模型参考自适应控制(建大)资料
- 格式:ppt
- 大小:1.65 MB
- 文档页数:68
第4章模型参考自适应控制系统4.1 概述⏹MRAC系统具有多种结构形式,互相之间可以互相转换。
最典型的一类MRAC系统结构框图如图4.1.1所示,由参考模型、被控对象、参数可调控制器和自适应机构组成。
⏹其中参数可调控制器由一个前馈调节器和一个反馈调节器组成,它与被控对象形成一个常规的反馈控制系统,这个系统相对于MRAC系统来说是一个“内环”。
⏹另外,MRAC系统还有一个由自适应机构组成的自适应反馈回路,称为“外环”,用来调节内环参数可调控制器中的相关参数。
⏹MRAC系统的参考模型体现了人们对闭环控制系统的性能要求。
也就是说,这个参考模型反映了人们期望闭环控制系统如何响应指令信号。
图4.1.1 典型MRAC系统的结构框图到目前为止,已有许多种类型的MRAC系统,并且采用不同分类标准就有不同的分类方法。
⏹如按结构特征来分类,可将MRAC系统分为并联MRAC系统、串联MRAC系统以及串并联MRAC系统。
一般,这三种结构是从不同的观点来讨论的,但是用统一的方法对它们进行分析和综合也是可能的。
⏹根据自适应机构对系统的影响方式可以分为参数自适应方式和信号综合自适应控制方式。
前者表示自适应机构根据参考模型与被控对象之间的误差直接修改控制器的参数,如图4.1.1中从自适应机构出发的实线所代表的方式;后者是由自适应机构产生一个辅助输入信号来修改加在被控对象的信号,如图4.1.1中从自适应机构出发的虚线所代表的方式。
根据MRAC系统的设计方法可以分为如下三类:基于局部参数最优化的方法、基于Lyapunov稳定性理论的方法以及基于Popov超稳定性理论的方法。
⏹基于局部参数最优化的方法是最早采用的MRAC系统设计方法,通常称为MIT律。
⏹基于Lyapunov稳定性理论的方法是Butcharty及Parks于六十年代中期相继提出的,这种方法与局部参数最优化方法相比,不仅可保证系统的稳定性,还具有自适应速度快的优点。
⏹由法国学者Landau于1969年提出的基于Popov超稳定性理论的方法,主要是以Popov超稳定性理论为基础,由于不需要选择Lyapunov函数,并且能给出一族自适应规律,从而该方法有利于设计者结合实际系统灵活地选择合适的自适应规律。
第九章 模型参考自适应控制(Model Reference Adaptive Control )简称MRAC介绍另一类比较成功的自适应控制系统,已有较完整的设计理论和丰富的应用成果(驾驶仪、航天、电传动、核反应堆等等)。
§9 —1MRAC 的基本概念系统包含一个参考模型,模型动态表征了对系统动态性能的理想要求,MRAC 力求使被控系统的动态响应与模型的响应相一致。
与STR 不同之处是MRAC 没有明显的辨识部分,而是通过与参考模型的比较,察觉被控对象特性的变化,具有跟踪迅速的突出优点。
设参考模型的方程为式(9-1-1)式(9-1-2)被控系统的方程为式(9-1-3) 式(9-1-4)两者动态响应的比较结果称为广义误差,定义输出广义误差为e = y m – y s 式(9-1-5);X A X Br y CX m m m m m∙=+= X A B r y CX S S S S S∙=+=状态广义误差为ε = X m – X s 式(9-1-6)。
自适应控制的目标是使得某个与广义误差有关的自适应控制性能指标J 达到最小。
J 可有不同的定义,例如单输出系统的式(9-1-7)或多输出系统的式(9-1-8)MRAC 的设计方法目的是得出自适应控制率,即沟通广义误差与被控系统可调参数间关系的算式。
有两类设计方法:一类是“局部参数最优化设计方法”,目标是使得性能指标J 达到最优化;另一类是使得自适应控制系统能够确保稳定工作,称之为“稳定性理论的设计方法。
§9 —2 局部参数最优化的设计方法一、利用梯度法的局部参数最优化的设计方法这里要用到非线性规划最优化算法中的一种最简单的方法——J e d t=⎰20()ττJ ee d Tt=⎰()()τττ梯度法(Gradient Method )。
1.梯度法考虑一元函数f(x),当: ∂ f (x)/ ∂x = 0 ,且∂ f 2 (x) / ∂x 2 > 0 时f(x) 存在极小值。
一 原理及方法模型参考自适应系统,是用理想模型代表过程期望的动态特征,可使被控系统的特征与理想模型相一致。
一般模型参考自适应控制系统的结构如图1所示。
图1 一般的模型参考自适应控制系统其工作原理为,当外界条件发生变化或出现干扰时,被控对象的特征也会产生相应的变化,通过检测出实际系统与理想模型之间的误差,由自适应机构对可调系统的参数进行调整,补偿外界环境或其他干扰对系统的影响,逐步使性能指标达到最小值。
基于这种结构的模型参考自适应控制有很多种方案,其中由麻省理工学院科研人员首先利用局部参数最优化方法设计出世界上第一个真正意义上的自适应控制律,简称为MIT 自适应控制,其结构如图2所示。
图2 MIT 控制结构图系统中,理想模型Km 为常数,由期望动态特性所得,被控系统中的增益Kp 在外界环境发生变化或有其他干扰出现时可能会受到影响而产生变化,从而使其动态特征发生偏离。
而Kp 的变化是不可测量的,但这种特性的变化会体现在广义误差e 上,为了消除或降低由于Kp 的变化造成的影响,在系统中增加一个可调增益Kc ,来补偿Kp 的变化,自适应机构的任务即是依据误差最小指标及时调整Kc ,使得Kc 与Kp 的乘积始终与理想的Km 一致,这里使用的优化方法为最优梯度法,自适应律为:⎰⨯+=tm d y e B Kc t Kc 0)0()(τMIT 方法的优点在于理论简单,实施方便,动态过程总偏差小,偏差消除的速率快,而Yp Yme+__+R参考模型调节器被控对象适应机构可调系统———kmq(s)p(s)KcKpq(s)-----p(s)适应律Rymype+-且用模拟元件就可以实现;缺点是不能保证过程的稳定性,换言之,被控对象可能会发散。
二 对象及参考模型该实验中我们使用的对象为:122)()()(2++==s s s p s q K s G pp 参考模型为:121)()()(2++==s s s p s q K s G mm 用局部参数最优化方法设计一个模型参考自适应系统,设可调增益的初值Kc(0)=0.2,给定值r(t)为单位阶跃信号,即r(t)=A ×1(t)。
模型参考自适应控制器设计摘要:本文首先介绍了模型参考自适应的基本概念,做出了模型参考自适应的系统结构图,然后介绍了设计模型参考自适应系统的三种常用的方法。
结合遗传算法的学习,给出了基于遗传算法设计自适应PID控制器,在论文中,随着交叉互换率与突变率随基因的适应度值而变化,因而增强了算法的性能。
最后结合MATLAB的学习,举出了一个例子,做出了仿真。
从仿真的结果来看,提高了系统的响应速度,降低了超调量,使系统更加稳定,基本达到了设计要求。
关键字:遗传算法自适应控制器仿真1.前言模型参考自适应控制(model reference adaptive control,MRAC)是从模型跟踪问题或模型参考控制(model reference control,MRC)问题引申出来的。
在MRC中,只要设计者非常了解被控对象(其模型已获知)和它应当满足的性能要求,即可提出一个被称为“参考模型”的模型,用以描述希望的闭环系统的输入输出性能。
MRC的设计任务是寻求一种反馈控制率,使被控对象闭环系统的性能与参考模型的性能完全相同。
但在对象参数未知的情况下,MRC是不可行的。
处理这种情况的一种途径是,采用确定性等价方法,即用参数估计值代替控制率中的未知参数,从而得到了MRAC结构,如图1所示。
图1 模型参考自适应控制系统结构由图1可知,MRAC 系统有两个环路组成:内环和外环。
内环与常规反馈系统类似,由被控对象和可调控制器组成,称为可调系统;外环是调整可调控制器参数的自适应回路,其中的参考模型与可调系统并联。
由于加在可调系统的参考输入信号同时也加到了参考模型的输入端,所以参考模型的输出或状态可用来规定希望的性能指标。
因此,MRAC 的基本工作原理为:根据被控对象结构和具体控制性能要求,设计参考模型,使其输出m y 表达对参考输入r 的期望响应;然后在每个控制周期内,将参考模型输出m y 与被控对象输出y 直接相减,得到广义误差信号y y e m - ,自适应机构根据一定的准则,利用广义误差信号来修改可调控制器参数,即产生一个自适应控制率,使e 趋于零,也就是使对象实际输出向参考模型输出靠近,最终达到完全一致。
自适应控制系统班级:姓名:学号:自适应控制自适应控制包括模型参考自适应控制和自校正控制两个分支。
前者是20世纪50年代建立起来的,它是通过自适应机构来克服系统模型参数的不确定性;后者是瑞典学者Astrom1973年提出的,它是通过在线估计系统模型参数,进而修改控制器的参数,以使系统适应环境的变化。
到70年代末和80年代初,李推普诺夫稳定性理论和轶收敛定理在自适应控制中的成功应用,使得基于稳定性分析的模型参考自适应控制系统的设计得到了蓬勃发展,形成模型参考自适应控制的完整理论体系和设计方法;秋收敛定理由于在研究自校正控制系统的稳定性有独到之处,使得基于参数估计的自校正控制系统研究取得了突破性进展。
自适应控制的概念在反馈控制和最优控制中,都假定被控对象或过程的数学模型是已知的,并且具有线性定常的特性。
实际上在许多工程中,被控对象或过程的数学模型事先是难以确定的,即使在某一条件下被确定了的数学模型,在工况和条件改变了以后,其动态参数乃至于模型的结构仍然经常发生变化。
在发生这些问题时,常规控制器不可能得到很好的控制品质。
为此,需要设计一种特殊的控制系统,它能够自动地补偿在模型阶次、参数和输入信号方面非预知的变化,这就是自适应控制。
自适应控制简介自适应控制的研究对象是具有一定程度不确定性的系统,这里所谓的“不确定性”是指描述被控对象及其环境的数学模型不是完全确定的,其中包含一些未知因素和随机因素。
任何一个实际系统都具有不同程度的不确定性,这些不确定性有时表现在系统内部,有时表现在系统的外部。
从系统内部来讲,描述被控对象的数学模型的结构和参数,设计者事先并不一定能准确知道。
作为外部环境对系统的影响,可以等效地用许多扰动来表示。
这些扰动通常是不可预测的。
此外,还有一些测量时产生的不确定因素进入系统。
面对这些客观存在的各式各样的不确定性,如何设计适当的控制作用,使得某一指定的性能指标达到并保持最优或者近似最优,这就是自适应控制所要研究解决的问题。