现代控制理论模型参考自适应控制
- 格式:pptx
- 大小:1.53 MB
- 文档页数:99
自适应控制什么是自适应控制自适应控制是一种控制系统设计方法,它通过实时监测和调整系统的参数来适应不确定的外部环境和内部系统变化。
自适应控制可以提高控制系统的性能和鲁棒性,使其能够快速、准确地响应不断变化的环境或系统参数。
在传统的控制系统中,通常假设系统的数学模型是已知和固定的。
然而,在实际应用中,系统的动态特性常常受到各种因素的影响,如外部扰动、参数变化、非线性效应等。
这些因素使得传统的控制方法往往无法满足系统的控制要求。
而自适应控制则能够通过不断地观测和在线调整系统参数,使系统能够适应这些变化,并实现良好的控制效果。
自适应控制的基本原理自适应控制的基本原理是根据系统的实时反馈信息来调整控制器的参数。
具体来说,自适应控制系统通常由以下几个部分组成:1.参考模型:参考模型是指描述所期望控制系统输出的理想模型,通常由一组差分方程来表示。
参考模型的作用是指导控制系统的输出,使其能够尽可能接近参考模型的输出。
2.系统模型:系统模型是指描述被控对象的数学模型,包括其输入、输出和动态特性。
系统模型是自适应控制的重要基础,它确定了控制系统需要调整的参数和控制策略。
3.控制器:控制器是自适应控制系统的核心部分,它根据系统输出和参考模型的误差来实时调整控制器的参数。
控制器可以通过不同的算法来实现,如模型参考自适应控制算法、最小二乘自适应控制算法等。
4.参数估计器:参数估计器是自适应控制系统的关键组件,它用于估计系统模型中的未知参数。
参数估计器可以通过不断地观测系统的输入和输出数据来更新参数估计值,从而实现对系统参数的实时估计和调整。
5.反馈环路:反馈环路是指通过测量系统输出并将其与参考模型的输出进行比较,从而产生误差信号并输入到控制器中进行处理。
反馈环路可以帮助控制系统实时调整控制器的参数,使系统能够适应外部环境和内部变化。
自适应控制的应用领域自适应控制在各个领域都有广泛的应用,特别是在复杂和变化的系统中,其优势更为突出。
模型参考自适应控制与模型控制比较模型参考自适应控制(Model Reference Adaptive Control, MRAC)和模型控制(Model-based Control)都是现代控制理论中常用的方法。
它们在实际工程应用中具有重要意义,本文将对这两种控制方法进行比较和分析。
一、模型参考自适应控制模型参考自适应控制是一种基于模型的自适应控制方法,主要用于模型未知或参数变化的系统。
该方法基于一个参考模型,通过在线更新控制器参数以追踪参考模型的输出,从而实现对系统的控制。
在模型参考自适应控制中,首先需要建立系统的数学模型,并根据实际系统的特性选择合适的参考模型。
然后通过设计自适应控制器,利用模型参数估计器对系统的不确定性进行补偿,实现对系统输出的精确追踪。
模型参考自适应控制的优点在于其适应性强,能够处理模型未知或参数变化的系统。
它具有很好的鲁棒性,能够适应系统的不确定性,同时可以实现对参考模型的精确追踪。
然而,模型参考自适应控制也存在一些缺点,如对系统模型的要求较高,需要较为准确的模型参数估计。
二、模型控制模型控制是一种基于数学模型的控制方法,通过对系统的建模和分析,设计出合适的控制器来实现对系统的控制。
模型控制方法主要有PID控制、状态反馈控制、最优控制等。
在模型控制中,首先需要建立系统的数学模型,并对模型进行分析和优化。
然后根据系统的特性,设计合适的控制器参数。
最后,将控制器与系统进行耦合,实现对系统的控制。
模型控制的优点在于其理论基础牢固,控制效果较好。
它能够根据系统的数学模型进行精确的设计和分析,具有较高的控制精度和鲁棒性。
然而,模型控制方法在实际应用中对系统模型的要求较高,而且对系统参数变化不敏感。
三、比较与分析模型参考自适应控制与模型控制都是基于模型的控制方法,它们在实际应用中具有各自的优缺点。
相比而言,模型参考自适应控制具有更强的适应性和鲁棒性,能够处理模型未知或参数变化的系统。
10.自适应控制严格地说,实际过程中的控制对象自身及能所处的环境都是十分复杂的,其参数会由于种种外部与内部的原因而发生变化。
如,化学反应过程中的参数随环境温度和湿度的变化而变化(外部原因),化学反应速度随催化剂活性的衰减而变慢(内部原因),等等。
如果实际控制对象客观存在着较强的不确定,那么,前面所述的一些基于确定性模型参数来设计控制系统的方法是不适用的。
所谓自适应控制是对于系统无法预知的变化,能自动地不断使系统保持所希望的状态。
因此,一个自适应控制系统,应能在其运行过程中,通过不断地测取系统的输入、状态、输出或性能参数,逐渐地了解和掌握对象,然后根据所获得的过程信息,按一定的设计方法,作出控制决策去修正控制器的结构,参数或控制作用,以便在某种意义下,使控制效果达到最优或近似更优。
目前比较成熟的自适应控制可分为两大类:模型参考自适应控制(Model Reference Adaptive Control)和自校正控制(Self-Turning)。
10.1模型参考自适应控制10.1.1模型参考自适应控制原理模型参考自适应控制系统的基本结构与图10.1所示:10.1模型参考自适应控制系统它由两个环路组成,由控制器和受控对象组成内环,这一部分称之为可调系统,由参考模型和自适应机构组成外环。
实际上,该系统是在常规的反馈控制回路上再附加一个参考模型和控制器参数的自动调节回路而形成。
在该系统中,参考模型的输出或状态相当于给定一个动态性能指标,(通常,参考模型是一个响应比较好的模型),目标信号同时加在可调系统与参考模型上,通过比较受控对象与参考模型的输出或状态来得到两者之间的误差信息,按照一定的规律(自适应律)来修正控制器的参数(参数自适应)或产生一个辅助输入信号(信号综合自适应),从而使受控制对象的输出尽可能地跟随参考模型的输出。
在这个系统,当受控制对象由于外界或自身的原因系统的特性发生变化时,将导致受控对象输出与参考模型输出间误差的增大。
现代控制理论在电力系统自动化中的应用摘要:本文综述了近年来模糊逻辑控制、神经网络控制、线性最优控制、自适应控制在电力系统稳定,自动发电控制,静止无功补偿及串联补偿控制,燃气轮机控制等方面应用研究的主要成果与方法,并提出若干需要解决的问题。
关键词:电力系统模糊控制神经网络最优控制自适应控制1 前言电力系统能否安全稳定运行关系到国计民生,因此电力系统稳定性控制技术的选择变得尤为重要。
电力系统是一个越来越大,越来越复杂的动态网络,它具有很强的非线性、时变性且参数不确切可知,并含有大量未建模动态部分。
电力系统地域分布广泛,大部分原件具有延迟、磁滞、饱和等等复杂的物理特性,对这样的系统实现有效的控制是极为困难的,国内外因电压不稳导致的停电事故时有发生。
这些都使电力系统的稳定性控制问题变得越来越复杂,也正是因为问题的复杂性而使得现代控制理论得以在这一领域充分发挥其巨大的优势。
随着越来越先进的电力电子器件的出现和计算机技术的发展,先进的现代控制方法在电力系统领域的应用变的越来越广泛。
本文主要介绍了模糊逻辑控制、神经网络控制、最优控制和自适应控制在电力系统中的应用,并提出相关问题的相应解决方法。
2 电力系统的模糊逻辑控制电力系统的模糊逻辑控制就是利用模糊经验知识来解决电力系统中的一类模型问题,弥补了数值方法的不足。
从Zaden L.A.1965年发表了Fuzzy Sets[1]一文以来,模糊控制理论作为一门崭新的学科发展非常迅速,应用非常广泛。
目前国内外对电力系统模糊控制的研究成果越来越多,这显示了模糊理论在解决电力系统问题上的潜力。
模糊逻辑控制是从行为上模拟人的模糊推理和决策过程的一种实用的控制方法,它适于解决因过程本身不确定性、不精确性以及噪声而带来的困难。
模糊控制常用来描述专家系统,专家系统作为一种人工智能方法,其在电力系统中得到应用,弥补了数值方法的诸多不足。
专家系统利用专家知识进行推理,由于系统参数的不确定性,专家知识经常采用模糊描述。
现代控制理论及其应用现代控制理论是指在现代科技发展的基础上,对控制系统的研究和应用的理论体系。
它广泛应用于工业生产、交通运输、航空航天、电力系统等各个领域,对提高自动化水平、优化控制过程,具有重要的意义和作用。
一、现代控制理论简介现代控制理论是以系统理论为基础的一种研究控制系统动态行为和优化控制问题的理论。
它以数学模型为基础,通过建立系统的数学描述,运用数学方法研究系统的特性,从而达到对系统行为进行预测和优化控制的目的。
现代控制理论主要包括控制系统的数学模型建立、系统的稳定性分析、系统的传递函数表示、系统响应特性研究等内容。
通过对系统的分析和综合,可以设计出各种不同类型的控制器,如比例控制器、积分控制器、微分控制器等,实现对系统的自动控制。
二、现代控制理论的应用1. 工业生产领域在工业生产中,现代控制理论被广泛应用于自动化生产线的控制和优化。
通过对生产过程进行实时监测和控制,可以提高工业生产的效率和质量,减少人力资源的浪费。
2. 交通运输领域现代交通运输系统中的交通灯控制、交通流量管理等问题,也是现代控制理论的应用范畴。
通过建立交通系统的数学模型,运用控制理论中的方法和算法,可以实现交通拥堵的缓解和交通流量的优化。
3. 航空航天领域现代控制理论在航空航天领域的应用十分重要。
在飞行器的自动驾驶系统中,通过设计合适的控制器,可以实现对飞行器的航向、高度、速度等参数的稳定控制,提升飞行安全性。
4. 电力系统领域电力系统的稳定运行对于社会经济的发展至关重要。
现代控制理论在电力系统的发电、输配电以及电力负荷调度等方面都有广泛应用。
通过合理控制和管理,可以确保电力系统的稳定供应和电能的高效利用。
三、现代控制理论的发展趋势随着科技的进步和应用领域的不断拓展,现代控制理论也在不断发展和创新。
以下是现代控制理论发展的几个趋势:1. 多元化控制方法:传统的PID控制器已经无法满足复杂系统的控制需求,因此需要开发出更多新颖有效的控制方法,如模糊控制、神经网络控制等。
现代控制理论的发展概况传统的控制理论是在20世纪30到40年代,奈奎斯特、伯德、维纳等人的著作为自动控制理论的初步形成而奠定了基础的。
而由于航空航天技术的推动和计算机技术飞速发展,控制理论在1960年前后有了重大的突破和创新。
在此期间,由卡尔曼提出的线性控制系统的状态空间法、能控性和能观测性的概念,奠定了现代控制理论的基础,其提出的卡尔曼滤波,在随机控制系统的分析与控制中得到广泛应用;庞特里亚金等人提出了极大值原理,深入研究了最优控制问题;由贝而曼提出最优控制的动态规划法,广泛用于各类最优控制问题。
这些就构成了后来被称为现代控制理论的发展起点和基础。
罗森布洛克、麦克法轮和欧文斯研究了使用于计算机辅助控制系统设计的现代频域法理论,将经典控制理论传递函数的概念推广到多变量系统,并探讨了传递函数矩阵与状态方程之间的等价转换关系,为进一步建立统一的线性系统理论奠定了基础。
20世纪70年代奥斯特隆姆和朗道在自适应控制理论和应用方面作出了贡献。
与此同时,关于系统辨识、最优控制、离散时间系统和自适应控制的发展大大丰富了现代控制理论的内容。
鲁棒控制理论阶段:由于现代数学的发展,结合着H2和H¥等范数而出现了H2和H ¥控制,还有逆系统控制等方法。
20世纪70年代末,控制理论向着“大系统理论”、“智能控制理论”和“复杂系统理论”的方向发展。
“大系统理论”:用控制和信息的观点,研究各种大系统的结构方案、总体设计中的分解方法和协调等问题的技术基础理论。
“智能控制理论”:研究与模拟人类智能活动及其控制与信息传递过程的规律,研制具有某些拟人智能的工程控制与信息处理系统的理论。
“复杂系统理论”:把系统的研究拓广到开放复杂巨系统的范筹,以解决复杂系统的控制为目标。
而“现代控制理论”这一名称是1960年卡尔曼的著名文章发表后出现的,其在经典控制理论的基础上,以线性代数和微分方程为主要的数学工具,以状态空间法为基础,分析与设计控制系统。
自适应控制Adaptive control1.关于控制2.关于自适应控制3.模型参考自适应控制4.自校正控制5.自适应替代方案6.预测控制参考文献主要章节内容说明:第一部分:第一章自适应律的设计§1.参数最优化方法§2.基于Lyapunov稳定性理论的方法§3.超稳定性理论在自适应控制中的应用第二章误差模型§1.Narendra误差模型§2.增广矩阵§3.线性误差模型第三章MRAC的设计和实现第四章小结第二部分:第一章模型辨识及控制器设计§1.系统模型:CARMA模型§2.参数估计:LS法§3.控制器的设计方法:利用传递函数模型§4.自校正第二章最小方差自校正控制§1.最小方差自校正调节器§2.广义最小方差自校正控制第三章极点配置自校正控制§1.间接自校正§2.直接自校正1.About control engineering education1)control curriculum basic concept(1)dynamic system●The processes and plants that are controlled have responses that evolvein time with memory of past responses●The most common mathematical tool used to describe dynamic system isthe ordinary differential equation (ODE).●First approximate the equation as linear and time-invariant. Thenextensions can be made from this foundation that are nonlinear 、time-varying、sampled-data、distributed parameter and so on.●Method of building model (or equation )a)Idea of writing equations of motion based on the physics andchemistry of the situation.b)That of system identification based on experimental data.●Part of understanding the dynamical system requires understanding theperformance limitations and expectation of the system.2.stabilityWith stability, the system can at least be used●Classical control design method, are based on a stability test.Root locus 根轨迹Bode‟s frequency response 波特图Nyquist stability criterion 奈奎斯特判据●Optimal control, especially linear-quadratic Gaussian (LQG) control (线性二次型高斯问题) was always haunted by the fact that method did notinclude a guarantee of margin of stability.The theory and techniques of robust (鲁棒)design have been developedas alternative to LQG●In the realm of nonlinear control, including adaptive control, it iscommon practice to base the design on Lyapunov function in order to beable to guarantee stability of final result.3.feedbackMany open-loop devices such as programmable logic controllers (PLC) are in use, their design and use are not part of control engineering.●The introduction of feedback brings costs as well as benefits. Among thecosts are need for both actuators and sensors, especially sensors.●Actuator defines the control authority and set the limits of speed indynamic response.●Sensor via their inevitable noise, limit the ultimate(最终) accuracy ofcontrol within these limits, feedback affords the benefit of improveddynamic response and stability margins, improved disturbancerejection(拒绝) ,and improved robustness to parameter variability.●The trade off between costs and benefits of feedback is at the center ofcontrol design.4.Dynamic compensation●In beginning there was PID compensation, today remaining a widely usedelement of control, especially in the process control.●Other compensation approaches : lead-and-log networks (超前-滞后)observer-based compensators include : pole placement, LQG designs.●Of increasing interest are designs capable of including trade-off amongstability, dynamic response and parameter robustness.Include: Q parameterization, adaptive schemes.Such as self-tuning regulators, neural-network-based-controllers.二、historical perspectives (透视)●Most of early control manifestations appear as simple on-off (bang-bang)controllers with empirical (实验;经验性的) setting much dependent uponexperience.●The following advances such as Routhis and Hurwitz stability analysis(1877).Lyapunov‟s state model and nonlinear stability criteria(判据) (1890) .Sperry‟s early work on gyroscope and autopilots (1910), and Sikorsky‟swork on ship steering (1923)Take differential equation, Heaviside operators and Laplace transform astheir tools.●电机工程(electrical engineering)The largely changed in the late 1920s and 1930s with Black‟s developmentof the feedback electronic amplifier, Bush‟s differential analyzer, Nyquist‟sstability criterion and Bode‟s frequency response methods.The electrical engineering problems faced usually had vary complex albeitmostly linear model and had arbitrary (独立的;随机的) and wide-ringingdynamics.●过程控制(process control in chemical engineering)Most of the progress controlled were complex and highly nonlinear, butusually had relatively docile (易于处理的) dynamics.One major outcome of this type of work was Ziegler-Nichols‟PIDthres-term controller. This control approach is still in use today, worldwidewith relatively minor modifications and upgrades (including sampled dataPID controllers with feed forward control, anti-integrator-windupcontrollers :抗积分饱和,and fuzzy logic implementations).●机械工程(mechanical engineering)The application of controls in mechanical engineering dealt mostly in thebeginning with mechanism controls, such as servomechanisms, governorsand robots.Some typical control application areas now include manufacturing processcontrols, vehicle dynamic and safety control, biomedical devices and geneticprocess research.Some early methodological outcomes were the olden burger-Kahenbugerdescribing function method of equivalent linearization, and minimum-time,bang-bang control.●航空工程(aeronautical engineering )The problems were generally a hybrid (混合) of well-modeled mechanicsplus marginally understood fluid dynamics. The models were often weaklynonlinear, and the dynamics were sometimes unstable.Major contributions to framework of controls as discipline were Evan‟s rootlocus (1948) and gain-scheduling.●Additional major contributions to growth of the discipline of control over thelast 30-40 years have tended to be independent of traditional disciplines.Examples include:Pontryagin‟s maximum principle (1956) 庞特里金Bellman‟s dynamic programming (1957)贝尔曼Kalman‟s optimal estimation (1960)And the recent advances in robust control.三、Abstract thoughts on curriculum●The possibilities for topic to teach are sufficiently great. If one tries topresent proofs of all theoretical results. One is in danger of giving thestudents many mathematical details with little physical intuition orappreciation for the purposes for which the system is designed.●Control is based on two distinct streams of thought. One stream is physicaland discipline-based. Because one must always be controlling some thing.The other stream is mathematics-based, because the basis concepts ofstability and feedback are fundamentally abstract concepts best expressedmathematically. This duality(两重性) has raised, over the years, regularcomplaints about the …gap‟ between theory and practice.●The control curriculum typically begins with one or two courses designed topresent an overview of control based on linear, constant, ODE models,s-plane and Nyquist‟s stability ideas, SISO feedback and PID, lead-lay andpole-placement compensation.These introductory courses can then be followed by courses in linear systemtheory, digital of control, optimal control, advanced theory of feedback, andsystem identification.四、Main control courses●Introduction to controlLumped system theoryNonlinear controlOptimal controlAdaptive controlRobot controlDigital controlModeling and simulationAdvanced theoryStochastic processesLarge scale multivariable systemManufacturing systemFuzzy logic Neural Networks外文期刊:《Automatic》IFAC 国际自动控制联合会Computer and control abstractsIEEE translations on Automatic controlAutomation●Specialized \ experimental courses✓Intelligent controlApplication of Artificial IntelligenceSimulation and optimization of lager scale systems robust control ✓System identification✓Microcomputer-based control systemDiscrete-event systemsParallel and Distributed computationNumerical optimization methodsNumerical system theory●Top key works from 1963-1995 in IIACAdaptive control 305Optimal control 277Identification 255Parameter estimation 244Stability 217Linear system 184Non-linear systems 168Robust control 158Discrete-time systems 143Multivariable systems 140Robustness 140Multivariable systems control systems 110Optimization 110Computer control 104Large-scale systems 103Kalman filter 102Modeling 107为什么自适应 《Astrom 》chapter 1✓ 反馈可以消除扰动。
《现代控制理论》课程教案第一章:绪论1.1 课程简介介绍《现代控制理论》的课程背景、意义和目的。
解释控制理论在工程、科学和工业领域中的应用。
1.2 控制系统的基本概念定义控制系统的基本术语,如系统、输入、输出、反馈等。
解释开环系统和闭环系统的区别。
1.3 控制理论的发展历程概述控制理论的发展历程,包括经典控制理论和现代控制理论。
介绍一些重要的控制理论家和他们的贡献。
第二章:数学基础2.1 线性代数基础复习向量、矩阵和行列式的基本运算。
介绍矩阵的特殊类型,如单位矩阵、对角矩阵和反对称矩阵。
2.2 微积分基础复习微积分的基本概念,如极限、导数和积分。
介绍微分方程和微分方程的解法。
2.3 复数基础介绍复数的基本概念,如复数代数表示、几何表示和复数运算。
解释复数的极坐标表示和欧拉公式。
第三章:控制系统的基本性质3.1 系统的稳定性定义系统的稳定性,并介绍判断稳定性的方法。
解释李雅普诺夫理论在判断系统稳定性中的应用。
3.2 系统的可控性定义系统的可控性,并介绍判断可控性的方法。
解释可达集和可观集的概念。
3.3 系统的可观性定义系统的可观性,并介绍判断可观性的方法。
解释观测器和状态估计的概念。
第四章:线性系统的控制设计4.1 状态反馈控制介绍状态反馈控制的基本概念和设计方法。
解释状态观测器和状态估计在控制中的应用。
4.2 输出反馈控制介绍输出反馈控制的基本概念和设计方法。
解释输出反馈控制对系统稳定性和性能的影响。
4.3 比例积分微分控制介绍比例积分微分控制的基本概念和设计方法。
解释PID控制在工业控制系统中的应用。
第五章:非线性控制理论简介5.1 非线性系统的特点解释非线性系统的定义和特点。
介绍非线性系统的常见类型和特点。
5.2 非线性控制理论的方法介绍非线性控制理论的基本方法,如反馈线性化和滑模控制。
解释非线性控制理论在实际应用中的挑战和限制。
5.3 案例研究:倒立摆控制介绍倒立摆控制系统的特点和挑战。
解释如何应用非线性控制理论设计倒立摆控制策略。