3.函数的单调性(北师大版国家级优质课一等奖)
- 格式:ppt
- 大小:533.50 KB
- 文档页数:18
函数的单调性教案一、引入函数的单调性是高中数学中的重要概念,它描述的是函数在定义域上的变化趋势。
在解题中,了解函数的单调性能够帮助我们简化问题,提高解题效率。
本教案将通过详细的讲解和例题分析,帮助学生掌握函数的单调性的概念、判断和应用。
二、概念剖析1. 单调递增函数:设函数 f(x) 在定义域上有定义,若对任意的x1 和 x2,当 x1 < x2 时,有 f(x1) ≤ f(x2),则称 f(x) 在定义域上是单调递增的。
2. 单调递减函数:设函数 f(x) 在定义域上有定义,若对任意的x1 和 x2,当 x1 < x2 时,有 f(x1) ≥ f(x2),则称 f(x) 在定义域上是单调递减的。
3. 严格单调递增函数:设函数 f(x) 在定义域上有定义,若对任意的 x1 和 x2,当 x1 < x2 时,有 f(x1) < f(x2),则称 f(x) 在定义域上是严格单调递增的。
4. 严格单调递减函数:设函数 f(x) 在定义域上有定义,若对任意的 x1 和 x2,当 x1 < x2 时,有 f(x1) > f(x2),则称 f(x) 在定义域上是严格单调递减的。
三、判断方法1. 导数判断法:对于函数 f(x),通过求导数 f'(x),可以判断函数的单调性。
当 f'(x) > 0 时,函数 f(x) 单调递增;当 f'(x) < 0 时,函数f(x) 单调递减。
2. 一阶差分判断法:对于函数 f(x),通过计算相邻两点之间的函数值差来判断函数的单调性。
当 f(x2) - f(x1) > 0 时,函数 f(x) 单调递增;当 f(x2) - f(x1) < 0 时,函数 f(x) 单调递减。
四、应用示例1. 实例1:判断函数 f(x) = 3x + 2 的单调性。
解析:根据导数判断法,求出函数 f(x) 的导数 f'(x) = 3。
函数的单调性教案(获奖)章节一:函数单调性的引入1. 引入概念:单调增加和单调减少2. 讲解实例:设f(x) = x,则f(x)在实数集上单调增加设g(x) = -x,则g(x)在实数集上单调减少3. 总结:函数单调性是描述函数值变化趋势的重要性质,分为单调增加和单调减少两种情况。
章节二:函数单调性的定义1. 定义单调增加:若对于任意的x1 < x2,都有f(x1) ≤f(x2),则称f(x)在区间I上单调增加。
2. 定义单调减少:若对于任意的x1 < x2,都有f(x1) ≥f(x2),则称f(x)在区间I上单调减少。
3. 举例说明:设h(x) = 2x + 3,则h(x)在实数集上单调增加设k(x) = -x^2 + 1,则k(x)在区间[-1, 1]上单调增加,在区间(-∞, -1]和[1, +∞)上单调减少章节三:函数单调性的判断方法1. 导数法:若函数f(x)在区间I上可导,且导数f'(x) ≥0(单调增加)或f'(x) ≤0(单调减少),则f(x)在区间I上单调增加或单调减少。
2. 图像法:绘制函数图像,观察函数值的变化趋势,判断单调性。
3. 表格法:列出函数在不同x值下的函数值,观察函数值的变化规律,判断单调性。
章节四:函数单调性的应用1. 最大值和最小值:对于单调增加的函数,最大值出现在定义域的右端点;对于单调减少的函数,最小值出现在定义域的左端点。
2. 函数的切线:单调增加的函数在切点处的切线斜率为正;单调减少的函数在切点处的切线斜率为负。
3. 函数的图像:单调增加的函数图像上升,单调减少的函数图像下降。
章节五:单调性在实际问题中的应用1. 线性规划:利用函数的单调性确定最优解的位置。
2. 优化问题:求函数的最值,利用函数的单调性判断最值的位置。
3. 经济学:分析市场需求和供给的单调性,预测市场变化趋势。
4. 物理学:研究物体运动的速度和加速度,利用单调性分析物体的运动状态。
函数的单调性教案(获奖)第一章:函数单调性的概念及意义1.1 函数单调性的定义引入函数单调性的概念,让学生理解函数单调性的含义。
举例说明函数单调性的两种类型:单调递增和单调递减。
1.2 函数单调性的意义解释函数单调性在数学分析中的重要性,如在求解极值、最值等问题中的应用。
通过实际例子展示函数单调性在现实生活中的应用,如经济学中的需求函数等。
第二章:函数单调性的判断方法2.1 图像法教授如何通过观察函数图像来判断函数的单调性。
引导学生学会识别函数图像中的单调区间。
2.2 导数法介绍导数与函数单调性的关系。
教授如何利用导数的正负来判断函数的单调性。
第三章:函数单调性的应用3.1 求函数的极值讲解如何利用函数单调性来求解函数的极值。
通过例题让学生掌握求解极值的方法。
3.2 求函数的最值介绍如何利用函数单调性来求解函数的最值。
通过例题让学生理解最值的求解过程。
第四章:函数单调性的进一步探讨4.1 单调区间与导数的关系讲解单调区间与导数之间的关系,让学生理解导数在单调性判断中的作用。
通过例题展示导数在单调区间判断中的应用。
4.2 单调性在实际问题中的应用介绍单调性在实际问题中的应用,如优化问题、经济问题等。
通过实际例子让学生学会如何运用单调性解决实际问题。
第五章:综合练习与拓展5.1 综合练习题提供综合练习题,让学生巩固函数单调性的概念、判断方法和应用。
引导学生学会如何运用所学知识来解决问题。
5.2 拓展与应用引导学生思考函数单调性在其他数学领域的应用,如微分方程、线性代数等。
提供一些拓展问题,激发学生的学习兴趣和思考能力。
第六章:函数单调性的高级应用6.1 函数的单调性与其他数学概念的联系探讨函数单调性与其他数学概念的联系,如微分、积分、极限等。
通过例题展示函数单调性在其他数学领域的应用。
6.2 函数单调性在优化问题中的应用介绍函数单调性在优化问题中的应用,如求解最大值、最小值等。
通过实际例子让学生学会如何运用函数单调性来解决优化问题。
函数的单调性和合承德观察图像,结合己学过的函数观点,你能说出这一天的气温变化规律吗?IIIe探究一'向题1:根据上面的描述,对比函数/(X)=X与六乂)十2在区间(一8,+8)上的变化规律,说出它们的不]虱点?。
探究一问题2:请归纳函数f(x)=x,/(x)=2x+1和函数/(x)=x2(x>0)的共同特征.函数尹7任)在区间D上是增函数.f3)=/ -3-2-101239i讨论:在函数,⑴衣的定义域(-8,+00)上,取两个自变量值设X[——1,才2=2,由尤I V工2.计算得相应的函数值mxrg),则称函数f(X)=X2在(-00,+00)上是增函数,这种说法对吗?一般地,设函数f(x)的定义域为I:如果对于定义域I内某个区间D上的任意两个自变量的值Xi,x2,当Xi«2时,都有f(Xi)<f(X2),函数f(x)在区向D上是增函数(increasing function)..Ay"/\1K X2);f(X〔)I27i IXXi x2'二^数的定义,谈谈你对“升尤)"2在区间”(0,+oo)上是增函数”是怎样理解的?y=x20X一般地,设函数f(x)的定义域为I:如果对于定义域I内某个区间D上的任意两个自变量的值Xi,x2,当Xi«2时,都有f(Xi)>f(X2),函数f(x)在区向D上是减函数(decreasing function).一般地,设函数f(x)的定义域为I:如果对于定义域I内某个区间D上的任意两个自变量的值X1, x2,当X1S时,都有f(X])〈f(X2),函数f(x)在区间D上是增函数(increasing function).2.减函数:一般地,设函数f(x)的定义域为I:如果对于定义域I内某个区间D上的任意两个自变量的值xi, X2,当X]〈X2时,都有f(x r)>f(x2),函数f(x)在区间D上是减函数(decreasing function).3.如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.______________________________20・15 .10 -5 -0 2 4 6 8 10 12 14 16 18 20 22 24 t(h)业,问题3:观察图象,说出函数的单调区间,以及在但一rsi l 旦福寻耕状旦明断T列结论的正误二(正确的打“Vr错误的打“x〃)⑴定义域为[0,+8)的函数Q),满足伽)v/(〃+1),n=o, 1,2,3,...,贝!J称函数/⑴在[0,+呵上是增函数.()(2)对于定义域内的区间D,若任意叫,x2e D,当勺>*都有犬">犬电,则函数Q)在D上是增函数.(变式:函数/⑴在D上是增函数,若任意x1?x2eD,/(X1)>/(X2)>则有明X2⑶若任意x n x2eD,都有(乂1-工2)>。
1、高中数学函数的单调性的教学设计一等奖【教学目标】1.知识与技能:从形与数两方面理解函数单调性的概念,掌握利用函数图象和定义判断、证明函数单调性的方法步骤。
2.过程与方法:通过观察函数图象的变化趋势——上升或下降,初步体会函数单调性,然后数形结合,让学生尝试归纳函数单调性的定义,并能利用图像及定义解决单调性的证明。
3.情感、态度与价值观:在对函数单调性的学习过程中,让学生感知从具体到抽象,从特殊到一般,从感性到理性的认知过程,增强学生由现象猜想结论的能力。
【教学重点】函数单调性的概念、判断。
【教学难点】根据定义证明函数的单调性。
【教学方法】教师启发讲授,学生探究学习。
【教学工具】教学多媒体。
【教学过程】一、创设情境,引入课题师:同学们刚刚从楼下走到了教室,如果把每一个楼梯的台阶都标上数字,我们一起来描述一下从楼下走到教室这一过程中,同学们的位置变化。
生:随着楼梯台阶标号的增大,我们所处的位置在不断地上升。
师:(积极反馈,全班鼓掌表扬)反之,我们下楼时,我们的位置显然是在下降的。
师:(阅读教材,人教版节首内容,引导学生看图)结合上下楼的问题,引导学生识图,捕捉信息,启发学生思考。
观察图中的函数图象,随着函数自变量的增大(减小),你能得到什么信息?二、归纳探索,形成概念我们在学习函数概念时,了解了函数的定义域及值域,本节内容其实就是针对自变量与函数值之间的变化关系进行的`专题研究之一──函数单调性的研究。
同学们在初中已经对函数随着自变量取值的变化函数值相应的变化情况有了一定的认识,但是没有严格的定义,今天我们的任务就是通过形象的函数图象变化情况,为函数单调性建立严格定义。
1.借助图象,直观感知首先,我们来研究一次函数和二次函数的单调性。
师:在没有学习函数单调性的严格定义之前,函数的单调性可以理解为,师:根据图象,请同学们写出你对这两个函数单调性的描述。
生:(独立完成,小组内互相检查,然后阅读教材,对比参照)。
函数的单调性教案(获奖)第一章:引言1.1 现实生活中的单调性1.引入概念:单调性是指函数在定义域内的变化趋势。
2.举例说明:(1)商品价格随时间的变化;(2)物体的高度随时间的变化。
1.2 函数单调性的意义1.函数单调性在实际生活中的应用:(1)优化问题;(2)经济决策。
2.函数单调性在数学领域的应用:(1)导数的定义;(2)最值问题的求解。
第二章:函数单调性的定义与性质2.1 函数单调性的定义1.单调递增函数:若对于定义域内的任意x1<x2,都有f(x1)<f(x2),则函数f(x)为单调递增函数。
2.单调递减函数:若对于定义域内的任意x1<x2,都有f(x1)>f(x2),则函数f(x)为单调递减函数。
2.2 函数单调性的性质1.若函数f(x)在定义域内单调递增,则在任意子区间内也单调递增;2.若函数f(x)在定义域内单调递减,则在任意子区间内也单调递减;3.单调递增函数的导数大于等于0;4.单调递减函数的导数小于等于0。
第三章:函数单调性的判断与证明3.1 函数单调性的判断1.利用导数判断:若函数f(x)在定义域内可导,且导数f'(x)≥0(或≤0),则函数f(x)在定义域内单调递增(或单调递减)。
2.利用图像判断:观察函数图像,若图像随着x的增大而上升,则为单调递增函数;若图像随着x的增大而下降,则为单调递减函数。
3.2 函数单调性的证明1.利用导数证明:假设函数f(x)在定义域内可导,且导数f'(x)≥0(或≤0),则对于定义域内的任意x1<x2,有f(x1)<f(x2)(或f(x1)>f(x2)),从而证明函数f(x)单调递增(或单调递减)。
2.利用数学归纳法证明:对于定义域内的任意x1<x2,证明f(x1)<f(x2)(或f(x1)>f(x2)),从而得出函数f(x)单调递增(或单调递减)。
第四章:函数单调性与最值问题4.1 函数单调性与最值的关系1.若函数f(x)在定义域内单调递增,则函数在定义域内的最小值出现在定义域的左端点;2.若函数f(x)在定义域内单调递减,则函数在定义域内的最大值出现在定义域的左端点。
函数的单调性优秀教案(教学设计)(公开课比赛优秀教案)教学目标:知识目标:让学生从形与数两方面理解函数单调性的概念,学会利用函数图像理解和研究函数的性质,初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法。
能力目标:通过探究函数单调性定义,培养学生观察、归纳、抽象的能力和语言表达能力;通过证明函数单调性,提高学生的推理论证能力。
德育目标:通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维惯,让学生经历从具体到抽象、从特殊到一般、从感性到理性的认知过程。
教学重点:函数单调性的概念、判断及证明。
教学难点:归纳抽象函数单调性的定义以及根据定义证明函数的单调性。
教材分析:函数的单调性是函数的重要性质之一,它把自变量的变化方向和函数值的变化方向定性的联系在一起。
本节课在教材中的作用如下:1)函数的单调性在初中数学中有广泛的应用。
它与前一节内容函数的概念和图像知识的延续有密切的联系,是今后研究指数函数、对数函数、幂函数及其他函数单调性的理论基础。
2)函数的单调性是培养学生数学能力的良好题材。
本节课通过对具体函数图像的归纳和抽象,概括出函数在某个区间上是增函数或减函数的准确定义,明确指出函数的增减性是相对于某个区间来说的。
教材中判断函数的增减性,既有从图像上进行观察的直观方法,又有根据其定义进行逻辑推理的严格证明方法,最后将两种方法统一起来,形成根据观察图像得出猜想结论,进而用推理证明猜想的体系。
同时还要综合利用前面的知识解决函数单调性的一些问题,有利于学生数学能力的提高。
3)函数的单调性有着广泛的实际应用。
在解决函数值域、定义域、不等式、比较两数大小等具体问题中均需用到函数的单调性;同时在这一节中利用函数图象来研究函数性质的数形结合思想将贯穿于我们整个数学教学。
函数的单调性在中学数学中扮演着十分重要的角色,因为它反映了函数的变化趋势和特点。
在解决问题时,利用函数单调性的观点是十分重要的,这为培养创新意识和实践能力提供了重要的途径和方式。