函数中的任意性与存在性问题
- 格式:ppt
- 大小:2.50 MB
- 文档页数:31
1双变量的“任意性”与 “存在性”五种题型的解题方法 一、“存在=存在”型∃x 1∈D 1,∃x 2∈D 2,使得f (x 1)=g (x 2),等价于函数f (x )在D 1上的值域A 与函数g (x )在D 2上的值域B 的交集不为空集,即A ∩B ≠⌀.其等价转化的基本思想:两个函数有相等的函数值,即它们的值域有公共部分.【例1】 已知函数f (x )=x 2-23ax 3,a >0,x ∈R .g (x )=1x 2(1-x ).若∃x 1∈(-∞,-1],∃x 2∈-∞,-12 ,使得f (x 1)=g (x 2),求实数a 的取值范围.【解析】∵f (x )=x 2-23ax 3,∴f '(x )=2x -2ax 2=2x (1-ax ).令f '(x )=0,得x =0或x =1a .∵a >0,∴1a>0,∴当x ∈(-∞,0)时, f '(x )<0,∴f (x )在(-∞,-1]上单调递减, f (x )在(-∞,-1]上的值域为1+2a3,+∞ .∵g (x )=1x 2(1-x ),∴g '(x )=3x 2-2x (x 2-x 3)2=3x -2x 3(1-x )2.∵当x <-12时,g '(x )>0,∴g (x )在-∞,-12 上单调递增,∴g (x )<g -12 =83,∴g (x )在-∞,-12 上的值域为-∞,83.若∃x 1∈(-∞,-1],∃x 2∈-∞,-12 ,使得f (x 1)=g (x 2),则1+2a 3<83,a <52.故实数a 的取值范围是0,52.【变式1】 已知函数f (x )=-16x +112,0≤x ≤12,x 3x +1,12<x ≤1 和函数g (x )=a ·sin π6x -a +1(a >0),若存在x 1,x 2∈[0,1],使得f (x 1)=g (x 2)成立,则实数a 的取值范围是( )A.12,32 B.[1,2)C.12,2D.1,32【答案】选C 【解析】设函数f (x ),g (x )在[0,1]上的值域分别为A ,B ,则“存在x 1,x 2∈[0,1],使得f (x 1)=g (x 2)成立”等价于“A ∩B ≠⌀”.当0≤x ≤12时, f (x )=-16x +112单调递减,所以0≤f (x )≤112;当12<x ≤1时, f '(x )=x 2(2x +3)(x +1)2>0,所以f (x )=x 3x +1单调递增,112<f (x )≤12,故f (x )在[0,1]上的值域A =0,12.当x ∈[0,1]时,π6x ∈0,π6 ,y =sin π6x 在[0,1]上单调递增.又a >0,所以g (x )=a sin π6x -a +1在[0,1]上单调递增,其值域B =1-a ,1-a 2.2由A ∩B ≠⌀,得0≤1-a ≤12或0≤1-a 2≤12,解得12≤a ≤2.故选C .二、“任意=存在”型∀x 1∈D 1,∃x 2∈D 2,使得f (x 1)=g (x 2),等价于函数f (x )在D 1上的值域A 是函数g (x )在D 2上的值域B 的子集,即A ⊆B .其等价转化的基本思想:函数f (x )的任意一个函数值都与函数g (x )的某一个函数值相等,即f (x )的函数值都在g (x )的值域之中.【例2】 已知函数f (x )=4x 2-72-x,x ∈[0,1].(1)求f (x )的单调区间和值域;(2)设a ≥1,函数g (x )=x 3-3a 2x -2a ,x ∈[0,1].若对于任意的x 1∈[0,1],总存在x 0∈[0,1],使得g (x 0)=f (x 1)成立,求a 的取值范围.【解析】(1)f '(x )=-4x 2+16x -7(2-x )2=-(2x -1)(2x -7)(2-x )2,x ∈[0,1].令f '(x )=0,解得x =12或x =72(舍去).当x 变化时, f '(x ), f (x )的变化情况如下表所示:x 00,121212,11f '(x )-0+f (x )-72↘-4↗-3 所以f (x )的递减区间是0,12,递增区间是12,1 .f (x )min =f 12=-4,又f (0)=-72, f (1)=-3,所以f (x )max =f (1)=-3.故当x ∈[0,1]时, f (x )的值域为[-4,-3].(2)“对于任意的x 1∈[0,1],总存在x 0∈[0,1],使得g (x 0)=f (x 1)成立”等价于“在x ∈[0,1]上,函数f (x )的值域B 是函数g (x )的值域A 的子集,即B ⊆A ”.因为a ≥1,且g '(x )=3(x 2-a 2)<0,所以当x ∈[0,1]时,g (x )为减函数,所以g (x )的值域A =[1-2a -3a 2,-2a ].由B ⊆A ,得1-2a -3a 2≤-4且-2a ≥-3,又a ≥1,故1≤a ≤32.【变式2】 已知函数f (x )=x 2-23ax 3(a >0),x ∈R .(1)求f (x )的单调区间和极值;(2)若对于任意的x 1∈(2,+∞),都存在x 2∈(1,+∞),使得f (x 1)·f (x 2)=1.求a 的取值范围.【解析】 解析 (1)由已知,有f '(x )=2x -2ax 2(a >0).令f '(x )=0,解得x =0或x =1a .当x 变化时, f '(x ), f (x )的变化情况如下表:x(-∞,0)0,1a 1a 1a ,+∞3f '(x )-0+0-f (x )↘↗13a 2↘所以, f (x )的单调递增区间是0,1a;单调递减区间是(-∞,0),1a ,+∞ .当x =0时, f (x )有极小值,且极小值f (0)=0;当x =1a 时,f (x )有极大值,且极大值f 1a =13a2.(2)由f (0)=f 32a=0及(1)知,当x ∈0,32a 时, f (x )>0;当x ∈32a,+∞ 时, f (x )<0.设集合A ={f (x )|x ∈(2,+∞)},集合B =1f (x )|x ∈(1,+∞),f (x )≠0,则“对于任意的x 1∈(2,+∞),都存在x 2∈(1,+∞),使得f (x 1)·f (x 2)=1”等价于A ⊆B .显然,0∉B .下面分三种情况讨论:①当32a >2,即0<a <34时,由f 32a=0可知,0∈A ,而0∉B ,所以A 不是B 的子集.②当1≤32a ≤2,即34≤a ≤32时,有f (2)≤0,且此时f (x )在(2,+∞)上单调递减,故A =(-∞, f (2)),因而A ⊆(-∞,0);由f (1)≥0,有f (x )在(1,+∞)上的取值范围包含(-∞,0),即(-∞,0)⊆B .所以,A ⊆B .③当32a <1,即a >32时,有f (1)<0,且此时f (x )在(1,+∞)上单调递减,故B =1f (1),0,A =(-∞, f (2)),所以A 不是B 的子集.综上,a 的取值范围是34,32.三、“任意≥(≤、>、<)任意”型∀x 1∈D 1,∀x 2∈D 2,f (x 1)>g (x 2)恒成立,等价于f (x )min >g (x )max ,或等价于f (x )>g (x )max 恒成立,或等价于f (x )min >g (x )恒成立.其等价转化的基本思想是函数f (x )的任何一个函数值均大于函数g (x )的任何一个函数值.∀x 1∈D 1,∀x 2∈D 2,f (x 1)<g (x 2)恒成立,等价于f (x )max <g (x )min ,或等价于f (x )<g (x )min 恒成立,或等价于f (x )max <g (x )恒成立.其等价转化的基本思想是函数f (x )的任何一个函数值均小于函数g (x )的任何一个函数值.∀x 1∈D 1,∀x 2∈D 2,f (x 1)-g (x 2)>k 恒成立,等价于[f (x 1)-g (x 2)]min >k 恒成立,也等价于f (x )min-g (x )max >k .∀x 1∈D 1,∀x 2∈D 2,f (x 1)-g (x 2)<k 恒成立,等价于[f (x 1)-g (x 2)]max <k 恒成立,也等价于f (x )max-g (x )min <k .【例3】 设函数f (x )=x 3-x 2-3.(1)求f (x )的单调区间;(2)设函数g (x )=a x+x ln x ,如果对任意的x 1,x 2∈12,2,都有f (x 1)≤g (x 2)成立,求实数a 的取值范围.【解析】解析 (1)f '(x )=3x 2-2x .f '(x )>0时,x <0或x >23,f '(x )<0时,0<x <23.所以, f (x )的递增区间是(-∞,0),23,+∞;递减区间是0,23.4(2)由(1)知,函数f (x )在12,23 上单调递减,在23,2 上单调递增,而f 12=-258, f (2)=1,故f (x )在区间12,2上的最大值f (x )max =f (2)=1.“对任意的x 1,x 2∈12,2 ,都有f (x 1)≤g (x 2)成立”等价于“对任意的x ∈12,2,g (x )≥f (x )max 恒成立”,即当x ∈12,2时,g (x )=a x+x ln x ≥1恒成立,即a ≥x -x 2ln x 恒成立,记u (x )=x -x 2ln x 12≤x ≤2,则有a ≥u (x )max .u '(x )=1-x -2x ln x ,可知u '(1)=0.当x ∈12,1时,1-x >0,2x ln x <0,则u '(x )>0,所以u (x )在12,1上递增; 当x ∈(1,2)时,1-x <0,2x ln x >0,则u '(x )<0,所以u (x )在(1,2)上递减.故u (x )在区间12,2上的最大值u (x )max =u (1)=1,所以实数a 的取值范围是[1,+∞).【点拨】 (1)∀x 1∈D 1,∀x 2∈D 2,f (x 1)>g (x 2)恒成立,通常等价转化为f (x )min >g (x )max .这是两个独立变量--双变量问题,不等式两边f (x 1),g (x 2)中自变量x 1,x 2可能相等,也可能不相等;(2)对任意的x ∈[m ,n ],不等式f (x )>g (x )恒成立,通常等价转化为[f (x )-g (x )]min >0.这是单变量问题,不等式两边f (x ),g (x )的自变量x 相等.【变式3】 函数f (x )=mxx 2+1+1(m ≠0),g (x )=x 2e ax (a ∈R ).(1)直接写出函数f (x )的单调区间;(2)当m >0时,若对于任意的x 1,x 2∈[0,2], f (x 1)≥g (x 2)恒成立,求a 的取值范围.【解析】 (1)当m >0时,f (x )的递增区间是(-1,1);递减区间是(-∞,-1),(1,+∞).当m <0时,f (x )的递增区间是(-∞,-1),(1,+∞);递减区间是(-1,1).(2)当m >0时,“对于任意的x 1,x 2∈[0,2],f (x 1)≥g (x 2)恒成立”等价于“对于任意的x ∈[0,2],f (x )min ≥g (x )max 成立”.当m >0时,由(1)知,函数f (x )在[0,1]上单调递增,在[1,2]上单调递减,因为f (0)=1,f (2)=2m5+1>1,所以f (x )min =f (0)=1,故应满足1≥g (x )max .因为g (x )=x 2e ax ,所以g '(x )=(ax 2+2x )e ax .①当a =0时,g (x )=x 2,此时g (x )max =g (2)=4,不满足1≥g (x )max .②当a ≠0时,令g '(x )=0,得x =0或x =-2a .(i )当-2a≥2,即-1≤a <0时,在[0,2]上,g '(x )≥0,g (x )在[0,2]上单调递增,g (x )max =g (2)=4e 2a .由1≥4e 2a ,得a ≤-ln 2,所以-1≤a ≤-ln 2.(ii )当0<-2a <2,即a <-1时,在0,-2a上,g '(x )≥0,g (x )递增;在-2a ,2 上,g '(x )<0,g (x )递减.g (x )max =g -2a =4a 2e 2,由1≥4a 2e 2,得a ≤-2e ,所以a <-1.5(iii )当-2a<0,即a >0时,显然在[0,2]上,g '(x )≥0,g (x )单调递增,于是g (x )max =g (2)=4e 2a >4,此时不满足1≥g (x )max .综上,a 的取值范围是(-∞,-ln 2].四、“任意≥(≤、>、<)存在”型∀x 1∈D 1,∃x 2∈D 2,使得f (x 1)>g (x 2)成立,等价于f (x )min >g (x )min .其等价转化的基本思想是函数f (x )的任意一个函数值大于函数g (x )的某一个函数值,但并不要求大于函数g (x )的所有函数值.∀x 1∈D 1,∃x 2∈D 2,使得f (x 1)<g (x 2)成立,等价于f (x )max <g (x )max .其等价转化的基本思想是函数f (x )的任意一个函数值小于函数g (x )的某一个函数值,但并不要求小于函数g (x )的所有函数值.∀x 1∈D 1,∃x 2∈D 2,使得f (x 1)-g (x 2)>k 成立,等价于f (x )min -g (x )min >k .∀x 1∈D 1,∃x 2∈D 2,使得f (x 1)-g (x 2)<k 成立,等价于f (x )max -g (x )max <k .【例4】 函数f (x )=ln x -14x +34x-1,g (x )=x 2-2bx +4,若对任意的x 1∈(0,2),存在x 2∈[1,2],使得f (x 1)≥g (x 2)成立,求实数b 的取值范围.【解析】 “对任意的x 1∈(0,2),存在x 2∈[1,2],使得f (x 1)≥g (x 2)成立”等价于“f (x )在(0,2)上的最小值不小于g (x )在[1,2]上的最小值,即f (x )min ≥g (x )min (*)”.f '(x )=1x -14-34x 2=-(x -1)(x -3)4x 2,当x ∈(0,1)时, f '(x )<0, f (x )单调递减;当x ∈(1,2)时, f '(x )>0, f (x )单调递增.故当x ∈(0,2)时, f (x )min =f (1)=-12.又g (x )=(x -b )2+4-b 2,x ∈[1,2],①当b <1时,g (x )min =g (1)=5-2b >3,此时与(*)矛盾;②当b ∈[1,2]时,g (x )min =g (b )=4-b 2≥0,同样与(*)矛盾;③当b ∈(2,+∞)时,g (x )min =g (2)=8-4b ,由8-4b ≤-12,得b ≥178.综上,实数b 的取值范围是178,+∞ .【变式4】 已知函数f (x )=13x 3+x 2+ax .(1)若f (x )在区间[1,+∞)上单调递增,求a 的最小值;(2)若g (x )=x ex ,∀x 1∈12,2 ,∃x 2∈12,2 ,使得f '(x 1)≤g (x 2)成立,求a 的取值范围.【解析】 (1)由题设知f '(x )=x 2+2x +a ≥0,即a ≥-(x +1)2+1在[1,+∞)上恒成立,而y =-(x +1)2+1在[1,+∞)上单调递减,则y max =-3,∴a ≥-3,∴a min =-3.(2)“∀x 1∈12,2,∃x 2∈12,2 ,使f '(x 1)≤g (x 2)成立”等价于“x ∈12,2 时,f '(x )max ≤g (x )max 恒成立”.∵f '(x )=x 2+2x +a =(x +1)2+a -1在12,2上递增,∴f '(x )max =f '(2)=8+a ,又g '(x )=e x -xe x e 2x =1-x e x,6∴g (x )在(-∞,1)上递增,在(1,+∞)上递减.∴当x ∈12,2时,g (x )max =g (1)=1e ,由8+a ≤1e 得,a ≤1e -8,所以a 的取值范围是-∞,1e-8 .五、“存在≥(≤、>、<)存在”型若∃x 1∈D 1,∃x 2∈D 2,使得f (x 1)>g (x 2)成立,等价于f (x )max ≥g (x )min .其等价转化的基本思想是函数f (x )的某一个函数值大于函数g (x )的某一个函数值,即只要有这样的函数值即可.若∃x 1∈D 1,∃x 2∈D 2,使得f (x 1)<g (x 2)成立,等价于f (x )min <g (x )max .其等价转化的基本思想是函数f (x )的某一个函数值小于函数g (x )的某一个函数值,即只要有这样的函数值即可.若∃x 1∈D 1,∃x 2∈D 2,使得f (x 1)-g (x 2)>k 成立,等价于[f (x 1)-g (x 2)]max >k ,也等价于f (x )max-g (x )min >k .若∃x 1∈D 1,∃x 2∈D 2,使得f (x 1)-g (x 2)<k 成立,等价于[f (x 1)-g (x 2)]min <k ,也等价于f (x )min -g (x )max <k .【例5】 已知函数f (x )=4ln x -ax +a +3x(a ≥0).(1)直接写出函数f (x )的单调区间;(2)当a ≥1时,设g (x )=2e x -4x +2a ,若存在x 1,x 2∈12,2,使f (x 1)>g (x 2),求实数a 的取值范围.【解析】 (1)当a =0时,函数f (x )的递减区间为0,34,递增区间为34,+∞ .当0<a <1时,函数f (x )的递减区间为0,2--(a -1)(a +4)a,2+-(a -1)(a +4)a,+∞,递增区间为2--(a -1)(a +4)a ,2+-(a -1)(a +4)a.当a ≥1时, f (x )的递减区间为(0,+∞).(2)“存在x 1,x 2∈12,2 ,使f (x 1)>g (x 2)”等价于“ 当x ∈12,2时, f (x )max >g (x )min ”.由(1)知,当x ∈12,2时, f (x )max =f 12 =-4ln 2+32a +6,由g '(x )=2e x -4>0,得x >ln 2,所以g (x )在(0,ln 2)上单调递减,在(ln 2,+∞)上单调递增,故当x ∈12,2时,g (x )min =g (ln 2)=4-4ln 2+2a ,由f (x )max >g (x )min ,得-4ln 2+32a +6>4-4ln 2+2a ,又a ≥1,所以1≤a <4.【变式5】 设函数f (x )=xln x-ax .(1)若函数f (x )在(1,+∞)上为减函数,求实数a 的最小值;(2)若存在x 1,x 2∈[e ,e 2],使f (x 1)≤f '(x 2)+a 成立,求实数a 的取值范围.【解析】 (1)由题设知f '(x )=ln x -1(ln x )2-a ≤0在(1,+∞)上恒成立,则只需f '(x )max ≤0.又f '(x )=ln x -1(ln x )2-a =-1ln x -12 2+14-a ,7所以当1ln x =12,即x =e 2时, f '(x )max =14-a ,由14-a ≤0得a ≥14,故a 的最小值为14.(2)“存在x 1,x 2∈[e ,e 2],使f (x 1)≤f '(x 2)+a 成立”等价于“当x 1,x 2∈[e ,e 2]时, f (x 1)min ≤f '(x 2)max +a ”.由(1)知,当x ∈[e ,e 2]时, f '(x )max =f '(e 2)=14-a ,所以f '(x )max +a =14.则问题等价于“当x ∈[e ,e 2]时, f (x )min ≤14”.①当a ≥14时,由(1)得f '(x )max =14-a ≤0, f (x )在[e ,e 2]上为减函数,则f (x )min =f (e 2)=e 22-ae 2,由f (x )min ≤14,得a ≥12-14e 2.②当a <14时, f '(x )=-1ln x -12 2+14-a 在[e ,e 2]上的值域为-a ,14-a .(i )当-a ≥0,即a ≤0时, f '(x )≥0在[e ,e 2]恒成立,故f (x )在[e ,e 2]上为增函数,于是f (x )min =f (e )=e -ae ≥e >14,与f (x )min ≤14矛盾.(ii )当-a <0,即0<a <14时,由f '(x )的单调性和值域知,存在唯一的x 0∈(e ,e 2),使f '(x )=0,且满足:当x ∈(e ,x 0)时, f '(x )<0, f (x )为减函数;当x ∈(x 0,e 2)时, f '(x )>0, f (x )为增函数,所以f (x )min =f (x 0)=x 0ln x 0-ax 0≤14,x 0∈(e ,e 2).所以a ≥1ln x 0-14x 0>1ln e 2-14e >12-14=14,与0<a <14矛盾.综上,a 的取值范围是a ≥12-14e2.。
函数中存在性和任意性问题分类解析1.,,使得,等价于函数在上的值域与函数在上的值域的交集不空,即.例1已知函数和函数,若存在,使得成立,则实数的取值围是()解设函数与在上的值域分别为与,依题意.当时,,则,所以在上单调递增,所以即.当时,,所以单调递,所以即.综上所述在上的值域.当时,,又,所以在在上单调递增,所以即,故在上的值域.因为,所以或解得,故应选.2.对,,使得,等价于函数在上的值域是函数在上的值域的子集,即.例2(2011八校第二次联考)设,.①若,使成立,则实数的取值围为___;②若,,使得,则实数的取值围为___解①依题意实数的取值围就是函数的值域.设,则问题转化为求函数的值域,由均值不等式得,,故实数的取值围是.②依题意实数的取值围就是使得函数的值域是函数的值域的子集的实数的取值围.由①知,易求得函数的值域,则当且仅当即,故实数的取值围是.例3已知,它们的定义域都是,其中是自然对数的底数,.(1)求的单调区间;(2)若,且,函数,若对任意的,总存在,使,数的取值围.解(1)略;(2)依题意实数的取值围就是使得在区间上的值域是的值域的子集实数的取值围.当时,由得,故在上单调递减,所以即,于是.因,由得.①当时,,故在上单调递增,所以即,于是.因为,则当且仅当,即.②当时,同上可求得.综合①②知所数的取值围是.3.已知是在闭区间的上连续函,则对使得,等价于.例4已知,其中.(1)若是函数的极值点,数的值;(2)若对任意的都有成立,数的取值围.解(1)略;(2) 对,有,等价于有.当时,,所以在上单调递增,所以.因为,令得,又且,.①当时,,所以在在上单调递增,所以.令得这与矛盾。
②当时,当时,当时,所以在上单调递减在上单调递增,所以.令得,又,所以。
③当时,,所以在上单调递减,所以.令得,又,所以。
综合①②③得所数的取值围是。
另解同上求得,要证时,,即.由上知求需对参数进行分类讨论过程繁而长,其实可避免分类讨论,不等式恒成立问题往往转化最值问题来解决,逆向思维,由于难求,将退回到恒成立问题: 证时,即恒成立,只需证当时,恒成立,只需证.因为,令得.当时,当时,故,所以,故所数的取值围是。
浅议函数中任意性与存在性问题姻文/陈刚盐城市阜宁县陈集中学,江苏阜宁224400函数的任意性与存在性问题,是一种常见题型,也是高考的热点之一。
它们既有区别又有联系,意义和转化方法各不相同,容易混淆。
对于这类问题,利用函数与导数的相关知识,可以把相等关系转化为函数值域之间的关系,不等关系转化为函数最值大小的比较。
下面结合实例来看看函数中的任意性与存在性问题在解题中的区别。
1. 若函数()f x 的定义域为D ,对任意x D Î时有()0f x ³恒成立min ()0f x Û³;()0f x £恒成立max ()0f x Û£。
例1. 设函数32()29128f x x x x c =-++,若对任意[0,3]x Î,都有2()f x c <成立,则实数c 的取值范围是解析 因为32()29128f x x x x c =-++,由2()f x c < 所以32229128x x x c c -++<,所以32229128x x x c c -+<-令32()2912g x x x x =-+,欲使2()8g x c c <-对任意[0,3]x Î恒成立,则需使max ()g x <28c c -对任意[0,3]x Î成立即可。
所以 2()61812g x x x ¢=-+ 令()0g x ¢=,得121,2x x ==,当(0,1)x Î时,()0g x ¢>,所以函数()g x 在区间(0,1)上单调递增;当(1,2)x Î时,()0g x ¢<,所以函数()g x 在区间(1,2)上单调递减;当(2,3)x Î时,()0g x ¢>,所以函数()g x 在区间(2,3)上单调递增.又由(1)5,(3)9g g ==,故当[0,3]x Î时,max ()9g x =由题意得 298c c <-,得91c c ><-或。
龙源期刊网
函数中的任意性与存在性问题
作者:马军辉
来源:《新课程·教师》2013年第11期
任意与存在在逻辑上是互为否定的两个量词。
近几年全国各地的高考题以它们立意命题,已成为考查高中数学知识的热点。
尤其在函数与导数及不等式中频频出现,由于这类问题灵活多变,思辨性强,大多数学生望而生畏、束手无策。
本文通过对几道具有代表性、示范性的高考题进行改编并深入探究,通过一题多解、一题多变,总结出解决这类问题的思路与方法。
需要说明的是,通过分离参数最终转化为不含参数的新函数的最值问题,是我们解决这类问题的主要方法。
总之,处理函数中的任意性与存在性问题的主线是运用函数的最值,本文以一题多解、一题多变来培养学生思维的灵活性,加深对任意性与存在性问题的认识。
当然,在分析问题时还是要对问题进行适当的转化,找到最有效的解决途径,提炼出解题的思维与方法,提高思维能力与数学素养。
编辑薄跃华。
函数中存在性和任意性问题分类解析1.,,使得,等价于函数在上的值域与函数在上的值域的交集不空,即.例1 已知函数和函数,若存在,使得成立,则实数的取值范围是()解设函数与在上的值域分别为与,依题意.当时,,则,所以在上单调递增,所以即.当时,,所以单调递,所以即.综上所述在上的值域.当时,,又,所以在在上单调递增,所以即,故在上的值域.因为,所以或解得,故应选.,,使得,等价于函数在上的值域是函数在上的值域的子集,即.例2(2011湖北八校第二次联考)设,.①若,使成立,则实数的取值范围为___;②若,,使得,则实数的取值范围为___解①依题意实数的取值范围就是函数的值域.设,则问题转化为求函数的值域,由均值不等式得,,故实数的取值范围是.②依题意实数的取值范围就是使得函数的值域是函数的值域的子集的实数①知,易求得函数的值域,则当且仅当即,故实数的取值范围是.例3已知,它们的定义域都是,其中是自然对数的底数,.(1)求的单调区间;(2)若,且,函数,若对任意的,总存在,使,求实数的取值范围.解 (1)略;(2)依题意实数的取值范围就是使得在区间上的值域是的值域的子集实数的取值范围.当时,由得,故在上单调递减,所以即,于是.因,由得.①当时,,故在上单调递增,所以即,于是.因为,则当且仅当,即.②当时,同上可求得.综合①②知所求实数的取值范围是.3.已知是在闭区间的上连续函,则对使得,等价于.例4已知,其中.(1)若是函数的极值点,求实数的值;(2)若对任意的都有成立,求实数的取值范围.解 (1)略;(2) 对,有,等价于有.当时,,所以在上单调递增,所以.因为,令得,又且,.①当时,,所以在在上单调递增,所以.令得这与矛盾。
②当时,当时,当时,所以在上单调递减在上单调递增,所以.令得,又,所以。
③当时,,所以在上单调递减,所以.令得,又,所以。
综合①②③得所求实数的取值范围是。
另解同上求得,要证时,,即.由上知求需对参数进行分类讨论过程繁而长,其实可避免分类讨论,不等式恒成立问题往往转化最值问题来解决,逆向思维,由于难求,将退回到恒成立问题: 证时,即恒成立,只需证当时,恒成立,只需证.因为,令得.当时,当时,故,所以,故所求实数的取值范围是。
函数的任意和存在性问题中山纪念中学 李文东 528454函数中的任意性、存在性问题,也即函数中的恒成立和能成立问题,一直是高中数学考试乃至高考的重点和难点,这一类问题主要涉及到函数的最值和值域,基本模式如下:1.若不等式()f x A >对于任意的x D ∈成立⇔在区间D 上()min f x A >2.若不等式()f x B <对于任意的x D ∈成立⇔在区间D 上()max f x B <3.若在区间D 上存在实数x 使不等式()f x A >成立⇔在区间D 上()max f x A >;4.若在区间D 上存在实数x 使不等式()f x B <成立⇔在区间D 上的()min f x B <.而当题目中涉及到两个函数或者是存在性与任意性同时出现时,很多同学更是无从下手,本文拟通过下面的例子,帮助同学们解决这一难题。
例. 已知函数32()231f x ax ax =-+,3()42a g x x =-+,其中0a < (1)若存在0[0,2]x ∈,使得0()0f x =成立,求a 的取值范围.解:存在0[0,2]x ∈,使得0()0f x =成立⇔函数32()231f x ax ax =-+在区间[0,2]有零点.⇔方程()0f x =在区间[0,2]有实数根.而2()666(1).f x ax ax ax x '=-=-因为0a <,故要使方程()0f x =在区间[0,2]有实数根,则140a +≤⇒4a ≤-. (2)若存在1[0,2]x ∈、2[0,2]x ∈,使得12()()f x g x =成立,求a 的取值范围. 解:若存在1[0,2]x ∈、2[0,2]x ∈,使得12()()f x g x =成立⇔()f x 的值域与()g x 的值域的交集非空.由(1)可知,()f x 的值域(记为集合A )为[14,1]A a a =+-,又因为当0a <时,3()42a g x x =-+在[0,2]上是增函数, ()g x 的值域(记为集合B )为33,222a B ⎡⎤=-+⎢⎥⎣⎦,要使A B ≠∅,则312a ≤-⇒12a ≤-. (3)若存在1[0,2]x ∈、2[0,2]x ∈,使得12()()f x g x >成立,求a 的取值范围. 解:由基本模式的3、4可知:若存在1[0,2]x ∈、2[0,2]x ∈,使得12()()f x g x >成立⇔max min ()()f x g x >.而max ()1f x a =-,min 3()2g x =,故312a ->⇒12a <-. (4)若存在1[0,2]x ∈,使对于任意2[0,2]x ∈,12()()f x g x =成立,求a 的取值范围. 解:存在1[0,2]x ∈,使对于任意2[0,2]x ∈,12()()f x g x =成立⇔()g x 的值域是()f x 的值域的子集. 即33,[14,1]222a a a ⎡⎤-+⊆+-⎢⎥⎣⎦⇒3122a a -≥-+⇒12a ≤-. (5)若对任意1[0,2]x ∈,总存在2[0,2]x ∈,使得12()()f x g x <成立,求a 的取值范围. 解:由基本模式的1、3可知:对任意1[0,2]x ∈,总存在2[0,2]x ∈,使得12()()f x g x <成立⇔max max ()()f x g x <.即3122a a -<-+⇒1a >-,又0a <,故10a -<<. (6)若对任意1[0,2]x ∈,2[0,2]x ∈,使得12()()f x g x <成立,求a 的取值范围. 解:由基本模式的1、2可知:对任意1[0,2]x ∈,2[0,2]x ∈,使得12()()f x g x <成立⇔max min ()()f x g x <.即312a -<⇒12a >-,又0a <,故102a -<<. (7)若对任意给定的0[0,2]x ∈,在[0,2]上总存在两个不同的i x (1,2i =),使得0()()i f x g x =成立,求a 取值范围.解:在[0,2]上总存在两个不同的i x (1,2i =),使得0()()i f x g x =成立,于是0()[1,1]g x a ∈-,由于0x 的任意性知有33,[1,1]222a a ⎡⎤-+⊆-⎢⎥⎣⎦,只需3122a a -+≤-⇒ 1.a ≤- (8)若对任意给定的0[0,2]x ∈,在[0,2]上总存在两个不同的i x (1,2i =),使得102()()()f x g x f x ≤≤成立,求a 取值范围.解:由基本模式的1、2、3、4可知:对任意给定的0[0,2]x ∈,在[0,2]上总存在两个不同的i x (1,2i =),使得102()()()f x g x f x ≤≤成立 max max min min ()()()()g x f x f x g x ≤⎧⇔⎨≤⎩,即()g x 的值域是()f x 的值域的子集. 即33,[14,1]222a a a ⎡⎤-+⊆+-⎢⎥⎣⎦⇒3122a a -+≤-⇒ 1.a ≤-。