第二章控制系统的数学模型
- 格式:ppt
- 大小:717.00 KB
- 文档页数:36
第2章控制系统的数学模型§1 系统数学模型的基本概念一. 系统模型系统的模型包括实物模型、物理模型、和数学模型等等。
物理本质不同的系统,可以有相同的数学模型,从而可以抛开系统的物理属性,用同一方法进行具有普遍意义的分析研究(信息方法)。
从动态性能看,在相同形式的输入作用下,数学模型相同而物理本质不同的系统其输出响应相似。
相似系统是控制理论中进行实验模拟的基础。
二. 系统数学模型1. 系统数学模型系统的数学模型是系统动态特性的数学描述。
数学模型是描述系统输入、输出量以及内部各变量之间关系的数学表达式,它揭示了系统结构及其参数与其性能之间的内在关系。
2. 系统数学模型的分类数学模型又包括静态模型和动态模型。
(1) 静态数学模型静态条件(变量各阶导数为零)下描述变量之间关系的代数方程。
反映系统处于稳态时,系统状态有关属性变量之间关系的数学模型。
(2) 动态数学模型描述变量各阶导数之间关系的微分方程。
描述动态系统瞬态与过渡态特性的模型。
也可定义为描述实际系统各物理量随时间演化的数学表达式。
动态系统的输出信号不仅取决于同时刻的激励信号,而且与它过去的工作状态有关。
微分方程或差分方程常用作动态数学模型。
动态模型在一定的条件下可以转换成静态模型。
在控制理论或控制工程中,一般关心的是系统的动态特性,因此,往往需要采用动态数学模型。
即,一般所指的系统的数学模型是描述系统动态特性的数学表达式。
三. 系统数学模型的形式对于给定的同一动态系统,数学模型的表达不唯一。
如微分方程、传递函数、状态方程、单位脉冲响应函数及频率特性等等。
对于线性系统,它们之间是等价的。
但系统是否线性这一特性,不会随模型形式的不同而改变。
线性与非线性是系统的固有特性,完全由系统的结构与参数确定。
经典控制理论采用的数学模型主要以传递函数为基础。
而现代控制理论采用的数学模型主要以状态空间方程状态空间方程为基础。
而以物理定律及实验规律为依据的微分方程微分方程又是最基本的数学模型,是列写传递函数和状态空间方程的基础。
自动控制原理与应用第2章自动控制系统的数学模型自动控制是现代工业和科学技术的重要组成部分,它在各种自动化系统中起着关键作用。
通过对自动控制系统的数学建模,我们可以对系统的行为进行分析和预测,并设计合适的控制策略来实现系统的稳定性和性能要求。
本章主要介绍自动控制系统的数学模型及其应用。
自动控制系统的数学模型主要包括线性时不变系统和非线性时变系统两类。
1.线性时不变系统线性时不变系统是指系统的输出与输入之间存在线性关系,并且系统的性质不随时间的推移而变化。
线性时不变系统的数学模型可以用常微分方程或差分方程来表示,其中常微分方程适用于连续系统,差分方程适用于离散系统。
常见的线性时不变系统包括电路、机械系统等。
2.非线性时变系统非线性时变系统是指系统的输出与输入之间存在非线性关系,并且系统的性质随时间的推移而变化。
非线性时变系统的数学模型可以用偏微分方程、泛函方程等形式来表示。
非线性时变系统由于具有更复杂的动力学特性,通常需要借助数值方法来求解。
二、数学模型的建立方法建立自动控制系统的数学模型有多种方法,常用的方法包括物理模型法、数据模型法和状态空间法。
1.物理模型法物理模型法主要通过物理规律来建立系统的数学模型。
它基于系统的物理特性及其输入输出关系,通过建立微分方程或差分方程来描述系统的动态行为。
物理模型法适用于那些具有明确的物理意义和物理规律的系统。
例如,对机械系统可以利用牛顿定律建立系统的动力学方程。
2.数据模型法数据模型法是通过分析实验数据来建立系统的数学模型。
它基于系统的输入输出数据,借助统计方法和系统辨识技术来进行模型识别和参数估计。
数据模型法适用于那些难以建立明确物理模型的系统。
例如,对于生物系统或经验性系统,可以通过数据模型法来建立系统的数学模型。
3.状态空间法状态空间法是一种以状态变量和输出变量为基础的建模方法。
它将系统的动态行为表示为一组一阶微分方程或差分方程的形式。
状态空间法对于较复杂的系统具有较好的描述能力,能够反映系统的内部结构和动态特性。