高一数学人教版A版必修二:4.3.1 空间直角坐标系
- 格式:pptx
- 大小:2.07 MB
- 文档页数:21
教学设计4.3.1空间直角坐标系教学设计(一)整体设计教学分析学生已经对立体几何以及平面直角坐标系的相关知识有了较为全面的认识,学习《空间直角坐标系》有了一定的基础.这对于本节内容的学习是很有帮助的.但部分同学仍然会在空间思维与数形结合方面存在困惑.本节课的内容是非常抽象的,试图通过教师的讲解而让学生听懂、记住、会用是徒劳的,必须突出学生的主体地位,通过学生的自主学习与和同学的合作探究,让学生亲手实践,这样学生才能获得感性认识,从而为后续的学习并上升到理性认识奠定基础.通过激发学生学习的求知欲望,使学生主动参与教学实践活动.创设学习情境,营造氛围,精心设计问题,让学生在整个学习过程中经常有自我展示的机会,并有经常性的成功体验,增强学生的学习信心,从学生已有的知识和生活经验出发,让学生经历知识的形成过程.通过阅读教材,并结合空间坐标系模型,模仿例题,解决实际问题.三维目标1.掌握空间直角坐标系的有关概念;会根据坐标找相应的点,会写一些简单几何体的有关坐标.通过空间直角坐标系的建立,使学生初步意识到:将空间问题转化为平面问题是解决空间问题的基本思想方法;通过本节的学习,培养学生类比、迁移、化归的能力.2.解析几何是用代数方法研究解决几何问题的一门数学学科,在教学过程中要让学生充分体会数形结合的思想,进行辩证唯物主义思想的教育和对立统一思想的教育;培养学生积极参与,大胆探索的精神.重点难点教学重点:在空间直角坐标系中确定点的坐标.教学难点:通过建立适当的直角坐标系确定空间点的坐标,以及相关应用.课时安排1课时教学过程导入新课思路1.大家先来思考这样一个问题,天上的飞机的速度非常的快,即使民航飞机速度也非常快,有很多飞机时速都在1 000 km以上,而全世界有这么多飞机,这些飞机在空中风驰电掣,速度是如此的快,岂不是很容易撞机吗?但事实上,飞机的失事率是极低的,比火车,汽车要低得多,原因是,飞机都是沿着国际统一划定的航线飞行,而在划定某条航线时,不仅要指出航线在地面上的经度和纬度,还要指出航线距离地面的高度.为此我们学习空间直角坐标系.教师板书课题:空间直角坐标系.思路2.我们知道数轴上的任意一点M都可用一个实数x表示,建立了平面直角坐标系后,平面上任意一点M都可用一对有序实数(x,y)表示.那么假设我们建立一个空间直角坐标系时,空间中的任意一点是否可用有序实数组(x,y,z)表示出来呢?为此我们学习空间直角坐标系.教师板书课题:空间直角坐标系.推进新课新知探究提出问题①在初中,我们学过数轴,那么什么是数轴?决定数轴的因素有哪些?数轴上的点怎样表示?②在初中,我们学过平面直角坐标系,那么如何建立平面直角坐标系?决定平面直角坐标系的因素有哪些?平面直角坐标系上的点怎样表示?③在空间,我们是否可以建立一个坐标系,使空间中的任意一点都可用对应的有序实数组表示出来呢?④观察图1,体会空间直角坐标系该如何建立.⑤观察图2,建立了空间直角坐标系以后,空间中任意一点M如何用坐标表示呢?讨论结果:①在初中,我们学过数轴是规定了原点、正方向和单位长度的直线.决定数轴的因素有原点、正方向和单位长度.这是数轴的三要素.数轴上的点可用与这个点对应的实数x来表示.②在初中,我们学过平面直角坐标系,平面直角坐标系是以一点为原点O,过原点O 分别作两条互相垂直的数轴Ox和Oy,xOy称平面直角坐标系,平面直角坐标系具有以下特征:两条数轴:Dⅰ○互相垂直;Dⅱ○原点重合;Dⅲ○通常取向右、向上为正方向;Dⅳ○单位长度一般取相同的.平面直角坐标系上的点用它对应的横、纵坐标表示,括号里横坐标写在纵坐标的前面,它们是一对有序实数(x,y).③在空间,我们也可以类比平面直角坐标系建立一个坐标系,即空间直角坐标系,空间中的任意一点也可用对应的有序实数组表示出来.④观察图3,OABC-D′A′B′C′是单位正方体,我们类比平面直角坐标系的建立来建立一个坐标系即空间直角坐标系,以O为原点,分别以射线OA,OC,OD′的方向为正方向,以线段OA,OC,OD′的长为单位长度,建立三条数轴Ox,Oy,Oz称为x轴、y 轴和z轴,这时我们说建立了一个空间直角坐标系O-xyz,其中O叫坐标原点,x轴、y轴和z轴叫坐标轴.如果我们把通过每两个坐标轴的平面叫做坐标平面,我们又得到三个坐标平面xOy平面,yOz平面,zOx平面.由此我们知道,确定空间直角坐标系必须有三个要素,即原点、坐标轴方向、单位长.图1图1表示的空间直角坐标系也可以用右手来确定.用右手握住z轴,当右手的四个手指从x轴正向以90°的角度转向y轴的正向时,大拇指的指向就是z轴的正向.我们称这种坐标系为右手直角坐标系.如无特别说明,我们课本上建立的坐标系都是右手直角坐标系.注意:在平面上画空间直角坐标系O-xyz时,一般使∠xOy=135°,∠yOz=90°,即用斜二测画法画立体图,这里显然要注意在y轴和z轴上的都取原来的长度,而在x轴上的长度取原来长度的一半.同学们往往把在x轴上的长度取原来的长度,这就不符和斜二测画法的约定,直观性差.⑤观察图2,建立了空间直角坐标系以后,空间中任意一点M就可以用坐标来表示了.已知M为空间一点.过点M作三个平面分别垂直于x轴、y轴和z轴,它们与x轴、y 轴和z轴的交点分别为P、Q、R,这三点在x轴、y轴和z轴上的坐标分别为x,y,z.于是空间的一点M就唯一确定了一个有序数组x,y,z.这组数x,y,z就叫做点M的坐标,并依次称x,y,z为点M的横坐标,纵坐标和竖坐标.坐标为x,y,z的点M通常记为M(x,y,z).图2反过来,一个有序数组x,y,z,我们在x轴上取坐标为x的点P,在y轴上取坐标为y 的点Q,在z轴上取坐标为z的点R,然后通过P、Q与R分别作x轴、y轴和z轴的垂直平面.这三个垂直平面的交点M即为以有序数组x,y,z为坐标的点.数x,y,z就叫做点M的坐标,并依次称x,y和z为点M的横坐标、纵坐标和竖坐标.(如图2所示) 坐标为x,y,z的点M通常记为M(x,y,z).我们通过这样的方法在空间直角坐标系内建立了空间的点M和有序数组x,y,z之间的一一对应关系.注意:坐标面上和坐标轴上的点,其坐标各有一定的特征.如果点M在yOz平面上,则x=0;同样,zOx面上的点,y=0;xOy面上的点,z=0;如果点M在x轴上,则y=z=0;如果点M在y轴上,则x=z=0;如果点M在z轴上,则x=y=0;如果M是原点,则x=y=z=0.空间点的位置可以由空间直角坐标系中的三个坐标唯一确定,因此,常称我们生活的空间为“三度空间或三维空间”.事实上,我们的生活空间应该是四度空间,应加上时间变量t.即(x,y,z,t),它表示在时刻t所处的空间位置是(x,y,z).应用示例思路11如图3,长方体OABC -D ′A ′B ′C ′中,|OA |=3,|OC |=4,|OD ′|=2,写出D ′,C ,A ′,B ′四点的坐标.图3活动:学生阅读题目,对照刚学的知识,先思考,再讨论交流,教师适时指导,要写出点的坐标,首先要确定点的位置,再根据各自坐标的含义和特点写出.D ′在z 轴上,因此它的横、纵坐标都为0,C 在y 轴上,因此它的横、竖坐标都为0,A ′为在zOx 面上的点,y =0;B ′不在坐标面上,三个坐标都要求.解:D ′在z 轴上,而|OD ′|=2,因此它的竖坐标为2,横、纵坐标都为0,因此D ′的坐标是(0,0,2).同理C 的坐标为(0,4,0).A ′在xOz 平面上,纵坐标为0,A ′的横坐标的长等于|OA |=3,A ′的竖坐标的长等于|OD ′|=2,所以A ′的坐标就是(3,0,2).点B ′在xOy 平面上的射影是点B ,因此它的横坐标x 与纵坐标y 同点B 的横坐标x 与纵坐标y 相同,在xOy 平面上,点B 的横坐标x =3,纵坐标y =4;点B ′在z 轴上的射影是点D ′,它的竖坐标与D ′的竖坐标相同,点D ′的竖坐标z =2,所以点B ′的坐标是(3,4,2).点评:能准确地确定空间任意一点的直角坐标是利用空间直角坐标系的基础,一定掌握如下方法,过点M 作三个平面分别垂直于x 轴、y 轴和z 轴,确定x 、y 和z ,同时掌握一些特殊点的坐标的表示特征.2讲解课本例2.活动:学生阅读,思考与例1的不同,教师引导学生考虑解题的方法,图中没有坐标系,这就给我们解题带来了难度,同时也给我们的思维提供了空间,如何建立空间直角坐标系才能使问题变得更简单?一般来说,以特殊点为原点,我们所求的点在坐标轴上或在坐标平面上的多为建立空间直角坐标系的基本原则,这里我们以下底面为xOy 平面,其他不变,来看这15个点的坐标.解:把图中的钠原子分成上、中、下三层,下层的钠原子全部在xOy 平面上,因此其竖坐标全部是0,所以这五个钠原子所在位置的坐标分别为(0,0,0)、(1,0,0)、(1,1,0)、(0,1,0)、(12,12,0);中层的钠原子全部在与xOy 平行的平面上,与z 轴交点的竖坐标是12,所以这四个钠原子所在位置的坐标分别为(12,0,12)、(1,12,12)、(12,1,12)、(0,12,12);上层的钠原子全部在与xOy 平行的平面上,与z 轴交点的竖坐标是1,所以这五个钠原子所在位置的坐标分别为(0,0,1)、(1,0,1)、(1,1,1)、(0,1,1)、(12,12,1).思考:如果把原点取在中间的点(上述两点的中点氯原子)上,以中层面作为xOy 平面,结果会怎样呢?解:把图中的钠原子分成上、中、下三层,中层的钠原子全部在xOy 平面上,因此其竖坐标全部是0,所以这四个钠原子所在位置的坐标分别为(12,0,0)、(1,12,0)、(12,1,0)、(0,12,0);上层的钠原子全部在与xOy 平行的平面上,与轴交点的竖坐标是12,所以这五个钠原子所在位置的坐标分别为(0,0,12)、(0,1,12)、(1,0,12)、(1,1,12)、(12,12,12);下层的钠原子全部在与xOy 平行的平面上,与轴交点的竖坐标是-12,所以这五个钠原子所在位置的坐标分别为(0,0,-12)、(1,0,-12)、(1,1,-12)、(0,1,-12)、(12,12,-12). 点评:建立坐标系是解题的关键,坐标系建立的不同,点的坐标也不同,但点的相对位置是不变的,坐标系的不同也会引起解题过程的难易程度不同.因此解题时要慎重建立空间直角坐标系.思路21已知点P ′在x 轴正半轴上,|OP ′|=2,PP ′在xOz 平面上,且垂直于x 轴,|PP ′|=1,求点P ′和P 的坐标.解:如图4,显然,P ′在x 轴上,它的坐标为(2,0,0).若点P 在xOy 平面上方,则点P 的坐标为(2,0,1).若点P 在xOy 平面下方,则点P 的坐标为(2,0,-1).点评:注意点P 有两种可能的位置情况,不要漏解.图42如图5,在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是BB 1和D 1B 1的中点,棱长为1,求E ,F 点的坐标.图5解:方法一:从图中可以看出E 点在xOy 平面上的射影为B ,而B 点的坐标为(1,1,0),E 点的竖坐标为12,所以E 点的坐标为(1,1,12);F 点在xOy 平面上的射影为G ,而G 点的坐标为(12,12,0),F 点的竖坐标为1,所以F 点的坐标为(12,12,1). 方法二:从图中条件可以得到B 1(1,1,1),D 1(0,0,1),B (1,1,0).E 为BB 1的中点,F 为D 1B 1的中点,由中点坐标公式得E 点的坐标为(1+12,1+12,1+02)=(1,1,12),F 点的坐标为(1+02,1+02,1+12)=(12,12,1). 点评:(1)平面上的中点坐标公式可以推广到空间,即设A (x 1,y 1,z 1),B (x 2,y 2,z 2),则AB 的中点P 的坐标为(x 1+x 22,y 1+y 22,z 1+z 22); (2)熟记坐标轴上的点的坐标和坐标平面上的点的坐标表示的特征. 变式训练1.在上题中求B 1(1,1,1)点关于平面xOy 对称的点的坐标.解:设所求的点为B 0(x 0,y 0,z 0),由于B 为B 0B 1的中点,所以⎩⎨⎧ 1=1+x 02,=1+y 02,=1+z 02.解之,得{ x 0=1,y 0=1,z 0=-1.所以B 0(1,1,-1).2.在上题中求B 1(1,1,1)点关于z 轴对称的点的坐标.解:设所求的点为P (x 0,y 0,z 0),由于D 1为PB 1的中点,因为D 1(0,0,1),所以⎩⎨⎧ 0=1+x 02,=1+y 02,=1+z 02.解之,得{x 0=-1,y 0=-1,z 0=1.所以P (-1,-1,1).3.在上题中求B 1(1,1,1)点关于原点D 对称的点的坐标.解:设所求的点为M (x 0,y 0,z 0),由于D 为MB 1的中点,D (0,0,0),所以⎩⎨⎧ 0=1+x 02,=1+y 02,=1+z 02.解之,得{ x 0=-1,y 0=-1,z 0=-1.所以M (-1,-1,-1).课本本节练习1、2、3.拓展提升在空间直角坐标系中的点P (x ,y ,z )关于①坐标原点;②横轴(x 轴);③纵轴(y 轴);④竖轴(z 轴);⑤xOy 坐标平面;⑥yOz 坐标平面;⑦zOx 坐标平面的对称点的坐标是什么?解:根据平面直角坐标系的点的对称方法结合中点坐标公式可知:点P (x ,y ,z )关于坐标原点的对称点为P 1(-x ,-y ,-z );点P (x ,y ,z )关于横轴(x 轴)的对称点为P 2(x ,-y ,-z );点P (x ,y ,z )关于纵轴(y 轴)的对称点为P 3(-x ,y ,-z );点P (x ,y ,z )关于竖轴(z 轴)的对称点为P 4(-x ,-y ,z );点P (x ,y ,z )关于xOy 坐标平面的对称点为P 5(x ,y ,-z );点P (x ,y ,z )关于yOz 坐标平面的对称点为P 6(-x ,y ,z );点P (x ,y ,z )关于zOx 坐标平面的对称点为P 7(x ,-y ,z ).点评:其中记忆的方法为:关于谁对称谁不变,其余的相反.如关于横轴(x 轴)的对称点,横坐标不变,纵坐标、竖坐标变为原来的相反数;关于xOy 坐标平面的对称点,横坐标、纵坐标不变,竖坐标相反.1.空间直角坐标系的建立.2.空间直角坐标系中点的坐标的确定.3.空间直角坐标系中点的位置的确定.4.中点公式:P 1(x 1,y 1,z 1),P 2(x 2,y 2,z 2),则P 1P 2中点M 的坐标为(x 1+x 22,y 1+y 22,z 1+z 22). 5.空间直角坐标系中点的对称点的坐标.作业习题4.3 A 组1、2.设计感想通过复习相关内容,为新课的引入和讲解做好铺垫.设置问题,创设情境,引导学生用类比的方法探索新知.由于学生的空间观念还比较薄弱,教学中宜多采用教具演示,尽量使学生能够形象直观地掌握知识内容.本课时可自制空间直角坐标系模型演示,帮助学生理解空间直角坐标系的概念.如果学生先前的学习不是主动的、不是入脑的,那么老师的血汗与成绩就不成比例,更谈不上学生的创新意识.鉴于此,在教学中积极挖掘教学资源,努力创设出一定的教学情景,设计例题思路,与高考联系,吸引学生,引起学生学习的意向,即激发学生的学习动机,达到学生“想学”的目的.为能增强学生学习的目的性,在教学中指明学生所要达到的目标和所学的内容,即让学生知道学到什么程度以及学什么.同时调整教学语言,使之简明、清楚、易听明白,注重一些技巧,如重复、深入浅出、抑扬顿挫等.备课资料备用习题1.在空间过点M(1,2,-3)作z轴的垂线,交z轴于点N,则垂足N的坐标为() A.(1,0,0) B.(0,2,0) C.(0,0,3) D.(0,0,-3) 分析:由于z轴上的点横坐标、纵坐标都为0,且竖坐标不变仍为-3,所以垂足N的坐标为(0,0,-3).答案:D2.点P(a,b,c)到坐标平面zOx的距离为()A.a2+c2B.|a| C.|b| D.|c|分析:由空间点的坐标的意义我们就可以知道,|b|就是点P(a,b,c)到坐标平面zOx 的距离,故正确答案为C.答案:C点评:这里要注意,求P(a,b,c)到zOx坐标平面的距离,所得结果应该是一正值,这里不能将答案误认为是b,而应是|b|.教学设计(二)整体设计1.教学任务分析使学生深刻感受空间直角坐标系的建立的背景,理解空间中点的坐标的表示.通过数轴与数,平面直角坐标系与一对有序实数,引申出建立空间直角坐标系的必要性.2.教学重点和难点重点:空间直角坐标系中点的坐标表示.难点:通过建立适当的直角坐标系确定空间点的坐标.3.教学基本流程4.教学情景设计①②。
第四章 § 4.3 空间直线坐标系4.3.1 空间直角坐标系学习目标1.了解空间直角坐标系的建系方式;2.掌握空间中任意一点的表示方法;3.能在空间直角坐标系中求出点的坐标.问题导学题型探究达标检测问题导学 新知探究 点点落实知识点 空间直角坐标系思考1 在数轴上,一个实数就能确定一个点的位置.在平面直角坐标系中,需要一对有序实数才能确定一个点的位置.为了确定空间中任意一点的位置,需要几个实数?答案 三个.思考2 空间直角坐标系需要几个坐标轴,它们之间什么关系?答案 空间直角坐标系需要三个坐标轴,它们之间两两相互垂直.1.空间直角坐标系及相关概念(1)空间直角坐标系:从空间某一定点引三条两两垂直,且有相同单位长度的数轴: ,这样就建立了一个 (2)相关概念: 叫做坐标原点,叫做坐标轴,通过x 轴、y 轴、z 轴空间直角坐标系Oxyz x 轴、y 轴、z 轴两个坐标轴每点O xOy yOz zOxx 轴y 轴z 轴3.空间一点的坐标空间一点M 的坐标可以用 来表示,_________________叫做点M 在此空间直角坐标系中的坐标,记作 ,其中叫做点M 的横坐标,叫做点M 的纵坐标, 叫做点M 的竖坐标.有序实数组(x ,y ,z )有序实数组(x ,y ,z )(x ,y ,z )x y z题型探究 重点难点 个个击破类型一 求空间点的坐标例1 (1)如图,在长方体ABCD-AB1C1D1中,|AD|=|BC|=3,|AB|=5,1|AA1|=4,建立适当的直角坐标系,写出此长方体各顶点的坐标.(2)在棱长为a的正四棱锥P-ABCD中,建立适当的空间直角坐标系.①写出四棱锥P-ABCD各个顶点的坐标;②写出棱PA的中点M的坐标.跟踪训练1 在棱长为1的正方体ABCD—AB1C1D1中,E、F分别是D1D、1BD的中点,G在棱CD上,且|CG|= |CD|,H为C1G的中点,试建立适当的坐标系,写出E、F、G、H的坐标.类型二 已知点的坐标确定点的位置例2 在空间直角坐标系Oxyz中,作出点P(5,4,6).解 方法一 第一步从原点出发沿x轴正方向移动5个单位,第二步沿与y轴平行的方向向右移动4个单位,第三步沿与z轴平行的方向向上移动6个单位(如图所示),即得点P.方法二 以O为顶点构造长方体,使这个长方体在点O处的三条棱分别在x轴、y轴、z轴的正半轴上,且棱长分别为5,4,6,则长方体与顶点O相对的顶点即为所求点P.跟踪训练2 在空间直角坐标系Oxyz中,点P(-2,0,3)位于( )AA.xOz平面内B.yOz平面内C.y轴上D.z轴上解析 因为点P的纵坐标y=0,且x,z均不为0,故点P位于xOz平面内.类型三 空间中点的对称问题例3 求点A(1,2,-1)关于坐标平面xOy及x轴对称的点的坐标.解 过A作AM⊥平面xOy于M,并延长到C,使|AM|=|CM|,则A与C关于坐标平面xOy对称且C(1,2,1).过A作AN⊥x轴交x轴于N,并延长到点B,使|AN|=|NB|,则A与B关于x轴对称且B(1,-2,1),∴A(1,2,-1)关于坐标平面xOy对称的点为C(1,2,1),关于x轴对称的点为B(1,-2,1).跟踪训练3 已知点P(2,3,-1),求:(1)点P关于各坐标平面对称的点的坐标;解 设点P关于xOy坐标平面的对称点为P′,则点P′在x轴上的坐标及在y轴上的坐标与点P的坐标相同,而点P′在z轴上的坐标与点P在z轴上的坐标互为相反数.所以,点P关于xOy坐标平面的对称点P′的坐标为(2,3,1).同理,点P关于yOz,xOz坐标平面的对称点的坐标分别为(-2,3,-1),(2,-3,-1).(2)点P关于各坐标轴对称的点的坐标;解 设点P关于x轴的对称点为Q,则点Q在x轴上的坐标与点P的坐标相同,而点Q在y轴上的坐标及在z轴上的坐标与点P在y轴上的坐标及在z轴上的坐标互为相反数.所以,点P关于x轴的对称点Q的坐标为(2,-3,1).同理,点P关于y轴、z轴的对称点的坐标分别为(-2,3,1),(-2,-3,-1).(3)点P关于坐标原点对称的点的坐标.解 点P(2,3,-1)关于坐标原点对称的点的坐标为(-2,-3,1).达标检测 451231.点P(a,b,c)到坐标平面xOy的距离是( )DA. B.|a| C.|b| D.|c|解析 点P在xOy平面的射影的坐标是P′(a,b,0),所以|PP′|=|c|.2.点P(1,4,-3)与点Q(3,-2,5)的中点坐标是( )C A.(4,2,2) B.(2,-1,2)C.(2,1,1)D.(4,-1,2)解析 设点P与Q的中点坐标为(x,y,z),3.在空间直角坐标系中,已知点A(-1,2,-3),则点A在yOz平面内射(0,2,-3)影的点的坐标是__________.解析 由空间直角坐标系中点的坐标的确定可知,点A在yOz平面内的射影的点的坐标是(0,2,-3).4.点P (1,1,1)关于xOy 平面的对称点P 1的坐标为____________;点P 1关于z 轴的对称点P 2的坐标为________________.解析 点P (1,1,1)关于xOy 平面的对称点P 1的坐标为(1,1,-1),点P 1关于z 轴的对称点P 2的坐标为(-1,-1,-1).(1,1,-1)(-1,-1,-1)5.如图,正四棱柱ABCD-A1B1C1D1(底面为正方形的直棱柱)中,|AA1|=2|AB|=4,点E在CC1上且|C1E|=3|EC|.试建立适当的坐标系,写出点B,C,E,A1的坐标.解 以点D为坐标原点,射线DA,DC,DD1为x轴、y轴、z轴的正半轴,建立如图所示的空间直角坐标系Dxyz.依题设,B(2,2,0),C(0,2,0),E(0,2,1),A1(2,0,4).规律与方法1.空间中确定点M坐标的三种方法:(1)过点M作MM1垂直于平面xOy,垂足为M1,求出M1的x坐标和y坐标,再由射线M1M的指向和线段MM1的长度确定z的坐标.(2)构造以OM为体对角线的长方体,由长方体的三个棱长结合点M的位置,可以确定点M的坐标.(3)若题中所给的图形中存在垂直于坐标轴的平面,或点M在坐标轴或坐标平面上,则利用这一条件,再作轴的垂线即可确定点M的坐标.2.求空间对称点的规律方法(1)空间的对称问题可类比平面直角坐标系中点的对称问题,要掌握对称点的变化规律,才能准确求解.(2)对称点的问题常常采用“关于谁对称,谁保持不变,其余坐标相反”这个结论.。
4. 3.1空间直角坐标系(教案)【教学目标】1.让学生经历用类比的数学思想方法探索空间直角坐标系的建立方法,进一步体会数学概念、方法产生和发展的过程,学会科学的思维方法.2.理解空间直角坐标系与点的坐标的意义,掌握由空间直角坐标系内的点确定其坐标或由坐标确定其在空间直角坐标系内的点,认识空间直角坐标系中的点与坐标的关系.3.进一步培养学生的空间想象能力与确定性思维能力.【教学重难点】重点:求一个几何图形的空间直角坐标。
难点:空间直角坐标系的理解。
【教学过程】一、情景导入1. 确定一个点在一条直线上的位置的方法.2. 确定一个点在一个平面内的位置的方法.3. 如何确定一个点在三维空间内的位置?例:如图26-2,在房间(立体空间)内如何确定电灯位置?在学生思考讨论的基础上,教师明确:确定点在直线上,通过数轴需要一个数;确定点在平面内,通过平面直角坐标系需要两个数.那么,要确定点在空间内,应该需要几个数呢?通过类比联想,容易知道需要三个数.要确定电灯的位置,知道电灯到地面的距离、到相邻的两个墙面的距离即可.(此时学生只是意识到需要三个数,还不能从坐标的角度去思考,因此,教师在这儿要重点引导)教师:在地面上建立直角坐标系xOy,则地面上任一点的位置只须利用x,y就可确定.为了确定不在地面内的电灯的位置,须要用第三个数表示物体离地面的高度,即需第三个坐标z.因此,只要知道电灯到地面的距离、到相邻的两个墙面的距离即可.例如,若这个电灯在平面xOy上的射影的两个坐标分别为4和5,到地面的距离为3,则可以用有序数组(4,5,3)确定这个电灯的位置(如图26-3).这样,仿照初中平面直角坐标系,就建立了空间直角坐标系O—xyz,从而确定了空间点的位置.二、合作探究、精讲点拨1. 在前面研究的基础上,先由学生对空间直角坐标系予以抽象概括,然后由教师给出准确的定义.从空间某一个定点O引三条互相垂直且有相同单位长度的数轴,这样就建立了空间直角坐标系O—xyz,点O叫作坐标原点,x轴、y轴、z轴叫作坐标轴,这三条坐标轴中每两条确定一个坐标平面,分别称为xO平面,yO平面,zOx平面.教师进一步明确:(1)在空间直角坐标系中,让右手拇指指向x轴的正方向,食指指向y轴的正方向,若中指指向z轴的正方向则称这个坐标系为右手坐标系,课本中建立的坐标系都是右手坐标系.(2)将空间直角坐标系O—xyz画在纸上时,x轴与y轴、x轴与z轴成135°,而y 轴垂直于z轴,y轴和z轴的单位长度相等,但x轴上的单位长度等于y轴和z轴上的单位长度的,这样,三条轴上的单位长度直观上大致相等.2. 空间直角坐标系O—xyz中点的坐标.思考1:在空间直角坐标系中,空间任意一点A与有序数组(x,y,z)有什么样的对应关系?在学生充分讨论思考之后,教师明确:(1)过点A作三个平面分别垂直于x轴,y轴,z轴,它们与x轴、y轴、z轴分别交于点P,Q,R,点P,Q,R在相应数轴上的坐标依次为x,y,z,这样,对空间任意点A,就定义了一个有序数组(x,y,z).(2)反之,对任意一个有序数组(x,y,z),按照刚才作图的相反顺序,在坐标轴上分别作出点P,Q,R,使它们在x轴、y轴、z轴上的坐标分别是x,y,z,再分别过这些点作垂直于各自所在的坐标轴的平面,这三个平面的交点就是所求的点A.这样,在空间直角坐标系中,空间任意一点A与有序数组(x,y,z)之间就建立了一种一一对应关系:A(x,y,z).教师进一步指出:空间直角坐标系O—xyz中任意点A的坐标的概念对于空间任意点A,作点A在三条坐标轴上的射影,即经过点A作三个平面分别垂直于x轴、y轴和z轴,它们与x轴、y轴、z轴分别交于点P,Q,R,点P,Q,R在相应数轴上的坐标依次为x,y,z,我们把有序数组(x,y,z)叫作点A的坐标,记为A(x,y,z).(如图26-4)思考2:(1)在空间直角坐标系中,坐标平面xOy,xOz,yOz上点的坐标有什么特点?(2)在空间直角坐标系中,x轴、y轴、z轴上点的坐标有什么特点?解:(1)xOy平面、xOz平面、yOz平面内的点的坐标分别形如(x,y,0),(x,0,z),(0,y,z).(2)x轴、y轴、z轴上点的坐标分别形如(x,0,0),(0,y,0),(0,0,z).三、典型例题例1、在空间直角坐标系O—xyz中,作出点P(5,4,6).注意:在分析中紧扣坐标定义,强调三个步骤,第一步从原点出发沿x轴正方向移动5个单位,第二步沿与y轴平行的方向向右移动4个单位,第三步沿与z轴平行的方向向上移动6个单位(如图26-5).变式练习:已知长方体ABCD-A′B′C′D′的边长AB=12,AD=8,AA′=5,以这个长方体的顶点A为坐标原点,射线AB,AD,AA′分别为x轴、y轴和z轴的正半轴,建立空间直角坐标系,求这个长方体各个顶点的坐标.注意:此题可以由学生口答,教师点评.解:A (0,0,0),B (12,0,0),D (0,8,0),A ′(0,0,5),C (12,8,0),B ′(12,0,5),D ′(0,8,5),C ′(12,8,5).讨论:若以C 点为原点,以射线CB ,CD ,CC ′方向分别为x ,y ,z 轴的正半轴,建立空间直角坐标系,那么各顶点的坐标又是怎样的呢?得出结论:建立不同的坐标系,所得的同一点的坐标也不同.例2、结晶体的基本单位称为晶胞,如图是食盐晶胞的示意图(可看成是八个棱长为21的小正方体堆积成的正方体),其中色点代表钠原子,黑点代表氯原子,如图,建立空间直角坐标系Oxyz 后,试写出全部钠原子所在位置的坐标。