聚氨酯改性环氧树脂的合成及其复合材料性能研究
- 格式:pdf
- 大小:221.26 KB
- 文档页数:3
聚己内酯/聚硅氧烷/环氧树脂复合体系的制备及其性能研究的开题报告一、研究背景聚己内酯(PCL)和聚硅氧烷(PSO)是两种常见的生物降解型聚合物,在生物医学领域得到广泛应用。
然而,它们的性能往往不能满足特定应用需求,因此需要开发新的复合材料来弥补其缺陷。
环氧树脂(EP)为常用的高性能材料,在机械、电子等领域广泛应用。
因此,将PCL、PSO和EP复合成新材料,能够充分发挥它们各自的特性,拓展其应用领域,有着重要的研究价值。
二、研究目的本研究旨在制备PCL/PSO/EP复合体系,并对其性能进行研究。
具体而言,包括以下几个方面:1. 优化PCL/PSO/EP体系的制备工艺,确定最佳的配比和工艺参数。
2. 对复合材料的力学性能(如拉伸强度、弹性模量等)进行测试,评估其力学性能。
3. 对复合材料的热性能(如热稳定性、热变形温度等)进行测试,评估其在高温环境下的应用性能。
4. 对复合材料的降解性能进行测试,评估其在生物医学领域的可用性。
三、研究内容和方法1. 复合材料的制备:采用环氧树脂作为基体,将PCL和PSO分别加入到环氧树脂体系中制备出复合材料。
通过调整PCL和PSO的含量和环氧树脂的固化剂使用量,寻找最佳的复合比例和制备条件。
2. 力学性能测试:采用万能材料试验机进行拉伸和弯曲测试,测试样品的拉伸强度、弹性模量、断裂伸长率等力学性能参数。
3. 热性能测试:采用热重分析仪和热差式扫描量热仪进行测试,评估样品的热稳定性、热变形温度等参数。
4. 降解性能测试:采用水解和体外降解测试方法,评估样品的降解速率和降解产物。
四、研究预期结果1. 确定最佳的制备工艺和配比,制备出优异的PCL/PSO/EP复合材料。
2. 评估复合材料的力学性能、热性能和降解性能,为其在生物医学领域的应用提供基础数据。
3. 发现复合材料的特殊性能,为其在材料工程领域的开发应用提供新的思路。
聚氨酯对环氧树脂增韧性能研究张萌;葛雪松;吴琳;李刚;于奕峰;姜义军;陈爱兵【摘要】利用甲苯二异氰酸酯(TDI)和聚丙二醇(PPG)合成不同结构的端—NCO聚氨酯(PU)预聚体,然后由聚氨酯预聚体与环氧树脂进行接枝反应,制备聚氨酯改性环氧树脂.研究了聚氨酯预聚体结构和用量对改性环氧树脂力学性能的影响规律.结果表明,当聚醚多元醇选用PPG1000,且TDI:PPG=2:1时,制得的聚氨酯预聚体对环氧树脂的增韧效果最好,当ω(PU预聚体)=10%时,改性环氧树脂的应变和拉伸强度分别达到84.7%和27.1 MPa,是改性前的30.47倍和3.04倍.通过扫描电镜对聚氨酯的增韧机理进行了研究,发现改性前环氧树脂为脆性断裂,聚氨酯改性后的环氧树脂断裂时银纹明显增多,为韧性断裂.【期刊名称】《应用化工》【年(卷),期】2018(047)009【总页数】4页(P1850-1853)【关键词】环氧树脂;聚氨酯;接枝改性【作者】张萌;葛雪松;吴琳;李刚;于奕峰;姜义军;陈爱兵【作者单位】河北科技大学化学与制药工程学院,河北石家庄 050018;中国科学院青岛生物能源与过程研究所,山东青岛 266100;青岛职业技术学院生物与化工学院,山东青岛 266100;河北科技大学化学与制药工程学院,河北石家庄 050018;河北科技大学化学与制药工程学院,河北石家庄 050018;中国科学院青岛生物能源与过程研究所,山东青岛 266100;河北科技大学化学与制药工程学院,河北石家庄050018【正文语种】中文【中图分类】TQ323.5;TQ433.4+3环氧树脂(EP)具备良好的物理粘接性、化学稳定性、介电性等特点,在建筑、航空航天以及集成电路等领域[1-5]得到广泛的应用。
但EP固化后质脆、抗冲击性能差,限制了其广阔的发展。
近年来研究较多的EP增韧剂有橡胶弹性体、刚性粒子、热塑性树脂、液晶聚合物、超支化聚合物等[6-10],其中聚氨酯凭借其丰富的柔性链段和较高的相容性得到研究者们的广泛关注[11-15]。
技术研讨与交流II畫驚器&扯◎啊蛋虧0◎腮收稿日期:2018-12-17作者简介:李国遵(1988-),男,硕士,主要从事聚氨酯、聚豚的研发工作,发表多篇论文、专利。
E-mail:liguozun@。
聚氨酯胶粘剂的研究进展、合成、改性与应用李国遵,高之香,李士学,李建武,陈雨,赵苗(三友(天津)高分子技术有限公司,天津300211)摘要:通过查阅国内外相关文献资料,简要阐述了聚氨酯胶粘剂的性能、结构、合成、改性及应用等相关内容,综述了聚氨酯胶粘剂目前国内外的研究现状及研究进展,并对聚氨酯胶粘剂的发展做了展望。
关键词:聚氨酯胶粘剂;合成;改性;应用;研究进展中图分类号:TQ433.4+32文献标识码:A文章编号:1001-5922(2019)05-0177-04随着科学技术的发展,我国胶粘剂工业持续快速发展。
硅树脂、聚氨酯、环氧树脂、丙烯酸酯和其他各种胶粘剂广泛应用于各个领域円。
聚氨酯(PU)胶粘剂优异的机械性能、良好的耐低温性、耐酸碱性、耐油污性和与基材良好粘合性在众多材料中脱颖而出“。
聚氨酯胶粘剂是分子链中含有氨基甲酸酯基团(-NHCOO-)或(和)异氤酸酯基团(-NCO)的粘合剂。
分子链中大量的氨基甲酸酯、基甲酸酯、缩二和其他基团赋予聚氨酯胶粘剂优异的性能“81o1异氧酸酯聚氨酯胶粘剂的研究现状聚氨酯胶粘剂的合成是基于异氤酸酯独特的化学性质。
异氤酸酯是分子中含有异氤酸酯基团(-NCO)的化合物,该基团具有重叠双键排列的高度不饱和键结构,能与各种含活泼氢的化合物进行反应。
在聚氨酯胶粘剂领域,主要使用含有2个或多个-NCO特征基团的异氤酸酯。
根据产品在光照下是否发生黄变现象将聚氨酯胶粘剂分为通用型异氤酸酯聚氨酯胶粘剂和耐黄变型异氤酸酯聚氨酯胶粘剂。
1.1通用型异氧酸酯聚氨酯胶粘剂的研究现状通用氤酸酯,即芳香幅氤酸酯是目前聚珮工业使用最广泛的异氤酸酯,由于结构中与苯环相连的亚甲基易被氧徳解团Wt料处黄变罷常用的W1W氤酸酯有TDI、MDI和PAPI等。
新能源领域复合材料中聚氨酯树脂的性能研究摘要:本研究聚焦于新能源领域中聚氨酯树脂增强复合材料的性能研究,旨在探索其在高性能应用中的潜力。
在新能源技术迅速发展的背景下,对高效、耐久的复合材料的需求日益增长。
本研究采用了标准化的实验方法,对聚氨酯树脂的基本物理和化学性能进行了系统评估,并进一步研究了其在不同复合材料中的性能表现,包括力学强度、热稳定性和耐久性。
通过对聚氨酯树脂增强的复合材料进行详细的测试和分析,旨在揭示其在新能源领域中的应用前景。
预期研究结果将为新能源领域提供更高性能、更环保的材料选择,推动技术创新和可持续发展。
关键词:聚氨酯树脂,复合材料,新能源领域1. 引言在当今新能源领域的高性能复合材料研究中,聚氨酯树脂的角色日益凸显。
如图1所示,聚氨酯树脂是由多元醇和异氰酸酯两种成分通过共聚作用形成的聚合物,该结构展现了其在分子层面的独特性[1]。
这种结构的特殊性质使得聚氨酯树脂在弹性、耐久性和机械强度等方面具有显著优势,这对于新能源设备中关键部件的性能至关重要。
随着新能源技术对材料性能的要求日趋严格,深入探究聚氨酯树脂的微观结构和宏观性能之间的关联,对于推进新能源领域的技术创新和材料科学的发展具有重要意义[2]。
文章将对聚氨酯树脂的合成机制、结构特性以及其在复合材料中的应用性能进行全面的探讨。
通过对其分子结构进行细致的分析,旨在揭示聚氨酯树脂如何通过分子间的相互作用和排列,影响最终复合材料的物理和化学性质。
图1 聚氨酯树脂的组成和作用2. 材料与方法2.1 实验材料的选择与准备本研究选用的多元醇成分为工业级聚醚多元醇,平均分子量约为2000-3000g/mol,水分含量控制在0.05%以下,确保反应活性。
异氰酸酯成分选择的是纯度高于98%的4,4'-二苯甲烷二异氰酸酯(MDI),并通过真空脱气处理去除微量水分,以防止在合成过程中产生气泡或不完全反应。
催化剂使用三乙胺和二丁基锡二月桂酸酯,其用量精确至0.01 wt%,以调控反应速率和交联密度。
1前言环氧树脂是一种热固性树脂,因其有优异的粘结性、机械强度、电绝缘性及良好的工艺性等特性,而广泛应用于胶粘剂、涂料、复合材料基体等方面,但其质脆、耐热性、抗冲击韧性差等缺点限制了其更大的用。
因此对它进行改性是一个非常活跃的研究领域。
其中改善环氧树脂的韧性、强度和耐热性是环氧树脂材料改性的重要方向。
通常的增韧环氧树脂的改性方法都是以降低环氧树脂的刚性和耐热性为代价的。
互穿聚合物网络技术(IPN)自问世以来,因IPN的协同效应可使聚合物的冲击强度、模量、断裂伸长、硬度和耐热性等同时比每一组分的高而引起广泛重视。
聚氨酯(PU)改性环氧树脂互穿聚合物网络体系能同时具有耐高低温、高强度、高韧性等特点,具有广阔的应用前景。
因此,开展环氧树脂的聚氨酯(PU)改性研究工作,能够为PU改性环氧树脂互穿聚合物网络体系的设计获得理论依据具有很重要的意义。
固化工艺会对环氧树脂固化物的性能产生重要影响。
PU改性环氧树脂固化反应的研究对材料性能的提高与固化工艺的设计十分关键,而相关的PU改性环氧树脂固化反应研究的文献报道甚少。
为此,本研究选用聚乙二元醇(PEG)和甲苯二异氰酸酯(TDI)作为原料,合成端异氰酸酯基聚氨酯预聚体;采用该预聚体、固化剂(N,N-二甲基苄胺)对环氧树脂体系进行改性,并通过时差扫描量热法(DSC)分析,探讨聚氨酯改性环氧树脂体系的固化反应。
1.1 环氧树脂的定义及发展简史1.1.1 定义环氧树脂(Epoxy Resin)是泛指含有两个或两个以上环氧基,以脂肪族、脂环族或芳香族等有机化合物为骨架并能通过环氧基团反应形成有用的热固性产物的高分子低聚物(Oligomer)。
但聚合度为零时,称之为环氧化合物,简称环氧化物(Epoxide)。
这些低相对分子量树脂虽不完全满足严格的定义但因为具有环氧树脂的基本属性在称呼时也不加区别的统称为环氧树脂。
环氧树脂是一种从液态到黏稠态、固态多种形态的物质。
它几乎没有单独的使用价值,只有和固化剂反应生成三维网状结构的不溶不熔聚合物才有使用价值,因此环氧树脂属于热固性树脂,属于网络聚合物范畴。
聚氨酯改性环氧树脂胶黏剂的研究一. 选题的目的及意义:聚氨酯(PU)是一类常用的高分子材料,以甲苯-2,4-二异氰酸酯(TDI)和二醇类为原料合成,结构中既有柔性的C-C链和C-O-C链,又有活性的酰胺基团,与环氧树脂相容性好。
改性后的环氧树脂(EP)强度和韧度都得到提高,特别适用于环氧浇注、环氧涂料等方面,具有良好的应用前景。
二. 选题的国内外研究概况和趋势(设计只介绍相应产品的用途、作品的应用等)胶黏剂的一类古老而又年轻的材料,早在数千年前,人类的祖先就已经开始使用胶黏剂。
到上个世纪初,合成酚醛树脂的发明,开创了胶黏剂的现代发展史。
胶黏剂是具有良好粘结性能的物质,特别是合成胶黏剂强度高,对材质不同的重金属与非金属之间均可实现有效粘结,并且已经在越来越多的领域代替了机械粘结,从而为各行业简化工艺、节约能源、降低成本,提高经济效益提供了有效途径。
全球胶黏剂、密封剂和表面处理剂市场总规模约500亿欧元(680亿美元),其中工业胶黏剂市场占44%的份额。
上世纪90年代,我国胶黏剂进入了一个高速发展的新阶段。
本世纪前8年,随着我国改革开放的不断深入,胶黏剂工业整个发展势态越来越好。
据中国胶黏剂工业协会统计,2004年、2005年和2006年我国胶黏剂产量分别为22.7万吨、251.7万吨和280.2万吨,年均增长率分别外14.32%、10.44%和11.32%,2007年和2008年产量为313.5万吨和344.8万吨,产量不断增加应用领域不断扩展。
去年下半年,由于遭受美国、系,西欧和世界金融危机的影响,今年一季度开始,我国合成材料工业及其胶黏剂工业也受到一定影响。
据预测今年胶黏剂产量可望达到372.38万吨,增长速度比去年有所下降。
如上所述,由于受国际金融危机的影响,今年我国采取了一系列产业结构调整政策和财政支持政策,进一步扩大内需,保增长,渡难关,上水平,如果没有受到其他影响,2012年后我国又将以崭新姿态出现在世人面前,2015年,即“十二五”计划末,我国胶黏剂产量将突破600万吨大关。