初中八年级数学幂的乘方
- 格式:doc
- 大小:144.50 KB
- 文档页数:3
人教版八年级数学上册14.1.2幂的乘方练习(含答案)知识要点:1.幂的乘方的意义:幂的乘方是指几个相同的幂相乘,如(a 5)3是三个a 5相乘,读作a 的五次幂的三次方,(a m )n 是n 个a m 相乘,读作a 的m 次幂的n 次方.2.幂的乘方法则:一般地,对于任意底数a 与任意正整数m ,n ,()=mn m m n m m m m m m mn n a a a a a aa +++=⋅⋅⋅= 个个.语言叙述:幂的乘方,底数不变,指数相乘.3.拓展:(1)幂的乘方的法则可推广为[()]m n p mnp a a =(m ,n ,p 都是正整数).(2)幂的乘方法则的逆用:()()mn m n n m a a a ==(m ,n 都是正整数).一、单选题1.下列各式计算正确的是()A .()325a a =B .428a a a ⋅=C .632a a a ÷=D .333()ab a b =【答案】D2.2()n n a 等于().A .3n a ;B .2n a ;C .24n a ;D .22n a .【答案】D3.a 3m+1可写成()A .(a 3)m+1B .(a m )3+1C .a ·a 3mD .(a m )2m+1【答案】C4.下列计算中,正确的是()A .2a 3b 5ab +=B .()222ab a b -=C .65a b a-=D .33a a a ∙=【答案】B5.棱长为63的正方体,其表面积是()A .66B .67C .68D .69【答案】B6.计算()32a -的结果是()A .6aB .6a -C .5a -D .5a 【答案】B7.已知2m a =,12n a =,则23m n a +的值为()A .6B .12C .2D .112【答案】B8.已知23,26,212a b c ===,则下列各式正确的().A .2a b c =+B .2b a c =+C .2c a b=+D .a b c=+【答案】B9.计算a 5·a 3的结果是()A .a 8B .a 15C .8aD .a 2【答案】A10.下列计算正确的是()A .x 2+x 2=x 4B .2x 3﹣x 3=x 3C .x 2•x 3=x 6D .(x 2)3=x 5【答案】B11.已知:2m =a ,2n =b ,则22m +2n 用a ,b 可以表示为()A .a 2+b 3B .2a +3bC .a 2b 2D .6ab 【答案】C12.下列式子正确的是()A=2B 3C .a 2·a 3=a 6D .(a 3)2=a 9【答案】A二、填空题13.已知3m a =,2n a =,则2m n a +=________.【答案】1214.()323y y -= __________.【答案】53y -15.若25n a =,则624n a -=____________.【答案】246.16.已知2m+1×8m =32,则m=______.【答案】117.已知25x =,23y =,则22x y +=________.【答案】7518.若3m •9n =27(m ,n 为正整数),则m+2n 的值是____________.【答案】319.计算(a 2)3=________.【答案】a 6.三、解答题20.计算:2323323()5()x x x x x ⋅⋅++-【答案】69x 21.已知3m =2,3n =5求:(1)32m ;(2)33m+2n .【答案】(1)4;(2)200.22.计算:(1)()()2224435a a a -⨯--(2)3432113426143⎛⎫⎛⎫⎛⎫⨯⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【答案】(1)-16a 8;(2)131423.图中是小明完成的一道作业题,请你参考小明的解答方法解答下面的问题:小明的作业计算:(-4)7×0.257解:(-4)7×0.257=(-4×0.25)7=(-1)7=-1(1)计算①82018×(-0.125)2018②1113121251562⎛⎫⎛⎫⎛⎫⨯-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(2)看2·4n ·16n =219,求n 的值【答案】(1)①1;②-2572;(2)n=324.(1)已知10m=3,10n=2,求103m+2n+3的值;(2)已知2x+5y-3=0,求4x·32y的值.【答案】(1)108000;(2)8.。
人教版八年级数学上册14.1.2《幂的乘方》教学设计一. 教材分析《幂的乘方》是人教版八年级数学上册第14章第1节的一部分,主要讲述了幂的乘方运算规则。
本节课的内容是学生学习幂的运算法则的基础,对于学生理解幂的运算规律,以及进一步学习指数函数等数学知识具有重要意义。
二. 学情分析学生在学习本节课之前,已经学习了有理数的乘法、幂的定义和性质等知识。
大部分学生对于幂的乘方运算有一定的理解,但部分学生在运算过程中容易出错,对幂的乘方运算规则理解不深。
因此,在教学过程中,需要引导学生通过实例理解幂的乘方运算规则,并通过练习加强学生的运算能力。
三. 教学目标1.理解幂的乘方运算规则。
2.能够正确进行幂的乘方运算。
3.培养学生的运算能力和逻辑思维能力。
四. 教学重难点1.幂的乘方运算规则的理解和应用。
2.学生对于幂的乘方运算的错误认识和运算过程中的错误。
五. 教学方法1.实例教学:通过具体的实例,引导学生理解幂的乘方运算规则。
2.练习法:通过大量的练习,加强学生的运算能力,并引导学生发现和纠正自己在运算过程中的错误。
3.小组合作学习:学生进行小组讨论和合作,培养学生的合作意识和团队精神。
六. 教学准备1.教学PPT:制作相关的教学PPT,内容包括幂的乘方运算规则的讲解和大量的练习题。
2.练习题:准备一些幂的乘方运算的练习题,用于课堂练习和学生课后巩固知识。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾幂的定义和性质,为新课的学习做好铺垫。
2.呈现(10分钟)教师通过PPT展示幂的乘方运算规则,并用具体的实例进行讲解,让学生理解幂的乘方运算规则。
3.操练(10分钟)教师发放练习题,学生独立进行幂的乘方运算,教师巡回指导,解答学生的疑问。
4.巩固(10分钟)学生分组进行小组讨论,分享自己在操练过程中的心得体会,互相纠正错误。
教师引导学生总结幂的乘方运算的规律,加深学生对知识的理解。
5.拓展(10分钟)教师提出一些拓展问题,引导学生进行思考,进一步巩固幂的乘方运算知识。
15.1.2 幂的乘方
◆随堂检测
1、幂的乘方,底数 ,指数 ,用公式表示=n m a )( (m ,n 都是正整数)
2、(江苏省)计算23()a 的结果是( )
A .5a
B .6a
C .8a
D .2
3a 3、下列计算不正确的是( )
A.933)(a a =
B.326)(n n a a =
C.2221)(++=n n x x
D.623x x x =⋅
4、如果正方体的棱长是2
)12(+a ,则它的体积为 。
◆典例分析
例题:若52=n ,求n 28的值
分析:此题考察对公式的灵活运用,应熟知328=,m n n m a a )()(=
解:()()6662325)2(228====n n n n
◆课下作业
●拓展提高
1、()=-+-23
32)(a a 。
2、若63=a ,5027=b ,求a b +33
的值 3、若0542=-+y x ,求y x 164⋅的值
4、已知:625255=⋅x x ,求x 的值
5、比较5553
,4444,3335的大小。
解:1111115555243)3(3== , 1111114444256)4(4== , 1111113333125)5(5==
∵125<243<256 , ∴111111111256243125
<< , ∴444555333435<<
●体验中考 1、(2009年安徽)下列运算正确的是( )
A .43a a a =⨯
B .44()a a -=
C .235a a a +=
D .235()a a = 2.(2009年上海市)计算32()a 的结果是( )
A .5a
B .6a
C .8a
D .9a 3、(2009年齐齐哈尔市)已知102103m n ==,,则3210
m n +=____________.
参考答案:
◆随堂检测
1、 不变,相乘,mn a
2、B ∵原式=632a a
=⨯,∴选B 3、D ∵63223x x
x x ==⋅+ , ∴选D
4、6)12(+a
◆课下作业
●拓展提高 1、0 ∵()0)(662332=+-=-+-a a a
a , ∴原式=0 2、解:3006503273)3(333333=⨯=⋅=⋅=⋅=+a
b a b a b a b
3、解:3222
22)2()2(1645424242===⋅=⋅=⋅+y x y x y x y x 4、解:∵x x x x x 3255
5255=⋅=⋅,又∵45625=, ∴43=x ,故34=x 5、解:1111115555243)3(3== , 1111114444256)4(4== , 1111113333125)5(5==
∵125<243<256 , ∴111111111256243125
<< , ∴444555333435<<
●体验中考 1、A ∵B 44)(a a =- C 522a a a =⋅ D 632)(a a = ∴选A
2.B
3、解:729832)10()10(101010
23232323=⨯=⋅=⋅=⋅=+n m n m n m。