到方向大小都一定的力可以作为等效重力,等效重力除以质量等于等效重力加速度用来解决电磁学的问题不错单摆的周期公式:,摆长指悬点到小球重心的距离,重力加速度为单摆所在处的测量值。
此公式是惠更斯从实验中总结出来的,在有些振动系统中不一定是绳长,g也不一定为9.8 m/s2,因此出现了等效摆长和等效重力加速度的问题.本文着重谈谈如何来等效重力加速度。
公式中的g由单摆所在的空间位置决定.由知,g随地球表面不同位置、不同高度而变化,在不同星球上也不相同,因此应求出单摆所在处的等效值g’,代入公式,即g不一定等于9.8 m/s2.g还由单摆系统的运动状态决定,如单摆处在向上加速发射的航天飞机内,沿圆弧切线方向的回复力变大,摆球质量不变,则重力加速度的等效值g等=g+a,再如,单摆若在轨道上运行的航天飞机内,摆球完全失重,回复力为零,则重力加速度的等效值g等=0,所以周期为无穷大,即单摆将不再摆动.当单摆有竖直向上的加速度a时,等效重力加速度为g等=g+a;当单摆有竖直向下的加速度a(a<g)时,等效重力加速度为g等=g-a,a>g时,等效重力加速度g等=a-g.比如当单摆有水平加速度a时(如加速运动的车厢内),等效重力加速g等=,平衡位置已经改变.请同学们看个例子:在下图中,几个相同的单摆处在不同的条件下,关于它们的周期的关系,下列判断正确的是()A. T1>T2>T3>T4;B. T1<T2=T3<T4;C. T1>T2=T3>T4;D. T1<T2<T3<T4.解析:单摆周期与重力加速度有关,由重力沿运动方向的分力提供回复力.当单摆处于(1)图所示的条件下时,摆球偏离平衡位置后,是重力平行斜面的分量(mgsinθ)沿切向的分量提供回复力,在图示的条件下,回复力相对竖直放置的单摆的回复力减小,加速运动的加速度减小,回到平衡位置的时间变长,即周期T变大,所以图(1)中的单摆的周期大于竖直放置单摆的周期.此时;对于(2)图所示的条件,带正电的摆球在振动过程中要受到天花板上带正电小球斥力,但两球间的斥力与运动的方向总是垂直,不影响回复力,故单摆的周期不变,与(3)图所示的单摆周期相同.即;对于(4)图所示的条件下,单摆在升降机内,与升降机一起做加速上升的运动,摆球在该升降机中是超重的,相当于摆球的重力增大,沿摆动方向分量也增大,也就是回复力增大,摆球回到相对平衡的位置时间变短,故周期变小.此时。
浅谈高中物理电场中等效重力问题物理是一门揭示物质的内部结构以及物质之间的相互联系的学科,对我们正确地认识世界与各种事物十分重要。
通过学习物理知识,我们可以了解常见物体的运动方式、光与声音的传播方式、奇妙的电学知识、奥秘的星空。
物理学开启了智慧的大门,使学生了解万物的规律、增强思考能力。
所以,教师应当重视物理教学,积极地改进教学中出现的问题。
高中物理教学内容有很多,包括物体之间的力和相互作用、电流与磁场现象、星体之间的万有引力等。
这些内容都十分重要。
但是,电场知识往往是教学中的重点和难点,教师往往对此方面的教学缺乏清晰的思路,学生也缺乏正确的解题思路。
本文对高中物理电场中等效重力问题进行了具体分析。
一、物理电场中等效重力法的作用等效重力法可以使繁琐的物理电场问题被学生轻轻松松地解答。
在解答重力不可忽略的带电物体在匀强电场中运动、能量问题时,我们常采用的方法是:把物体的运动分解成沿重力和电场力方向的两个分运动,然后根据要求解答有关的问题.用该种方法处理一些电场问题时,显得十分复杂.根据匀强电场和重力场的等效性,如果把重力场和匀强电场两场的问题转化为一个场的问题——建立”等效重力场”来处理该类有些题目,就会显得简洁,而且便于理解。
二、高中物理电场等效重力问题的教学步骤1.讲解竖直平面的重力问题在讲授电场等效重力问题时,教师应当先讲解竖直平面的重力问题。
以绳拉物体在竖直平面做圆周运动为例,在最高点时重力提供向心力,此时物体的运动速度最小mg=1/2mv2。
在最低点时重力向下,向心力向上。
此时重力与向心力相等,物体的速度为零。
教师应当让学生先了解物体在只有重力的时做圆周运动时的状态及受力情况。
这是学习物理电场中等效重力问题中最重要的部分。
2.讲解复合场叠加问题在讲解复合场时,教师应当先让学生掌握“等效重力场”的概念。
例如,等效重力场是重力场和电场叠加而成的复合场;等效重力是重力和电场力的合力;等效重力加速度是等效重力与物体质量的比值;等效“最低点”是物体自由时能处于稳定平衡状态的位置;等效“最高点”是物体圆周运动时与等效“最低点”关于圆心对称的位置。
电场中等效思维法的应用——等效重力场 1、在方向水平的匀强电场中,一不可伸长的不导电细线的一端连着一个质量为m 的带电小球,另一端固定于O 点。
把小球拉起直至细线与电场线平行,然后无初速释放。
已知小球摆到最低点的另一侧,线现竖直方向的最大夹角为θ,如图。
求小球经过最低点时细线对小球的拉力?在什么位置速度最大?解答:(1)由动能定理可得 小球摇到最低点时 解得 (2)运动到∠AOB 的角平分线上时速度最大2、ABCD 是竖直放在E=103v/m 的水平匀强电场中绝缘光滑轨道,BCD 是直径为20cm 的半圆环,AB=15cm ,一质量m=10g ,带电荷量q=10-4 C 的小球由静止在电场力作用下自A 点沿轨道运动,求:(1) 它运动到C 点速度多大?此时对轨道的压力多大?(2) 要使小球运动到D 点,小球开始运动的位置A ˊ至少离B 点多远?运动到D 点(1)小球从A 经B 到C 的过程中,电场力做功,克服重力做功,根据动能定理得: 代入数据,解得根据牛顿第二定律: 则根据牛顿第三定律小球对轨边C 点的压力为O.4N ;(2)小球能通过最高点的最小速度v D ,这时轨道对小球的压力为零,由牛顿第二定律得 解得由动能定理得:2212D mv R mg qES B A =-' 解得:。
由于qE=mg,重力与电场力的合力与竖直方向成450斜向下,因此当小球速度最大时在BOC 的角平分线上解得s m v /223max +=3、如图所示,绝缘光滑轨道AB 部分为倾角为30°的斜面,AC 部分为竖直平面上半径为R 的圆轨道,斜面与圆轨道相切.整个装置处于场强为E 、方向水平向右的匀强电场中.现有一质量为m 的球,要使小球能安全通过圆轨道,在O 点的初速度应为多大?解:小球先在斜面上运动,受重力、电场力、支持力、然后在圆轨道上运动,受重力、电场力、轨道的作用力,如图所示,类比重力场,将电场力与重力的合力视为等效重力mg ′,大小为 解得θ=30°等效重力的方向与斜面垂直指向右下方,小球在斜面上匀速运动,因要使小球能安全通过圆轨道,在圆轨道的等效最高点D 点满足等效重力提供向心力,有:因θ=30°,与斜面倾角相等,由几何关系可知AD=2R . 令小球以最小初速度v 0运动,由动能定理知:因此要使小球安全通过圆轨道,初速度应为4、如图所示,光滑绝缘水平面上方空间被竖直的与纸面垂直的平面MN 分隔成两部分,左侧空间存在一水平向右的匀强电场,场强大小E 1=mg/q ,右侧空间有一长为R=0.8m 轻质绝缘细绳,绳的一端固定于O 点,另一端拴一个质量m 2=m 的不带电的小球B 正在与纸面平行的竖直面内做顺时针圆周运动,运动到最低点时速度大小V B =8m/s ,B 物体在最低点时与地面接触但没有相互作用力。