第五讲波动率 PPT
- 格式:ppt
- 大小:1.57 MB
- 文档页数:33
不可错过的期权核心!波动率的分类及特征导读:波动率,是期权衍生品中最为重要的概念。
波动率交易,也是期权特有交易方式之一,是指基于对波动率的分析和预测而进行的交易。
它削弱了标的资产价格变动对策略的影响,主要依赖波动率本身或波动率背后所蕴含的标的资产波动形式来获取利润,有其独特吸引力。
一、波动率的分类首先需要明确,波动率是一个统计概念,是指资产在某一时间段内收益率的年化标准差。
波动率刻画了资产价格的波动程度,是对资产收益率不确定性的衡量,用于反映资产的风险水平。
波动率越高,资产价格的波动越剧烈,资产收益率的不确定性就越强;波动率越低,资产价格的波动越平缓,资产收益率的确定性就越强。
为讨论方便,人们通常将波动率分为以下四种类型,每一种波动率对应了不同的计算方法与作用。
历史波动率指资产在过去一段时间内所表现出的波动率,它是通过统计方法,利用资产历史价格数据计算而得,也可以称其为已实现波动率,是确定性的。
历史波动率非常重要,它的大小不仅体现了金融资产在统计期内的波动状况,更是分析和预测其他几类波动率的基础。
其计算方法可总结如下:1.从市场上获得资产在固定时间间隔(如每天、每周或每月等)上的价格。
2.对于每个时间段,求出该时间段期末与期初的资产价格之比的自然对数。
3.求出这些对数值的标准差,再乘以一年中包含的时段数量的平方根,例如,若选取时间间隔为每天,则扣除闭市每年中有250个交易日,应乘以√250即得到历史波动率。
隐含波动率从期权价格中引申出来的概念。
由期权定价理论可知,有五个因素影响期权价格:标的资产价格、到期时间、波动率、无风险利率和执行价格。
其中波动率是唯一一个不可观测的量,而期权价格也是可观测的,那么将期权实际价格带入期权定价公式中,便可以反推出一个波动率数值,这就是隐含波动率。
它是由期权市场价格决定的,是市场价格的真实映射,而有效市场价格是供求关系平衡下的产物,是买卖双方博弈后的结果。
因此隐含波动率反映的是市场对标的资产未来波动率的预期。
波动率是金融资产价格的波动程度,是对资产收益率不确定性的衡量,用于反映金融资产的风险水平。
波动率越高,金融资产价格的波动越剧烈,资产收益率的不确定性就越强;波动率越低,金融资产价格的波动越平缓,资产收益率的确定性就越强。
产生的原因从经济意义上解释,产生波动率的主要原因来自以下三个方面:1、宏观经济因素对某个产业部门的影响,即所谓的系统风险;2、特定的事件对某个企业的冲击,即所谓的非系统风险;3、投资者心理状态或预期的变化对股票价格所产生的作用。
波动率的分类1、实际波动率实际波动率又称作未来波动率,它是指对期权有效期内投资回报率波动程度的度量,由于投资回报率是一个随机过程,实际波动率永远是一个未知数。
或者说,实际波动率是无法事先精确计算的,人们只能通过各种办法得到它的估计值。
2、历史波动率历史波动率是指投资回报率在过去一段时间内所表现出的波动率,它由标的资产市场价格过去一段时间的历史数据(即St的时间序列资料)反映。
这就是说,可以根据{St}的时间序列数据,计算出相应的波动率数据,然后运用统计推断方法估算回报率的标准差,从而得到历史波动率的估计值。
显然,如果实际波动率是一个常数,它不随时间的推移而变化,则历史波动率就有可能是实际波动率的一个很好的近似。
3、预测波动率预测波动率又称为预期波动率,它是指运用统计推断方法对实际波动率进行预测得到的结果,并将其用于期权定价模型,确定出期权的理论价值。
因此,预测波动率是人们对期权进行理论定价时实际使用的波动率。
这就是说,在讨论期权定价问题时所用的波动率一般均是指预测波动率。
需要说明的是,预测波动率并不等于历史波动率,因为前者是人们对实际波动率的理解和认识,当然,历史波动率往往是这种理论和认识的基础。
除此之外,人们对实际波动率的预测还可能来自经验判断等其他方面。
4、隐含波动率隐含波动率是制期权市场投资者在进行期权交易时对实际波动率的认识,而且这种认识已反映在期权的定价过程中。
一波动率计算波动率模型1.显示数据范围最近一年,例今日2010/11/8,范围默认2009/11/8-2010/11/8,最大10年2.周期默认日线图1年,可选2年,周线图,月线图,季线图,年线图.3.周期为日, 年化系数默认260可输入;周期为周,年化系数默认52可输入4.证券可输入股票5.历史默认5 15 30 50, 选取计算波动率的取值时间范围6.模型默认历史法算法1.传统波动率模型(CLA模型)传统模型为波动模型的基础模型,也是运用最广泛的波动模型之一, 表达公式为:Xi=Ln(P i+1/P i)σ: 波动率, Volatility n: 观察值的数量X:资产的平均对数收益Xi:资产的对数收益Pi+1:当日价格Pi:前日价格基础波动率计算过程中应注意的事项:1.对观察值的取值只取每天的收盘价;2.对数的计算应为现值比前值,如Ln(P12/P11);3.对数取值应比实际观察数量少1(n-1);4.计算所得的基础波动率应按取值的频率对应年化,如:按日取值的基础波动率年化应乘以根号260。
1) 周期: 1年日线1.周期: 1年日线, 为一年历史数据. 样本数据为每日价格. Pi+1:当日收盘价格;Pi:前日收盘价格2.X i+1=LN(P i+1/P i),从最初的数据开始,X2=LN(P2/P1)3.15日为例:STEDV15(X2:X15)----- STEDV16(X3:X16)----4.Volatility15= STEDV15(X2:X15) * SQRT(260),其中260为年化天数,用户可自己手工录入2) 周期:1年周线1. 周期:1年周线为一年周线历史数据,样本数据为每周价格.Pi+1:当周价格;Pi: 前周价格2. 高低价波动率模型(PKM ParKinson 模型)公式:21)(241i i n i L H Ln nLn ∑==σσ: 波动率Volatility n: 观察值的数量 Hi :当日最高价 Li :当日最低价 推荐计算步骤:1. 计算当日最高与最低的对数;2. 求对数平方的和;3. 计算常值241nLn 4. 将步骤2、3的结果相乘,并开方,所得结果即为PKM 波动率5. 根据取值频率相应年化1) 周期: 1年日线1. 周期: 1年日线, 为一年历史数据. 样本数据为每日价格. Hi :当日最高价; Li :当日最低价2. X i =(LN(Hi/Li))2, 从最初的数据开始,X 1=(LN(Hi 1/Li 1))23. 以30日为例: sum(X 1: X 30)4. 常数: 241nLn , n 为观察值数量 5. 30日: SQRT(sum(X 1: X 30)/ (4*30Ln2))6. Volatility 30= SQRT(sum(X 1: X 30)/ (4*30Ln2))*SQRT(260),其中260为年化天数,用户可自己手工录入2) 周期:1年周线1. 周期:1年周线,为一年周线历史数据,样本数据为每周价格.Hi:周线最高点;Pi: 周线最低点)3. Rogers 与 Satchell 模型(R&S 模型)模型公式:)(1n 1OL Ln C L Ln O H Ln C H Ln n i +=∑=σ σ:波动率 n : 观察值数量 H :当日最高值 L :当日最低值 O :当日开市值 C :当日收市值计算R&S 模型公式的步骤建议如下:1. 求各组对数的值:C H Ln ,O H Ln ,C L Ln 和OL Ln ; 2. 合计所有对数乘积的和,除以对象值数量,如10日应除以10,30日应除以30等;3. 开根号,得到单日波动率;4. 将得到的单日波动率年化,即乘以根号260,如遇周数据或月数据应年化乘以根号52或根号12,以此类推;1) 周期: 1年日线1. 周期: 1年日线, 为一年历史数据. 样本数据为每日价格. H :当日最高价; L :前日最低价 O :当日开始值 C :当日收市值;2.X= C H Ln *O H Ln +C L Ln *OL Ln ; 3. 以30日为例: SQRT(sum(X 1: X 30)/30)4. Volatility 30= SQRT(sum(X 1: X 30)/30)*SQRT(260),其中260为年化天数,用户可自己手工录入2) 周期:1年周线1. 周期:1年周线,为一年周线历史数据,样本数据为每周价格.H:周线最高点;L: 周线最低点 O: 当周开盘价 C: 当周收市价4. Garman 与Klass 模型(G&K 模型)该模型是在PKM 模型的基础上通过对偏离程度的衡量而形成的另一种波动公式:21121)(383.0)2(019.0)(511.0O C Ln n O L Ln O H Ln O C Ln O L Ln O C Ln L H Ln n L H Ln n n i n i n i ∑∑∑===--+-=σσ:波动率n : 观察值数量H :当日最高值L :当日最低值O :当日开始值C :当日收市值由于GK 公式的复杂性,建议计算步骤如下:1.计算各对数值: Ln(H/L), Ln(C/O), Ln(L/O),Ln(H/O); 2.计算Ln(H/L)平方, Ln(H/L)* Ln(C/O), Ln(L/O)* Ln(C/O),Ln(H/O)* Ln(L/O)和Ln(C/O)平方; 3.乘以各自系数并处以n ,如10日取值则应除以10; 4.所得波动率按周期年化,如乘以根号252;月数据则应乘以根号12; 5. 应注意第二项系数为0.019而非0.195、 GARCH 模型对于平稳的时间序列i y (一般情况下取股价的收益率乘以100作为计算的标准,这样可以确保指数是平稳的),建立GARCH 模型:(a ):0t y αε=+t z ε= ()iid 0,1t z N如果t h 是t ε的基于过去信息的条件方差,并且满足(b ):201121t t t h h γγεγ--=++则称(a )与(b )为GARCH (1,1)模型,这里(a )称为均值方程,(b )称为条件方差方程,从(b )式可以看到某一特定时期的随机误差的方差t h 不仅取决于以前的误差211t γε-(ARCH 项),还取决于早期的方差21t h γ-(GARCH 项)。
波动率江恩理论的核心思想是平衡,圣经马太福音:“因为凡有的,还要给他,使他富足;但是,没有的,连他所有的,也要由他夺去”说的是人道,老子《道德经》中说“天道损有余补不足”说的是天道,天道是怎么要补不足的?学过物理的都知道,我们所处的宇宙普遍存在一些常数,比如说圆周率派、光速、普朗克常数、引力常数G,每一个市场走势,无论级别多小多大,都是一个小宇宙,也有其内在的不变的运动规律,这个规律表现出来就是波动率。
波动率是一个角度线,也可以说是一条速率线,它是由走势自身决定的,所有市场的顶部与底部都存在一个数学上的关系。
还是用图片来说明吧:例一、天茂集团1、找到临时波动率得XXXXXXXXXXXX2、找到历史上的第一个高点,以这个高点为原点,以波动率为斜率画线(这个在飞狐软件上很好实现,在定点1周期序号的数值内填入起始点的数值,然后在斜率一栏内填入波动率的数值)2013年5月3日的高点3.63,将这条紫色的线段延长,你会发现刚好到达2014年12月7日的高点3.22,这说明临时波动率无需修正。
2011年2月28日的高点5.69,2011年4月19日的高点5.82将这两个点以波动率为斜率的直线延长,5.69刚好到达2014年9月16日的3.84元,5.82到达2014年10月10日的4.10元,误差几分钱。
2010年9月30日的低点5.17以波动率为斜率的直线延长刚好抵达2014年8月6日的高点3.15。
例二、宁波富达(600724)1、先找临时波动率得XXXXXXXXX2、以历史走势的第一个高点2013年11月26日4.81以临时波动率为斜率作线段,发现与未来第一个走势第一个高点有偏差,那么就需要将波动率作修改,XXXXXXXXXXX得到波动率为XXXXXXXXX。
有了波动率,那么未来走势的高低点就可以通过历史高低点来决定了,圣经说“阳光底下没有新鲜事”。
2012年12月4日的低点5.53决定了2013年11月26日的高点4.972012年10月19日的高点6.5决定了2014年10月10日的高点5.36,分毫不差。