2013创新设计一轮(人教版)1-1
- 格式:ppt
- 大小:3.22 MB
- 文档页数:71
第1课时地图[课后作业提升]模拟演练2022年9月10日,新建敦煌至格尔木铁路(敦格铁路)实现与青藏铁路成功接轨,右图中的虚线为敦格铁路。
读图回答1~2题。
1.敦格铁路正线全长约509千米,由此可推知,上图的比例尺最接近()A.1∶30万B.1∶30 000万C.1∶2 500万D.1∶200万2.关于图中信息的叙述,不正确的是()A.图中的虚线为图例B.图中的“格尔木”为注记C.图中的省界大体为西北—东南走向D.在该图推断方向应依据经纬线解析第1题,由图可知,图中敦煌和格尔木两地相距约2厘米,而两地的实地距离约为509千米,故该图的比例尺最接近1∶2 500万。
第2题,图中的实线、虚线都是图例;图中的文字是注记;推断方向的方法有三种,但该图既没有经纬线、也没有指向标,故应依据“上北下南、左西右东”定向;图中的省界大体为西北—东南走向。
答案 1.C 2.D读某区域等高线地形图,回答3~4题。
3.既近水又受水患影响最小的居民点是()A.①B.②C.③D.④4.下列叙述正确的是()A.②居民点最简洁进展成为城镇B.站在M山可以看到图中的全部居民点C.图中河流干流由西北流向东南D.由⑤地取近道攀登M山忽上忽下较耗体力解析第3题,图中①~④四个居民点均沿河分布,靠近水源,其中②③④三地位于河谷平原地区,地势较低,易受水患影响。
而①地位于地势稍高的鞍部地带,受水患影响小。
选A。
第4题,图中最简洁进展成为城镇的居民点应是位于河流交汇处的③地;M山与⑤地之间有山脊阻挡视线;依据图中指向标可以看出,河流①~②段从西南流向东北;由⑤地取近道攀登M山时,先穿越山脊再经过河谷,地势起伏很大。
选D。
答案 3.A 4.D下图为我国东南某地区等高线地形图,据图完成5~6题。
5.关于该地区的叙述,正确的是()A.④河段的流速比②河段的快B.将来乙村的进展规模比甲村的小C.③地夏季降水量大于①地D.河流干流流向西南6.山顶与甲村的相对高度最大可达()A.500米B.690米C.700米D.800米解析第5题,④处等高线明显比②处稠密,所以④处河段流速快;乙村位于河流交汇处,进展潜力大;东南地区夏季主要受东南季风影响,③地位于背风坡降水少于位于迎风坡的①地;河流流向与等高线凸向相反,故流向东北。
第2讲细胞中的元素和化合物细胞中的无机物[最新考纲] 1.水和无机盐的作用(Ⅰ)。
2.实验:检测生物组织中还原糖、脂肪和蛋白质。
考点一细胞中的元素和化合物(5年4考)1.细胞中的元素(1)元素的来源、分类和存在形式(2)生物界和非生物界在元素种类和含量上的关系2.细胞中的化合物3.正确区分鲜重、干重的元素和化合物的含量下图A是组成人体细胞的主要元素及其比例,B是细胞中几种化合物的含量。
请据图思考下列问题:(1)如果图A表示的是活细胞中的元素含量比例,则甲~丁依次为O、H、C、N。
(2)若按干重计,图B中②为蛋白质,其标志性元素是A图中的丁(填“甲”“乙”“丙”“丁”),按鲜重计②应为水(此时①为蛋白质)。
(3)图A所示元素在非生物界中一定能(填“一定能”“一定不能”或“不一定能”)找到。
(4)C、H、N三种元素在人体的化学成分中,质量分数共占73%左右(占细胞干重的百分比),而在岩石圈的化学成分中,质量分数不到1%,这一事实说明生物界与非生物界具有差异性。
细胞中的元素与化合物1.(2013·海南卷,1)关于生物体内有机化合物所含元素的叙述,错误的是()A.叶绿素含有镁元素B.血红蛋白含有铁元素C.脱氧核糖含有磷元素D.胰岛素含有碳元素解析脱氧核糖属五碳糖仅由C、H、O三种元素组成。
答案 C2.(2018·河北衡水调研)下列有关组成细胞的元素的说法,正确的是()A.组成生物体的大量元素中,C是最基本的元素,在细胞鲜重中含量总是最多的B.微量元素在生物体内含量很低,但不可缺少,如叶绿素的合成离不开MgC.生物体内携带氨基酸进入核糖体的有机物一定不含SD.P是磷脂、蛋白质、ATP和核糖等多种化合物的组成元素解析组成生物体的大量元素中,C是最基本的元素,在细胞鲜重中含量最多的是O,A错误;叶绿素的合成离不开Mg,但Mg是大量元素,B错误;携带氨基酸进入核糖体的有机物是tRNA,其组成元素只有C、H、O、N、P,C正确;磷脂和ATP的组成元素是C、H、O、N、P,蛋白质中一定含有C、H、O、N,有的含有S等,核糖的组成元素只有C、H、O,D错误。
第一章 章末检测(A)(时间:120分钟 满分:150分)一、选择题(本大题共10小题,每小题5分,共50分) 1.下列语句中是命题的是( )A .梯形是四边形B .作直线ABC .x 是整数D .今天会下雪吗?2.设原命题:若a +b≥2,则a ,b 中至少有一个不小于1,则原命题与其逆命题的真假情况是( )A .原命题真,逆命题假B .原命题假,逆命题真C .原命题与逆命题均为真命题D .原命题与逆命题均为假命题3.给出命题:若函数y =f(x)是幂函数,则函数y =f(x)的图象不过第四象限.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是( )A .3B .2C .1D .04.设集合M ={x|x>2},P ={x|x<3},那么“x ∈M ,或x ∈P”是“x ∈M∩P”的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件 D .既不充分也不必要条件5.有下列命题:①2004年10月1日是国庆节,又是中秋节;②10的倍数一定是5的倍数;③梯形不是矩形;④方程x 2=1的解x =±1.其中使用逻辑联结词的命题有( )A .1个B .2个C .3个D .4个 6.在△ABC 中,“A>30°”是“sin A>12”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.若p :a ∈R ,|a|<1,q :x 的二次方程x 2+(a +1)x +a -2=0的一个根大于零,另一根小于零,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件8.已知条件p :|x +1|>2,条件q :5x -6>x 2,则綈p 是綈q 的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件9.已知实数a>1,命题p :函数y =log 12(x 2+2x +a)的定义域为R ,命题q :|x|<1是x<a的充分不必要条件,则( )A .“p 或q”为真命题B .“p 且q”为假命题C .“綈p 且q”为真命题D .“綈p 或綈q”为真命题10.“a 和b 都不是偶数”的否定形式是( ) A .a 和b 至少有一个是偶数 B .a 和b 至多有一个是偶数 C .a 是偶数,b 不是偶数 D .a 和b 都是偶数11.不等式(a -2)x 2+2(a -2)x -4<0对于x ∈R 恒成立,那么a 的取值范围是( ) A .(-2,2) B .(-2,2] C .(-∞,2] D .(-∞,-2) 12.已知命题p :存在x ∈R ,使tan x =22,命题q :x 2-3x +2<0的解集是{x|1<x<2},下列结论:①命题“p 且q”是真命题;②命题“p 且綈q”是假命题;③命题“綈p 或q”是真命题;④命题“綈p 或綈q”是假命题,其中正确的是( )A .②③B .①②④C .①③④D .①②③④二、填空题(本大题共7小题,每小题4分,共28分)11.已知α、β是不同的两个平面,直线a ⊂α,直线b ⊂β,命题p :a 与b 无公共点;命题q :α∥β,则p 是q 的__________条件.12.命题“ax 2-2ax -3>0不成立”是真命题,则实数a 的取值范围是__________. 13.若p :“平行四边形一定是菱形”,则“非p”为______________________________________________________________________. 14.下列四个命题中①“k =1”是“函数y =cos 2kx -sin 2kx 的最小正周期为π”的充要条件;②“a =3”是“直线ax +2y +3a =0与直线3x +(a -1)y =a -7相互垂直”的充要条件; ③函数y =x 2+4x 2+3的最小值为2. 其中是假命题的为________(将你认为是假命题的序号都填上) 三、解答题(本大题共6小题,共70分)17.(10分)将下列命题改写成“若p ,则q”的形式,并判断其真假. (1)正方形是矩形又是菱形; (2)同弧所对的圆周角不相等; (3)方程x 2-x +1=0有两个实根.18.(12分)判断命题“已知a 、x 为实数,如果关于x 的不等式x 2+(2a +1)x +a 2+2≤0的解集非空,则a≥1”的逆否命题的真假.19.(12分)已知p :⎪⎪⎪⎪1-x -13≤2;q :x 2-2x +1-m 2≤0 (m>0),若綈p 是綈q 的必要非充分条件,求实数m 的取值范围.20.(12分)已知方程x2+(2k-1)x+k2=0,求使方程有两个大于1的实数根的充要条件.21.(12分)p:对任意实数x都有ax2+ax+1>0恒成立;q:关于x的方程x2-x+a=0有实数根;如果p与q中有且仅有一个为真命题,求实数a的取值范围.22.(12分)已知下列三个方程:x2+4ax-4a+3=0,x2+(a-1)x+a2=0,x2+2ax-2a =0至少有一个方程有实数根,求实数a的取值范围.单元检测卷答案解析单元检测卷答案解析第一章 常用逻辑用语(A)答案1.A2.A [因为原命题“若a +b ≥2,则a ,b 中至少有一个不小于1”的逆否命题为,“若a ,b 都小于1,则a +b<2”显然为真,所以原命题为真;原命题“若a +b ≥2,则a ,b 中至少有一个不小于1”的逆命题为:“若a ,b 中至少有一个不小于1,则a +b ≥2”,是假命题,反例为a =1.2,b =0.3.]3.C4.A [“x ∈M ,或x ∈P”不能推出“x ∈M ∩P”,反之可以.] 5.C [①中有“且”;②中没有;③中有“非”;④中有“或”.]6.B [当A =170°时,sin 170°=sin 10°<12,所以“过不去”;但是在△ABC 中,sin A>12⇒30°<A<150°⇒A>30°,即“回得来”.]7.A [a ∈R ,|a|<1⇒a -2<0,充分成立,反之不成立.] 8.A [綈p :|x +1|≤2,-3≤x≤1,綈q :5x -6≤x 2, 即x 2-5x +6≥0,解得x≥3,或x≤2.∴綈p ⇒綈q ,但綈q ⇒綈p ,故綈p 是綈q 的充分不必要条件.]9.A [命题p :当a>1时,Δ=4-4a<0,即x 2+2x +a>0恒成立,故函数y =log 12(x 2+2x +a)的定义域为R ,即命题p 是真命题;命题q :当a>1时,由|x|<1,得-1<x<1,即|x|<1是x<a 的充分不必要条件,故命题q 也是真命题.所以命题“p 或q”是真命题.]10.A [对“a 和b 都不是偶数”的否定为“a 和b 不都不是偶数”,等价于“a 和b 中至少有一个是偶数”.]11.B [注意二次项系数为零也可以.]12.D [∵p 、q 都是真命题,∴①②③④均正确.] 13.必要不充分 解析 q ⇒p ,p ⇒q. 14.[-3,0]解析 ax 2-2ax -3≤0恒成立, 当a =0时,-3≤0成立;当a≠0时,由⎩⎪⎨⎪⎧a<0Δ=4a 2+12a≤0得-3≤a<0; ∴-3≤a≤0.15.平行四边形不一定是菱形;或至少有一个平行四边形不是菱形解析 本题考查复合命题“非p”的形式,p :“平行四边形一定是菱形”是假命题,这里“一定是”的否定是用“一定不是”还是“不一定是”?若为“平行四边形一定不是菱形”仍为假命题,与真值表相违,故原命题的“非p”为“平行四边形不一定是菱形”,是一个真命题.第二种说法是命题是全称命题的简写形式,应用规则变化即可. 16.①②③解析 ①“k =1”可以推出“函数y =cos 2kx -sin 2kx 的最小正周期为π”,但是函数y =cos 2kx -sin 2kx 的最小正周期为π,即y =cos 2kx ,T =2π|2k|=π,k =±1.②“a =3”不能推出“直线ax +2y +3a =0与直线3x +(a -1)y =a -7相互垂直”,反之垂直推出a =25;③函数y =x 2+4x 2+3=x 2+3+1x 2+3=x 2+3+1x 2+3,令x 2+3=t ,t≥3, y min =3+13=433.17.解 (1)若一个四边形是正方形,则它既是矩形,又是菱形,为真命题. (2)若两个角为同弧所对的圆周角,则它们不相等,为假命题.(3)如果一个方程为x 2-x +1=0,则这个方程有两个实数根,为假命题. 18.解 方法一 (直接法)逆否命题:已知a 、x 为实数,如果a<1,则关于x 的不等式x 2+(2a +1)x +a 2+2≤0的解集为空集.判断如下:二次函数y =x 2+(2a +1)x +a 2+2图象的开口向上,判别式Δ=(2a +1)2-4(a 2+2) =4a -7.∵a<1,∴4a -7<0.即二次函数y =x 2+(2a +1)x +a 2+2与x 轴无交点,∴关于x 的不等式x 2+(2a +1)x +a 2+2≤0的解集为空集,故逆否命题为真. 方法二 (先判断原命题的真假)∵a 、x 为实数,且关于x 的不等式x 2+(2a +1)x +a 2+2≤0的解集非空, ∴Δ=(2a +1)2-4(a 2+2)≥0,即4a -7≥0,解得a≥74,∵a≥74>1,∴原命题为真.又∵原命题与其逆否命题等价,∴逆否命题为真. 方法三 (利用集合的包含关系求解)命题p :关于x 的不等式x 2+(2a +1)x +a 2+2≤0有非空解集. 命题q :a≥1.∴p :A ={a|关于x 的不等式x 2+(2a +1)x +a 2+2≤0有实数解}={a|(2a +1)2-4(a 2+2)≥0}=⎩⎨⎧⎭⎬⎫a|a≥74,q :B ={a|a≥1}.∵A ⊆B ,∴“若p ,则q”为真,∴“若p ,则q”的逆否命题“若綈q ,则綈p”为真. 即原命题的逆否命题为真.19.解 綈p :⎪⎪⎪⎪1-x -13>2,解得x<-2,或x>10,A ={x|x<-2,或x>10}. 綈q :x 2-2x +1-m 2>0, 解得x<1-m ,或x>1+m ,B ={x|x<1-m ,或x>1+m}.∵綈p 是綈q 的必要非充分条件,∴B A ,即{ 1-m≤-2 1+m≥10且等号不能同时成立,⇒m≥9, ∴m≥9.20.解 令f(x)=x 2+(2k -1)x +k 2,方程有两个大于1的实数根⇔ Δ= 2k -1 2-4k 2≥0 -2112k -> f 1 >0)即k<-2.所以其充要条件为k<-2.21.解 对任意实数x 都有ax 2+ax +1>0恒成立⇔a =0或⎩⎪⎨⎪⎧a>0 Δ<0⇔0≤a<4;关于x 的方程x 2-x +a =0有实数根⇔1-4a≥0⇔a≤14;如果p 真,且q 假,有0≤a<4,且a>14,∴14<a<4;如果q 真,且p 假,有a<0或a≥4,且a≤14,∴a<0. 综上,实数a 的取值范围为(-∞,0)∪⎝⎛⎭⎫14,4. 22.解 假设三个方程:x 2+4ax -4a +3=0, x 2+(a -1)x +a 2=0,x 2+2ax -2a =0都没有实数根,则 ⎩⎪⎨⎪⎧Δ1=(4a)2-4(-4a +3)<0 Δ2=(a -1)2-4a 2<0 Δ3=(2a)2-4(-2a)<0,即⎩⎪⎨⎪⎧-32<a<12 a>13,或a<-1, -2<a<0得-32<a<-1.∴所求实数a 的范围是a≤-32或a≥-1.。
§1.1 习题课课时目标1.巩固和深化对基础知识的理解与掌握.2.重点掌握好集合间的关系与集合的基本运算.1.若A={x|x+1>0},B={x|x-3<0},则A∩B等于()A.{x|x>-1} B.{x|x<3}C.{x|-1<x<3} D.{x|1<x<3}2.已知集合M={x|-3<x≤5},N={x|x<-5或x>5},则M∪N等于()A.{x|x<-5或x>-3} B.{x|-5<x<5}C.{x|-3<x<5} D.{x|x<-3或x>5}3.设集合A={x|x≤13},a=11,那么()A.a A B.a∉AC.{a}∉A D.{a} A4.设全集I={a,b,c,d,e},集合M={a,b,c},N={b,d,e},那么(∁I M)∩(∁I N)等于()A.∅B.{d}C.{b,e} D.{a,c}5.设A={x|x=4k+1,k∈Z},B={x|x=4k-3,k∈Z},则集合A与B的关系为____________.6.设A={x∈Z|-6≤x≤6},B={1,2,3},C={3,4,5,6},求:(1)A∪(B∩C);(2)A∩(∁A(B∪C)).一、选择题1.设P={x|x<4},Q={x|x2<4},则()A.P⊆Q B.Q⊆PC.P⊆∁R Q D.Q⊆∁R P2.符合条件{a}P⊆{a,b,c}的集合P的个数是()A.2 B.3C.4 D.53.设M={x|x=a2+1,a∈N*},P={y|y=b2-4b+5,b∈N*},则下列关系正确的是() A.M=P B.M PC.P M D.M与P没有公共元素4.如图所示,M,P,S是V的三个子集,则阴影部分所表示的集合是()A.(M∩P)∩S B.(M∩P)∪SC.(M∩S)∩(∁S P) D.(M∩P)∪(∁V S)5.已知集合A={x|a-1≤x≤a+2},B={x|3<x<5},则能使A⊇B成立的实数a的范围是()A.{a|3<a≤4} B.{a|3≤a≤4}C.{a|3<a<4} D.∅二、填空题6.已知集合A={x|x≤2},B={x|x>a},如果A∪B=R,那么a的取值范围是________.7.集合A={1,2,3,5},当x∈A时,若x-1∉A,x+1∉A,则称x为A的一个“孤立元素”,则A中孤立元素的个数为____.8.已知全集U={3,7,a2-2a-3},A={7,|a-7|},∁U A={5},则a=________. 9.设U=R,M={x|x≥1},N={x|0≤x<5},则(∁U M)∪(∁U N)=________________.三、解答题10.已知集合A={x|-1≤x<3},B={x|2x-4≥x-2}.(1)求A∩B;(2)若集合C={x|2x+a>0},满足B∪C=C,求实数a的取值范围.11.某班50名同学参加一次智力竞猜活动,对其中A,B,C三道知识题作答情况如下:答错A者17人,答错B者15人,答错C者11人,答错A,B者5人,答错A,C者3人,答错B,C者4人,A,B,C都答错的有1人,问A,B,C都答对的有多少人?能力提升12.对于k∈A,如果k-1∉A且k+1∉A,那么k是A的一个“孤立元”,给定S={1,2,3,4,5,6,7,8},由S的3个元素构成的所有集合中,不含“孤立元”的集合共有几个?13.设数集M={x|m≤x≤m+34},N={x|n-13≤x≤n},且M,N都是集合U={x|0≤x≤1}的子集,定义b-a为集合{x|a≤x≤b}的“长度”,求集合M∩N的长度的最小值.1.在解决有关集合运算题目时,关键是准确理解交、并、补集的意义,并能将题目中符号语言准确转化为文字语言.2.集合运算的法则可借助于Venn图理解,无限集的交集、并集和补集运算可结合数轴,运用数形结合思想.3.熟记一些常用结论和性质,可以加快集合运算的速度.4.在有的集合题目中,如果直接去解可能比较麻烦,若用补集的思想解集合问题可变得更简单.§1.1 习题课双基演练1.C [∵A ={x|x>-1},B ={x|x<3},∴A∩B ={x|-1<x<3},故选C.]2.A [画出数轴,将不等式-3<x ≤5,x<-5,x>5在数轴上表示出来,不难看出M ∪N ={x|x<-5或x>-3}.]3.D4.A [∵∁I M ={d ,e},∁I N ={a ,c},∴(∁I M)∩(∁I N)={d ,e}∩{a ,c}=∅.]5.A =B解析 4k -3=4(k -1)+1,k ∈Z ,可见A =B.6.解 ∵A ={-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6}(1)又∵B∩C ={3},∴A ∪(B∩C)={-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6}.(2)又∵B ∪C ={1,2,3,4,5,6},∴∁A (B ∪C)={-6,-5,-4,-3,-2,-1,0}∴A∩(∁A (B ∪C))={-6,-5,-4,-3,-2,-1,0}.作业设计1.B [Q ={x|-2<x<2},可知B 正确.]2.B [集合P 内除了含有元素a 外,还必须含b ,c 中至少一个,故P ={a ,b},{a ,c},{a ,b ,c}共3个.]3.B [∵a ∈N *,∴x =a 2+1=2,5,10,….∵b ∈N *,∴y =b 2-4b +5=(b -2)2+1=1,2,5,10,….∴M P.]4.C [阴影部分是M ∩S 的部分再去掉属于集合P 的一小部分,因此为(M ∩S)∩(∁S P).]5.B [根据题意可画出下图.∵a +2>a -1,∴A≠∅.有⎩⎪⎨⎪⎧a -1≤3,a +2≥5.解得3≤a≤4.] 6.a≤2解析 如图中的数轴所示,要使A∪B=R,a≤2.7.1解析当x=1时,x-1=0∉A,x+1=2∈A;当x=2时,x-1=1∈A,x+1=3∈A;当x=3时,x-1=2∈A,x+1=4∉A;当x=5时,x-1=4∉A,x+1=6∉A;综上可知,A中只有一个孤立元素5.8.4解析∵A∪(∁U A)=U,由∁U A={5}知,a2-2a-3=5,∴a=-2,或a=4.当a=-2时,|a-7|=9,9∉U,∴a≠-2.a=4经验证,符合题意.9.{x|x<1或x≥5}解析∁U M={x|x<1},∁U N={x|x<0或x≥5},故(∁U M)∪(∁U N)={x|x<1或x≥5}或由M∩N={x|1≤x<5},(∁U M)∪(∁U N)=∁U(M∩N)={x|x<1或x≥5}.10.解(1)∵B={x|x≥2},∴A∩B={x|2≤x<3}.(2)∵C={x|x>-a2},B∪C=C⇔B⊆C,∴-a2<2,∴a>-4.11.解由题意,设全班同学为全集U,画出Venn图,A表示答错A的集合,B表示答错B的集合,C表示答错C的集合,将其集合中元素数目填入图中,自中心区域向四周的各区域数目分别为1,2,3,4,10,7,5,因此A∪B∪C中元素数目为32,从而至少错一题的共32人,因此A,B,C全对的有50-32=18人.12.解依题意可知,“孤立元”必须是没有与k相邻的元素,因而无“孤立元”是指在集合中有与k相邻的元素.因此,符合题意的集合是:{1,2,3},{2,3,4},{3,4,5},{4,5,6},{5,6,7},{6,7,8}共6个.13.解 在数轴上表示出集合M 与N ,可知当m =0且n =1或n -13=0且m +34=1时,M∩N 的“长度”最小.当m =0且n =1时,M∩N ={x|23≤x≤34},长度为34-23=112;当n =13且m =14时,M∩N ={x|14≤x≤13},长度为13-14=112. 综上,M∩N 的长度的最小值为112.。