2019 2019版高中数学必修2空间直角坐标系空间两点间的距离公式
- 格式:ppt
- 大小:1.00 MB
- 文档页数:36
3.3 空间两点间的距离公式1.长方体的对角线(1)连线长方体两个顶点A ,C ′的线段AC ′称为长方体的对角线.(如图)(2)如果长方体的长、宽、高分别为a ,b ,c ,那么对角线长d 2.空间两点间的距离公式(1)空间任意一点P (x 0,y 0,z 0)与原点的距离|OP |(2)空间两点A(x 1,y 1,z 1),B (x 2,y 2,z 2)间的距离 |AB |思考:空间两点间的距离公式与平面两间点的距离公式的区别与联系? 提示:平面两点间的距离公式是空间两点间的距离公式的特例:①在平面直角坐标系xOy 中,已知两点A(x 1,y 1),B (x 2,y 2),则|AB |=(x 1-x 2)2+(y 1-y 2)2;②在x 轴上的两点A ,B 对应的实数分别是x 1,x 2,则|AB |=|x 2-x 1|.1.空间直角坐标系中,点A (-3,4,0)和点B (2,-1,6)的距离是( )A .243B .221C .9 D.86D [|AB |=(-3-2)2+(4+1)2+(0-6)2=86.]2.在空间直角坐标系中,设A (1,2,a ),B (2,3,4),若|AB |=3,则实数a 的值是( )A .3或5B .-3或-5C .3或-5D .-3或5A [由题意得|AB |=(1-2)2+(2-3)2+(a -4)2=3,解得a =3或5,故选A.]3.已知点A (4,5,6),B (-5,0,10),在z 轴上有一点P ,使|P A |=|PB |,则点P 的坐标是________.(0,0,6) [设点P (0,0,z ), 则由|P A |=|PB |,得(0-4)2+(0-5)2+(z -6)2 =(0+5)2+(0-0)2+(z -10)2, 解得z =6,即点P 的坐标是(0,0,6).](1)求△ABC 中最短边的边长; (2)求AC 边上中线的长度. [解] (1)由空间两点间距离公式得 |AB |=(1-2)2+(5-3)2+(2-4)2=3, |BC |=(2-3)2+(3-1)2+(4-5)2=6, |AC |=(1-3)2+(5-1)2+(2-5)2=29, ∴△ABC 中最短边是|BC |,其长度为 6.(2)由中点坐标公式得,AC 的中点坐标为⎝ ⎛⎭⎪⎫2,3,72,∴AC 边上中线的长度为(2-2)2+(3-3)2+⎝ ⎛⎭⎪⎫4-722=12.1.求空间两点间的距离问题就是把点的坐标代入距离公式进行计算,其中确定点的坐标或合理设出点的坐标是关键.2.若所给题目中未建立坐标系,需结合已知条件建立适当的坐标系,再利用空间两点间的距离公式计算.1.如果点P 在z 轴上,且满足|PO |=1(O 是坐标原点),则点P 到点A (1,1,1)的距离是________.2或6 [由题意得P (0,0,1)或P (0,0,-1), 所以|P A |=(0-1)2+(0-1)2+(1-1)2=2, 或|P A |=(0-1)2+(0-1)2+(1+1)2= 6.]两点的坐标,并求此时的|AB |.[思路探究] 解答本题可由空间两点间的距离公式建立关于x 的函数,由函数的性质求x ,再确定坐标.[解] 由空间两点的距离公式得|AB |=(1-x )2+[(x +2)-(5-x )]2+[(2-x )-(2x -1)]2 =14x 2-32x +19 =14⎝ ⎛⎭⎪⎫x -872+57, 当x =87时,|AB |有最小值57=357.此时A ⎝ ⎛⎭⎪⎫87,277,97,B ⎝ ⎛⎭⎪⎫1,227,67.解决这类问题的关键是根据点的坐标的特征,应用空间两点间的距离公式建立已知与未知的关系,结合已知条件确定点的坐标.2.在空间直角坐标系中,已知A (3,0,1),B (1,0,-3).在y 轴上是否存在点M ,使△MAB 为等边三角形?若存在,求出点M 的坐标;若不存在,说明理由.[解] 假设在y 轴上存在点M (0,y,0),使△MAB 为等边三角形. 由题意可知y 轴上的所有点都能使|MA |=|MB |成立,所以只要再满足|MA |=|AB |,就可以使△MAB 为等边三角形. 因为|MA |=32+(-y )2+12=10+y 2, |AB |=2 5.于是10+y 2=25,解得y =±10.故y 轴上存在点M ,使△MAB 为等边三角形,此时点M 的坐标为(0,10,0)或(0,-10,0).【例3】 如图,在棱长为1的正方体ABCD -A 1B 1C 1D 1中,以正方体的三条棱所在直线为轴建立空间直角坐标系O -xyz .(1)若点P 在线段BD 1上,且满足3|BP |=|BD 1|,试写出点P 的坐标,并写出P 关于y 轴的对称点P ′的坐标;(2)在线段C 1D 上找一点M ,使得点M 到点P 的距离最小,求出点M 的坐标.[思路探究] (1)借助3|BP |=|BD 1|及平面几何的知识求点P 的坐标,利用对称关系求点P ′的坐标;(2)利用空间两点间的距离公式建立点M 到点P 的距离的函数,并用函数的思想求其最小值,及此时的点M 的坐标.[解] (1)由题意知P 的坐标为⎝ ⎛⎭⎪⎫23,23,13.P 关于y 轴的对称点P ′的坐标为⎝ ⎛⎭⎪⎫-23,23,-13.(2)设线段C 1D 上一点M 的坐标为(0,m ,m ),则有|MP |=⎝ ⎛⎭⎪⎫-232+⎝ ⎛⎭⎪⎫m -232+⎝ ⎛⎭⎪⎫m -132=2m 2-2m +1 =2⎝ ⎛⎭⎪⎫m -122+12, 当m =12时|MP |取到最小值, 所以点M 为⎝ ⎛⎭⎪⎫0,12,12.与平面直角坐标系中类似,在空间直角坐标系中也常常需要设点的坐标,此时,若注意利用点的特殊性,往往能使求解过程简化,如本例(2)设M (0,m ,m )便是如此.3.如图,在长方体ABCD -A 1B 1C 1D 1中,AB =AD =2,AA 1=3,M ,N 分别是AB ,B 1C 1的中点,点P 是DM 上的点,DP =a ,当a 为何值时,NP 的长最小?[解] 如图,以点D 为原点,以DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系.则D (0,0,0),B 1(2,2,3),C 1(0,2,3),A (2,0,0),B (2,2,0),M (2,1,0),N (1,2,3), 设点P 的坐标为(x ,y,0), 则x =2y (0≤y ≤1).|NP |=(x -1)2+(y -2)2+(0-3)2=(2y -1)2+(y -2)2+(0-3)2 =5y 2-8y +14=5⎝ ⎛⎭⎪⎫y -452+545, 所以当y =45时,|NP |取最小值3305, 此时a =x 2+y 2 =⎝ ⎛⎭⎪⎫852+⎝ ⎛⎭⎪⎫452=455, 所以当a =455时,NP 的长最小.1.学会用类比联想的方法理解空间直角坐标系的建系原则,切实体会空间中点的坐标及两点间的距离公式同平面内点的坐标及两点间的距离公式的区别和联系.2.在导出空间两点间的距离公式的过程中体会转化与化归思想的应用,突出化空间为平面的解题思想.1.思考辨析(1)空间两点间的距离公式与两点顺序有关. ( ) (2)点A (1,1,0)与点B (1,1,1)之间的距离是1.( )[解析] (1)×,空间两点间的距离公式与两点顺序无关. [答案] (1)× (2)√2.已知点A (1,-2,11),B (4,2,3),C (6,-1,4),则△ABC 的形状是( ) A .等腰三角形 B .等边三角形 C .直角三角形 D .等腰直角三角形C [由距离公式得:|AB |=(1-4)2+(-2-2)2+(11-3)2=89, |AC |=(1-6)2+(-2+1)2+(11-4)2=75, |BC |=(4-6)2+(2+1)2+(3-4)2=14, ∴|AC |2+|BC |2=|AB |2,∴△ABC 为直角三角形.]3.已知A(1,-2,1),B(2,2,2),点P在z轴上,且|P A|=|PB|,则点P的坐标为________.(0,0,3)[∵P在z轴上,可设P(0,0,z),由|P A|=|PB|,∴(1-0)2+(-2-0)2+(1-z)2=(2-0)2+(2-0)2+(2-z)2,解得z=3.]4.点A(1,t,0)和点B(1-t,2,1)的距离的最小值为______.3[|AB|=t2+(t-2)2+1=2(t-1)2+3,∴当t=1时,|AB|的最小值为 3.]。
4.3.2 空间两点间的距离公式整体设计教学分析平面直角坐标系中,两点之间的距离公式是学生已学的知识,不难把平面上的知识推广到空间,遵循从易到难、从特殊到一般的认识过程,利用类比的思想方法,借助勾股定理得到空间任意一点到原点的距离;从平面直角坐标系中的方程x 2+y 2=r 2表示以原点为圆心,r 为半径的圆,推广到空间直角坐标系中的方程x 2+y 2+z 2=r 2表示以原点为球心,r 为半径的球面.学生是不难接受的,这不仅不增加学生负担,还会提高学生学习的兴趣.三维目标1.掌握空间两点间的距离公式,会用空间两点间的距离公式解决问题.2.通过探究空间两点间的距离公式,灵活运用公式,初步意识到将空间问题转化为平面问题是解决问题的基本思想方法,培养类比、迁移和化归的能力.3.通过棱与坐标轴平行的特殊长方体的顶点的坐标,类比平面中两点之间的距离的求法,探索并得出空间两点间的距离公式,充分体会数形结合的思想,培养积极参与、大胆探索的精神. 重点难点教学重点:空间两点间的距离公式.教学难点:一般情况下,空间两点间的距离公式的推导.课时安排1课时教学过程导入新课思路1.距离是几何中的基本度量,几何问题和一些实际问题经常涉及距离,如飞机和轮船的航线的设计,它虽不是直线距离,但也涉及两点之间的距离,一些建筑设计也要计算空间两点之间的距离,那么如何计算空间两点之间的距离呢?这就是我们本堂课的主要内容.思路2.我们知道,数轴上两点间的距离是两点的坐标之差的绝对值,即d=|x 1-x 2|;平面直角坐标系中,两点之间的距离是d=212212)()(y y x x -+-.同学们想,在空间直角坐标系中,两点之间的距离应怎样计算呢?又有什么样的公式呢?因此我们学习空间两点间的距离公式. 推进新课新知探究提出问题①平面直角坐标系中,两点之间的距离公式是什么?它是如何推导的?②设A(x,y,z)是空间任意一点,它到原点的距离是多少?应怎样计算?③给你一块砖,你如何量出它的对角线长,说明你的依据.④同学们想,在空间直角坐标系中,你猜想空间两点之间的距离应怎样计算?⑤平面直角坐标系中的方程x 2+y 2=r 2表示什么图形?在空间中方程x 2+y 2+z 2=r 2表示什么图形?⑥试根据②③推导两点之间的距离公式.活动:学生回忆,教师引导,教师提问,学生回答,学生之间可以相互交流讨论,学生有困难教师点拨.教师引导学生考虑解决问题的思路,要全面考虑,大胆猜想,发散思维.①学生回忆学过的数学知识,回想当时的推导过程;②解决这一问题,可以采取转化的方法,转化成我们学习的立体几何知识来解;③首先考虑问题的实际意义,直接度量,显然是不可以的,我们可以转化为立体几何的方法,也就是求长方体的对角线长.④回顾平面直角坐标系中,两点之间的距离公式,可类比猜想相应的公式;⑤学生回忆刚刚学过的知识,大胆类比和猜想;⑥利用③的道理,结合空间直角坐标系和立体几何知识,进行推导.讨论结果:①平面直角坐标系中,两点之间的距离公式是d=212212)()(y y x x -+-,它是利用直角三角形和勾股定理来推导的.图1②如图1,设A(x,y,z)是空间任意一点,过A 作AB ⊥xOy 平面,垂足为B,过B 分别作BD ⊥x 轴,BE ⊥y 轴,垂足分别为D,E.根据坐标的含义知,AB=z,BD=x,BE=OD=y,由于三角形ABO 、BOD 是直角三角形,所以BO 2=BD 2+OD 2,AO 2=AB 2+BO 2=AB 2+BD 2+OD 2=z 2+x 2+y 2,因此A 到原点的距离是d=222z y x ++.③利用求长方体的对角线长的方法,分别量出这块砖的三条棱长,然后根据对角线长的平方等于三条边长的平方的和来算.④由于平面直角坐标系中,两点之间的距离公式是d=212212)()(y y x x -+-,是同名坐标的差的平方的和再开方,所以我们猜想,空间两点之间的距离公式是d=212212212)()()(z z y y x x -+-+-,即在原来的基础上,加上纵坐标差的平方.⑤平面直角坐标系中的方程x 2+y 2=r 2表示以原点为圆心,r 为半径的圆;在空间x 2+y 2+z 2=r 2表示以原点为球心,r 为半径的球面;后者正是前者的推广.图2⑥如图2,设P 1(x 1,y 1,z 1),P 2(x 2,y 2,z 2)是空间中任意两点,我们来计算这两点之间的距离. 我们分别过P 1P 2作xOy 平面的垂线,垂足是M,N,则M(x 1,y 1,0),N(x 2,y 2,0),于是可以求出|MN|=212212)()(y y x x -+-.再过点P 1作P 1H ⊥P 2N,垂足为H,则|MP 1|=|z 1|,|NP 2|=|z 2|,所以|HP 2|=|z 2-z 1|.在Rt △P 1HP 2中,|P 1H|=|MN|=212212)()(y y x x -+-,根据勾股定理,得|P 1P 2|=2221||||HP H P +=221221221)()()(z z y y x x -+-+-.因此空间中点P 1(x 1,y 1,z 1),P 2(x 2,y 2,z 2)之间的距离为|P 1P 2|=221221221)()()(z z y y x x -+-+-.于是空间两点之间的距离公式是d=212212212)()()(z z y y x x -+-+-.它是同名坐标的差的平方的和的算术平方根.应用示例例1 已知A(3,3,1),B(1,0,5),求:(1)线段AB 的中点坐标和长度;(2)到A,B 两点的距离相等的点P(x,y,z)的坐标满足的条件.活动:学生审题,教师引导学生分析解题思路,已知的两点A 、B 都是空间直角坐标系中的点,我们直接利用空间两点间的距离公式求解即可.知识本身不难,但是我们计算的时候必须认真,决不能因为粗心导致结果错误.解:(1)设M(x,y,z)是线段AB 的中点,则根据中点坐标公式得 x=213+=2,y=203+=23,z=215+=3.所以AB 的中点坐标为(2,23,3). 根据两点间距离公式,得 d(A,B)=29)15()30()31(222=-+-+-,所以AB 的长度为29.(2)因为点P(x,y,z)到A,B 的距离相等,所以有下面等式: 222222)5()0()1()1()3()3(-+-+-=-+-+-z y x z y x .化简得4x+6y-8z+7=0,因此,到A,B 两点的距离相等的点P(x,y,z)的坐标满足的条件是4x+6y-8z+7=0.点评:通过本题我们可以得出以下两点:①空间两点连成的线段中点坐标公式和两点间的距离公式是平面上中点坐标公式和两点间的距离公式的推广,而平面上中点坐标公式和两点间的距离公式又可看成空间中点坐标公式和两点间的距离公式的特例.②到A,B 两点的距离相等的点P(x,y,z)构成的集合就是线段AB 的中垂面.变式训练在z 轴上求一点M,使点M 到点A(1,0,2),B(1,-3,1)的距离相等.解:设M(0,0,z),由题意得|MA|=|MB|,2222222)1()30()30()10()2()00()10(-+++++-=++-+-z z ,整理并化简,得z=-3,所以M(0,0,-3).例2 证明以A(4,3,1),B(7,1,2),C(5,2,3)为顶点的△ABC 是一等腰三角形.活动:学生审题,教师引导学生分析解题思路,证明△ABC 是一等腰三角形,只需求出|AB|,|BC|,|CA|的长,根据边长来确定.证明:由两点间距离公式得: |AB|=,72)12()31()47(222=-+-+- |BC|=6)23()12()75(222=-+-+-, |CA|=6)31()23()54(222=-+-+-.由于|BC|=|CA|=6,所以△ABC 是一等腰三角形.点评:判断三角形的形状一般是根据边长来实现的,因此解决问题的关键是通过两点间的距离公式求出边长.变式训练三角形△ABC 的三个顶点坐标为A(1,-2,-3),B(-1,-1,-1),C(0,0,-5),试证明△ABC 是一直角三角形.活动:学生先思考或交流,然后解答,教师及时提示引导,要判定△ABC 是一直角三角形,只需求出|AB|,|BC|,|CA|的长,利用勾股定理的逆定理来判定.解:因为三个顶点坐标为A(1,-2,-3),B(-1,-1,-1),C(0,0,-5),所以 |AB|=222)13()12()11(+-++-++=3, |BC|=23)15()10()10(222=+-++++, |CA|=222)53()02()01(+-+--+-=3.又因为|AB|2+|CA|2=|BC|2,所以△ABC 是直角三角形.例3 已知A(x,5-x,2x-1),B(1,x+2,2-x),则|AB|的最小值为( )A.0B.735C.75D.78 活动:学生阅读题目,思考解决问题的方法,教师提示,要求|AB|的最小值,首先我们需要根据空间两点间的距离公式表示出|AB|,然后再根据一元二次方程求最值的方法得出|AB|的最小值. 解析:|AB|=222)33()23()1(-+-+-x x x =1932142+-x x =73575)78(142≥+-x . 当x=78时,|AB|的最小值为735. 故正确选项为B.答案:B点评:利用空间两点间的距离公式转化为关于x 的二次函数求最值是常用的方法. 知能训练课本本节练习1、2、3、4.拓展提升已知三棱锥P —ABC(如图4),PA ⊥平面ABC,在某个空间直角坐标系中,B(3m,m,0),C(0,2m,0),P(0,0,2n),画出这个空间直角坐标系并求出直线AB 与x 轴所成的较小的角.图3解:根据已知条件,画空间直角坐标系如图3:以射线AC 为y 轴正方向,射线AP 为z 轴正方向,A 为坐标原点建立空间直角坐标系O —xyz,过点B 作BE ⊥Ox,垂足为E,∵B(3m,m,0),∴E(3m,0,0).在Rt △AEB 中,∠AEB=90°,|AE|=3m,|EB|=m,∴tan ∠BAE=mm AE EB 3|||| =33.∴∠BAE=30°, 即直线AB 与x 轴所成的较小的角为30°.课堂小结1.空间两点间的距离公式的推导与理解.2.空间两点间的距离公式的应用.3.建立适当的空间直角坐标系,综合利用两点间的距离公式.作业习题4.3 A 组3,B 组1、2、3.设计感想本节课从平面直角坐标系中两点之间的距离公式入手,创设问题情景,不难把平面上的知识推广到空间,遵循从易到难、从特殊到一般的认识过程,利用类比的思想方法,借助勾股定理得到空间任意一点到原点的距离.为了培养学生的理性思维,在例题中,设计了由特殊到一般的学习思路,培养学生的归纳概括能力.在问题的设计中,用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,本节课的设计通过适当的创设情境,调动学生的学习兴趣.本节课以问题为纽带,以探究活动为载体,使学生在问题的指引下、教师的指导下把探究活动层层展开、步步深入,充分体现以教师为主导,以学生为主体的指导思想.把学生学习知识的过程转变为学生观察问题、发现问题、分析问题、解决问题的过程,提高了能力、培养了兴趣、增强了信心.。