02OSI参考模型--物理层
- 格式:doc
- 大小:20.50 KB
- 文档页数:4
OSI参考模型各层的功能1.物理层(Physical Layer):物理层是网络通信的最底层,它负责将数字信息转换为物理信号,使其能够在网络介质中传输。
它的功能主要包括数据的传输和同步、介质的选择和电缆的连接等。
2.数据链路层(Data Link Layer):数据链路层负责将物理层传输的信息组织成数据帧,并处理帧的错误、流量控制和链路管理等问题。
它的功能主要包括错误检测和纠正、帧同步、流量控制、错误控制和链路管理。
3.网络层(Network Layer):网络层的主要功能是提供端到端的数据传输服务,将数据分组成路由器能够识别和转发的分组。
它的功能主要包括寻址和路由选择、分组转发和转发表维护等。
4.传输层(Transport Layer):传输层负责提供端到端的可靠数据传输服务,确保数据在源端和目的端之间可靠地传输。
它的功能主要包括数据传输的可靠性保证、流量控制、拥塞控制和端口管理等。
5.会话层(Session Layer):会话层负责协调和管理数据传输过程中的会话和会话控制。
它的功能主要包括建立、维护和结束会话、会话的同步和恢复、会话的安全性控制、会话的管理和应用的认证等。
6.表示层(Presentation Layer):表示层负责处理数据的表示和转换,确保不同系统之间的数据能够正确地解释和理解。
它的功能主要包括数据格式的转换、数据加密和压缩、数据的描述和解释等。
7.应用层(Application Layer):应用层是OSI参考模型的最高层,它是用户与网络通信的接口,也是用户直接使用的网络服务层。
它的功能主要包括提供各种网络应用服务,如电子邮件、文件传输、远程登录等。
总的来说,OSI参考模型的各个层次有不同的功能,通过将网络通信过程划分为不同的层次,使得网络通信变得更加可靠、灵活和可扩展。
每个层次的功能都相对独立,通过使用不同的协议和算法,实现了各层之间的数据传输和协同工作。
这种分层结构的设计使得网络通信系统更容易维护和升级,也更容易实现交互操作和互联互通。
osi参考模型各层功能OSI参考模型是网络通信的一种标准模型,它将网络通信的过程分解为七个层次,每个层次都有特定的功能和协议。
下面将分别介绍每个层次的功能。
第一层:物理层物理层是最底层,它负责将数据转换成电子信号或光信号进行传输。
物理层的主要功能包括确定传输介质、数据的传输速率、电气信号格式等。
该层的协议有Ethernet、Wi-Fi和USB等。
第二层:数据链路层数据链路层负责将物理层传输的数据组织成适合传输的数据帧。
它提供传输数据的可靠性和数据的纠错功能,还负责数据的排序和流量控制。
该层的协议有以太网的MAC协议和PPP (Point-to-Point Protocol)。
第三层:网络层网络层负责将数据帧从发送方传输到接收方的网络中。
它将数据包进行路由选择,确定传输的路径,并处理不同网络之间的通信问题。
该层的协议有IP(Internet Protocol)和ICMP (Internet Control Message Protocol)等。
第四层:传输层传输层负责端到端的数据传输,确保数据的可靠传输和错误恢复。
它将应用层数据分成小块,并为这些数据块添加序列号和错误检测码。
常见的传输层协议有TCP(Transmission Control Protocol)和UDP(User Datagram Protocol)。
第五层:会话层会话层负责在两个终端之间建立和管理会话连接,控制数据的传输顺序和方式。
它提供对数据流的同步和控制,以确保通信的可靠性和完整性。
会话层的协议有RPC(Remote Procedure Call)和Sockets等。
第六层:表示层表示层主要负责数据的格式转换和加密解密。
它将应用层的数据转换成网络可识别的格式,并进行数据压缩和加密。
表示层的协议有JPEG、GIF和HTTPS等。
第七层:应用层应用层是最顶层的层次,它直接为用户提供网络应用服务。
应用层协议有HTTP(HyperText Transfer Protocol)、FTP(File Transfer Protocol)和SNMP(Simple Network Management Protocol)等。
第一层:物理层这一层负责在计算机之间传递数据位,它为在物理媒体上传输的位流建立规则,这一层定义电缆如何连接到网卡上,以及需要用何种传送技术在电缆上发送数据;同时还定义了位同步及检查。
这一层表示了用户的软件与硬件之间的实际连接。
它实际上与任何协议都不相干,但它定义了数据链路层所使用的访问方法。
物理层是OSI参考模型的最低层,向下直接与物理传输介质相连接。
物理层协议是各种网络设备进行互连时必须遵守的低层协议。
设立物理层的目的是实现两个网络物理设备之间的二进制比特流的透明传输,对数据链路层屏蔽物理传输介质的特性,以便对高层协议有最大的透明性。
ISO对OSI参考模型中的物理层做了如下定义:物理层为建立、维护和释放数据链路实体之间的二进制比特传输的物理连接提供机械的、电气的、功能的和规程的特性。
物理连接可以通过中继系统,允许进行全双工或半双工的二进制比特流的传输。
物理层的数据服务单元是比特,它可以通过同步或异步的方式进行传输。
从以上定义中可以看出,物理层主要特点是:1.物理层主要负责在物理连接上传输二进制比特流;2.物理层提供为建立、维护和释放物理连接所需要的机械、电气、功能与规程的特性。
" 第二层:数据链路层这是OSI模型中极其重要的一层,它把从物理层来的原始数据打包成帧。
一个帧是放置数据的、逻辑的、结构化的包。
数据链路层负责帧在计算机之间的无差错传递。
数据链路层还支持工作站的网络接口卡所用的软件驱动程序。
桥接器的功能在这一层。
数据链路层是OSI参考模型的第二层,它介于物理层与网络层之间。
设立数据链路层的主要目的是将一条原始的、有差错的物理线路变为对网络层无差错的数据链路。
为了实现这个目的,数据链路层必须执行链路管理、帧传输、流量控制、差错控制等功能。
在OSI参考模型中,数据链路层向网络层提供以下基本的服务:1.数据链路建立、维护与释放的链路管理工作;2.数据链路层服务数据单元帧的传输;3.差错检测与控制;4.数据流量控制;5.在多点连接或多条数据链路连接的情况下,提供数据链路端口标识的识别,支持网络层实体建立网络连接;6.帧接收顺序控制" 第三层:网络层这一层定义网络操作系统通信用的协议,为信息确定地址,把逻辑地址和名字翻译成物理的地址。
OSI参考模型的构成及主要功能OSI各层的主要功能是:(1)物理层(Physical layer)物理层处于OSI参考模型的最低层。
物理层的主要功能是利用物理传输介质为数据链路层提供物理连接,以便透明地传送比特流。
(2)数据链路层(Data link layer)在物理层提供比特流传输服务的基础上,在通信的实体之间建立数据链路连接,传送以帧为单位的数据,采用差错控制、流量控制方法,使有差错的物理线路变成无差错的数据链路。
(3)网络层(Network layer)网络层主要任务是通过路由器算法,为分组通过通信子网选择最适当的路径。
网络层要实现路由器选择、拥塞控制与网络互连等功能。
(4)传输层(Transport layer)传输层的主要任务是向用户提供可靠的端到端(End-to-End)服务,透明地传送报文。
它向高层屏蔽了下层数据通信的细节,因而是计算机通体体系结构中最关键的一层。
(5)会话层(Session layer)会话层的主要任务是组织两个会话进程之间的通信,并管理数据的交换。
(6)表示层(Presentation layer)表示层主要用于处理在两个通信系统中交换信息的表示方式。
它包括数据格式变换、数据加密与解密、数据压缩与恢复等功能。
(7)应用层(Application layer)应用层是OSI参考模型中的最高层。
应用层确定进程之间通信的性质,以满足用户的需要。
应用层不仅要提供应用进程所需要的信息交换和远程操作,而且还要作为应用进程的用户代理(User Agent),来完成一些为进行信息交换所必需的功能。
它包括:文件传送访问和管理FTAM、虚拟终端VT、事务处理TP、远程数据库访问RDA、制造业报文规范MMS、目录服务DS等协议。
OSI/ISO七层参考模型介绍物理层物理层规定了激活、维持、关闭通信端点之间的机械特性、电气特性、功能特性以及过程特性。
该层为上层协议提供了一个传输数据的物理媒体。
在这一层,数据的单位称为比特(bit)。
属于物理层定义的典型规范代表包括:EIA/TIA RS-232、EIA/TIA RS-449、V.35、RJ-45等。
物理层是OSI/ISO的第一层,它虽然处于最底层,却是整个开放系统的基础。
物理层为设备之间的数据通信提供传输媒体及互连设备,为数据传输提供可靠的环境。
媒体和互连设备物理层的媒体包括架空明线、平衡电缆、光纤、无线信道等。
通信用的互连设备指DTE 和DCE间的互连设备。
DTE既数据终端设备,又称物理设备,如计算机、终端等都包括在内。
而DCE则是数据通信设备或电路连接设备,如调制解调器等。
数据传输通常是经过DTE──DCE,再经过DCE──DTE的路径。
互连设备指将DTE、DCE连接起来的装置,如各种插头、插座。
LAN中的各种粗、细同轴电缆、T型接、插头,接收器,发送器,中继器等都属物理层的媒体和连接器。
物理层的主要功能为数据端设备提供传送数据的通路,数据通路可以是一个物理媒体,也可以是多个物理媒体连接而成.一次完整的数据传输,包括激活物理连接,传送数据,终止物理连接.所谓激活,就是不管有多少物理媒体参与,都要在通信的两个数据终端设备间连接起来,形成一条通路。
传输数据.物理层要形成适合数据传输需要的实体,为数据传送服务.一是要保证数据能在其上正确通过,二是要提供足够的带宽(带宽是指每秒钟内能通过的比特(BIT)数),以减少信道上的拥塞。
传输数据的方式能满足点到点,一点到多点,串行或并行,半双工或全双工,同步或异步传输的需要。
完成物理层的一些管理工作。
物理层的一些重要标准物理层的一些标准和协议早在OSI/TC97/C16 分技术委员会成立之前就已制定并在应用了,OSI也制定了一些标准并采用了一些已有的成果。
OSI参考模型各层的功能. 物理层在OSI参考模型中,物理层(Physical Layer)是参考模型的最低层,也是OSI模型的第一层。
物理层的主要功能是:利用传输介质为数据链路层提供物理连接,实现比特流的透明传输。
物理层的作用是实现相邻计算机节点之间比特流的透明传送,尽可能屏蔽掉具体传输介质和物理设备的差异。
需要注意的是,物理层并不是指连接计算机的具体物理设备或传输介质,如双绞线、同轴电缆、光纤等,而是要使其上面的数据链路层感觉不到这些差异,这样可使数据链路层只需要考虑如何完成本层的协议和服务,而不必考虑网络的具体传输介质是什么。
“透明传送比特流”表示经实际电路传送后的比特流没有发生变化,对传送的比特流来说,这个电路好像是看不见的,当然,物理层并不需要知道哪几个比特代表什么意思。
为了实现物理层的功能,该层所涉及的内容主要有以下几个方面:(1)通信连接端口与传输媒体的物理和电气特性λ机械特性:规定了物理连接器的现状、尺寸、针脚的数量,以及排列状况等。
例如EIA-RS-232-D标准规定使用25根引脚的DB-25插头座,其两个固定螺丝之间的距离为47.04±0.17mm等。
λ电气特性:规定了在物理连接信道上传输比特流时的信号电平、数据编码方式、阻抗及其匹配、传输速率和连接电缆最大距离的限制等。
例如EIA-RS-232-D标准采用负逻辑,即逻辑0(相当于数据“0”)或控制线处于接通状态时,相对信号的地线有+5~+15V 的电压;当其连接电缆不超过15米时,允许的传输速率不超过20Kb/s。
λ功能特性:规定了物理接口各个信号线的确切功能和含义,如数据线和控制线等。
例如EIA-RS-232-D标准规定的DB-25插头座的引脚2和引脚3均为数据线。
λ规程特性:利用信号线进行比特流传输时的操作过程,例如信号线的工作规则和时序等。
(2)比特数据的同步和传输方式物理层指定收发双方在传输时使用的传输方式,以及为保持双方步调一致而采用的同步技术。
OSI参考模型7 应用层6 表示层5 会话层4 运输层3 网络层2 数据链路层1 物理层OSI体系结构TCP/IP体系结构1、物理层(physical layer):物理层的任务就是透明地传送比特流。
传递信息所利用的一些物理媒介,如双绞线、同轴电缆、光缆等,并不在物理层之内而是在物理层的下面。
因此也把物理媒介当作第0层。
2、数据链路层(data link layer):简称链路层。
在发送数据时,数据链路层将网络层交下来的IP数据报组装成帧(framing),在两个相邻结点间的链路上传送以帧为单位的数据。
每一帧包括数据和必要的控制信息(如同步信息、地址信息、差错控制等)。
在接收数据时,控制信息使接收端能够指导一个帧从哪个比特开始和到哪个比特结束。
这样,数据链路层在收到一个帧后,就从其中提取出数据部分,上交给网络层。
控制信息还使接收端能够检测到所收到的帧中有无差错。
如发现有差错,数据链路层就丢弃这个出了差错的帧,然后采取下面两种方法之一:(1)不作任何其他的处理,这是目前最常见的方法。
差错的处理由高层处理。
(2)由数据链路层通知发送方重传这一帧,直到正确无误地收到此帧为止。
3、网络层(network layer):负责为分组交换网上的不同主机提供通信。
在发送数据时,网络层将运输层产生的报文段或用户数据报封装成分组或包进行传送。
在TCP/IP体系中,分组也叫做IP数据报,或数据报。
网络层的另一个任务就是选择合适的路由,使源主机运输层所传下来的分组,能够通过网络中的路由器找到目的主机。
4、运输层(transport layer):运输层的任务就是负责两个主机中进程的通信。
英特网的运输层可使用两种不同的协议:(1)传输控制协议TCP(Transmission Control Protocol):面向连接的,数据传输的单位是报文段(segment),能够提供可靠的交付。
(2)用户数据报协议UDP(User Datagram Protocol):无连接的,数据传输的单位的hi用户数据报,不保证提供可靠的交付,只能提供“尽最大努力交付”。
OSI 七层模型通过七个层次化的结构模型使不同的系统不同的网络之间实现可靠的通讯,因此其最主要的功能就是帮助不同类型的主机实现数据传输。
完成中继功能的节点通常称为中继系统。
在OSI七层模型中,处于不同层的中继系统具有不同的名称。
一个设备工作在哪一层,关键看它工作时利用哪一层的数据头部信息。
网桥工作时,是以MAC头部来决定转发端口的,因此显然它是数据链路层的设备。
具体说:物理层:网卡,网线,集线器,中继器,调制解调器数据链路层:网桥,交换机网络层:路由器网关工作在第四层传输层及其以上集线器是物理层设备,采用广播的形式来传输信息。
交换机就是用来进行报文交换的机器。
多为链路层设备(二层交换机),能够进行地址学习,采用存储转发的形式来交换报文.。
路由器的一个作用是连通不同的网络,另一个作用是选择信息传送的线路。
选择通畅快捷的近路,能大大提高通信速度,减轻网络系统通信负荷,节约网络系统资源,提高网络系统畅通率。
交换机和路由器的区别交换机拥有一条很高带宽的背部总线和内部交换矩阵。
交换机的所有的端口都挂接在这条总线上,控制电路收到数据包以后,处理端口会查找内存中的地址对照表以确定目的MAC(网卡的硬件地址)的NIC(网卡)挂接在哪个端口上,通过内部交换矩阵迅速将数据包传送到目的端口,目的MAC若不存在则广播到所有的端口,接收端口回应后交换机会“学习”新的地址,并把它添加入内部MAC地址表中。
使用交换机也可以把网络“分段”,通过对照MAC地址表,交换机只允许必要的网络流量通过交换机。
通过交换机的过滤和转发,可以有效的隔离广播风暴,减少误包和错包的出现,避免共享冲突。
交换机在同一时刻可进行多个端口对之间的数据传输。
每一端口都可视为独立的网段,连接在其上的网络设备独自享有全部的带宽,无须同其他设备竞争使用。
当节点A向节点D发送数据时,节点B可同时向节点C发送数据,而且这两个传输都享有网络的全部带宽,都有着自己的虚拟连接。