高中数学第二单元圆锥曲线与方程2.3.1抛物线及其标准方程教学案新人教B版选修1_1
- 格式:doc
- 大小:213.50 KB
- 文档页数:9
2.3.1 抛物线及其标准方程学习目标 1.掌握抛物线的定义及焦点、准线的概念.2.掌握抛物线的标准方程及其推导过程.3.明确抛物线标准方程中p的几何意义,能解决简单的求抛物线标准方程问题.知识点一抛物线的定义思考1 如图,在黑板上画一条直线EF,然后取一个三角板,将一条拉链AB固定在三角板的一条直角边上,并将拉链下边一半的一端固定在C点,将三角板的另一条直角边贴在直线EF 上,在拉链D处放置一支粉笔,上下拖动三角板,粉笔会画出一条曲线.这是一条什么曲线,由画图过程你能给出此曲线的定义吗?思考2 抛物线的定义中,l能经过点F吗?为什么?梳理从定义可以看出,抛物线不是双曲线的一支,双曲线有渐近线,而抛物线没有.对抛物线定义的理解应注意定点不在定直线上,否则,动点的轨迹是一条________.知识点二抛物线的标准方程思考1 抛物线方程中p有何意义?抛物线的开口方向由什么决定?思考2 抛物线标准方程的特点?思考3 已知抛物线的标准方程,怎样确定抛物线的焦点位置和开口方向?梳理 抛物线的标准方程有四种类型图形标准方程 y 2=2px (p >0) y 2=-2px (p >0)x 2=2py (p >0)x 2=-2py (p >0)焦点坐标 ⎝ ⎛⎭⎪⎫p 2,0 ⎝ ⎛⎭⎪⎫-p 2,0 ⎝ ⎛⎭⎪⎫0,p 2 ⎝ ⎛⎭⎪⎫0,-p 2 准线方程x =-p 2x =p 2y =-p 2y =p 2类型一 抛物线标准方程及求解命题角度1 由抛物线方程求焦点坐标或准线方程 例1 已知抛物线的方程如下,求其焦点坐标和准线方程. (1)y 2=-6x ;(2)3x 2+5y =0; (3)y =4x 2;(4)y 2=a 2x (a ≠0).反思与感悟 如果已知抛物线的标准方程,求它的焦点坐标、准线方程时,首先要判断抛物线的对称轴和开口方向.一次项的变量若为x (或y ),则x 轴(或y 轴)是抛物线的对称轴,一次项系数的符号决定开口方向.跟踪训练1 (1)抛物线y 2=4x 的焦点到双曲线x 2-y 23=1的渐近线的距离是( )A.12B.32C .1D. 3(2)若抛物线y 2=2px 的焦点坐标为(1,0),则p =_____________________________________, 准线方程为____________.命题角度2 求解抛物线标准方程例2 分别求满足下列条件的抛物线的标准方程: (1)焦点为(-2,0); (2)准线为y =-1; (3)过点A (2,3); (4)焦点到准线的距离为52.反思与感悟 求抛物线方程,通常用待定系数法,若能确定抛物线的焦点位置,则可设出抛物线的标准方程,求出p 值即可.若抛物线的焦点位置不确定,则要分情况讨论.焦点在x 轴上的抛物线方程可设为y 2=ax (a ≠0),焦点在y 轴上的抛物线方程可设为x 2=ay (a ≠0). 跟踪训练2 分别求满足下列条件的抛物线的标准方程. (1) 过点(3,-4);(2) 焦点在直线x +3y +15=0上.类型二 抛物线定义的应用例3 已知点A (3,2),点M 到F ⎝ ⎛⎭⎪⎫12,0的距离比它到y 轴的距离大12. (1)求点M 的轨迹方程;(2)是否存在M ,使|MA |+|MF |取得最小值?若存在,求此时点M 的坐标;若不存在,请说明理由.反思与感悟 (1)抛物线定义具有判定和性质的双重作用.本题利用抛物线的定义求出点的轨迹方程,又利用抛物线的定义,“化曲折为平直”,将两点间的距离的和转化为点到直线的距离求得最小值,这是平面几何性质的典型运用.(2)通过利用抛物线的定义,将抛物线上的点到焦点的距离和到准线的距离进行转化,从而简化问题的求解过程.在解决抛物线问题时,一定要善于利用其定义解题.跟踪训练3 已知点P 是抛物线y 2=2x 上的一个动点,则点P 到点(0,2)的距离与点P 到该抛物线准线的距离之和的最小值是( ) A.172 B .3 C. 5 D.921.抛物线y =14x 2的准线方程是( )A .y =-1B .y =-2C .x =-1D .x =-22.已知抛物线的顶点在原点,对称轴为x 轴,焦点在双曲线x 24-y 22=1上,则抛物线方程为( ) A .y 2=8x B .y 2=4x C .y 2=2xD .y 2=±8x3.已知抛物线C :y 2=x 的焦点为F ,A (x 0,y 0)是C 上一点,|AF |=54x 0,则x 0等于( )A .4B .2C .1D .84.已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1和直线l 2的距离之和的最小值是( ) A .2 B .3 C.115 D.37165.若抛物线y 2=-2px (p >0)上有一点M ,其横坐标为-9,它到焦点的距离为10,求抛物线方程和M 点的坐标.1.焦点在x 轴上的抛物线,其标准方程可以统设为y 2=mx (m ≠0),此时焦点为F (m4,0),准线方程为x =-m4;焦点在y 轴上的抛物线,其标准方程可以统设为x 2=my (m ≠0),此时焦点为F (0,m 4),准线方程为y =-m4.2.设M 是抛物线上一点,焦点为F ,则线段MF 叫做抛物线的焦半径.若M (x 0,y 0)在抛物线y 2=2px (p >0)上,则根据抛物线的定义,抛物线上的点到焦点的距离和到准线的距离可以相互转化,所以焦半径|MF |=x 0+p2.3.对于抛物线上的点,利用定义可以把其到焦点的距离转化为到准线的距离,也可以把其到准线的距离转化为到焦点的距离,因此可以解决有关距离的最值问题.答案精析问题导学 知识点一思考1 平面内到一个定点F 和一条定直线l (F ∉l )的距离相等的点的轨迹叫做抛物线,定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线.思考2 不能,若l 经过点F ,满足条件的点的轨迹不是抛物线,而是过点F 且垂直于l 的一条直线. 梳理 直线 知识点二思考1 p 是抛物线的焦点到准线的距离,抛物线的方程中一次项决定开口方向. 思考2 (1)原点在抛物线上;(2)对称轴为坐标轴;(3)p 为大于0的常数,其几何意义表示焦点到准线的距离;(4)准线与对称轴垂直,垂足与焦点关于原点对称;(5)焦点、准线到原点的距离都等于p2.思考3 一次项变量为x (或y ),则焦点在x 轴(或y 轴)上;若系数为正,则焦点在正半轴上;系数为负,则焦点在负半轴上.焦点确定,开口方向也随之确定. 题型探究例1 解 (1)由方程y 2=-6x ,知抛物线开口向左,2p =6,p =3,p 2=32,所以焦点坐标为(-32,0),准线方程为x =32.(2)将3x 2+5y =0变形为x 2=-53y ,知抛物线开口向下, 2p =53,p =56,p 2=512,所以焦点坐标为(0,-512),准线方程为y =512.(3)将y =4x 2化为x 2=14y ,知抛物线开口向上, 2p =14,p =18,p 2=116,所以焦点坐标为(0,116),准线方程为y =-116.(4)由方程y 2=a 2x (a ≠0)知抛物线开口向右, 2p =a 2,p =a 22,p 2=a 24,所以焦点坐标为(a 24,0),准线方程为x =-a 24.跟踪训练1 (1)B (2)2 x =-1例2 解 (1)由于焦点在x 轴的负半轴上,且p2=2,∴p =4,∴抛物线标准方程为y 2=-8x . (2)∵焦点在y 轴正半轴上,且p2=1,∴p =2,∴抛物线标准方程为x 2=4y .(3)由题意,抛物线方程可设为y 2=mx (m ≠0)或x 2=ny (n ≠0), 将点A (2,3)的坐标代入,得32=m ·2,22=n ·3, ∴m =92,n =43.∴所求抛物线方程为y 2=92x 或x 2=43y .(4)由焦点到准线的距离为52,可知p =52.∴所求抛物线方程为y 2=5x 或y 2=-5x 或x 2=5y 或x 2=-5y .跟踪训练2 解 (1)方法一 ∵点(3,-4)在第四象限,∴设抛物线的标准方程为y 2=2px (p >0)或x 2=-2p 1y (p 1>0).把点(3,-4)的坐标分别代入y 2=2px 和x 2=-2p 1y ,得(-4)2=2p ·3,32=-2p 1·(-4), 即2p =163,2p 1=94.∴所求抛物线的标准方程为y 2=163x 或x 2=-94y .方法二 设抛物线的方程为y 2=ax (a ≠0)或x 2=by (b ≠0). 把点(3,-4)分别代入,可得a =163,b =-94.∴所求抛物线的标准方程为y 2=163x 或x 2=-94y .(2)令x =0得y =-5; 令y =0得x =-15.∴抛物线的焦点为(0,-5)或(-15,0).∴所求抛物线的标准方程为x 2=-20y 或y 2=-60x .例3 解 (1)由于动点M 到F ⎝ ⎛⎭⎪⎫12,0的距离比它到y 轴的距离大12,所以动点M 到F ⎝ ⎛⎭⎪⎫12,0的距离与它到直线l :x =-12的距离相等,由抛物线的定义知动点M 的轨迹是以F 为焦点,l为准线的抛物线,其方程应为y 2=2px (p >0)的形式,而p 2=12,∴p =1,2p =2,故轨迹方程为y 2=2x .(2)如图,由于点M 在抛物线上,所以|MF |等于点M 到其准线l 的距离|MN |,于是|MA |+|MF |=|MA |+|MN |,所以当A 、M 、N 三点共线时,|MA |+|MN |取最小值,亦即|MA |+|MF |取最小值,这时M 的纵坐标为2,可设M (x 0,2),代入抛物线方程得x 0=2, 即M (2,2).跟踪训练3 A [如图,由抛物线的定义知,点P 到准线x =-12的距离等于点P 到焦点F 的距离.因此点P 到点(0,2)的距离与点P 到准线的距离之和可转化为点P 到点(0,2)的距离与点P 到点F 的距离之和,其最小值为点M (0,2)到点F ⎝ ⎛⎭⎪⎫12,0的距离,则距离之和的最小值为 4+14=172.]当堂训练 1.A 2.D3.C [如图,F (14,0),过A 作AA ′⊥准线l , ∴|AF |=|AA ′|, ∴54x 0=x 0+p 2=x 0+14, ∴x 0=1.]4.A [如图所示,动点P 到l 2:x =-1的距离可转化为到点F 的距离,由图可知,距离和的最小值,即F 到直线l 1的距离d =|4+6|42+-32=2.]5.解 由抛物线定义,设焦点为F ⎝ ⎛⎭⎪⎫-p2,0.则该抛物线准线方程为x =p2,由题意设点M 到准线的距离为|MN |,则|MN |=|MF |=10, 即p2-(-9)=10,∴p =2. 故抛物线方程为y 2=-4x .将M (-9,y 0)代入抛物线方程,得y 0=±6. ∴M 点的坐标为(-9,6)或(-9,-6).。
2.3 抛物线第1课时 抛物线及其标准方程[核心必知]1.预习教材,问题导入根据以下提纲,预习教材P 56~P 59的内容,回答下列问题.(1)观察教材P 56-图2.3-1,点F 是定点,l 是不经过点F 的定直线,H 是l 上任意一点,过点H 作MH ⊥l ,线段FH 的垂直平分线m 交MH 于点M ,拖动点H ,观察点M 的轨迹.①M 的轨迹是什么形状?提示:抛物线.②|MH |与|MF |之间有什么关系?提示:相等.③抛物线上任意一点M 到点F 和直线l 的距离都相等吗?提示:都相等.(2)观察教材P 57-图2.3-2,直线l 的方程为x =-p 2,定点F 的坐标为⎝ ⎛⎭⎪⎫p 2,0,设M (x ,y ),根据抛物线的定义可知|MF |=|MH |,则M 点的轨迹方程是什么?提示:y 2=2px (p >0).2.归纳总结,核心必记(1)抛物线的定义平面内与一个定点F 和一条定直线l (l 不经过点F )距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线.(2)抛物线的标准方程图形 标准方程 焦点坐标 准线方程y 2=2px (p >0) ⎝ ⎛⎭⎪⎫p2,0 x =-p2y 2=-2px (p >0) ⎝ ⎛⎭⎪⎫-p 2,0 x =p2续表图形 标准方程 焦点坐标 准线方程x 2=2py (p >0) ⎝ ⎛⎭⎪⎫0,p2y =-p2x 2=-2py (p >0) ⎝⎛⎭⎪⎫0,-p2 y =p2(1)在抛物线定义中,若去掉条件“l 不经过点F ”,点的轨迹还是抛物线吗?提示:不一定是抛物线,当直线l 经过点F 时,点的轨迹是过点F 且垂直于定直线的一条直线,l 不过定点F 时,点的轨迹是抛物线.(2)到定点A (3,0)和定直线l :x =-3距离相等的点的轨迹是什么?轨迹方程又是什么?提示:轨迹是抛物线,轨迹方程为:y 2=12x .(3)若抛物线的焦点坐标为(2,0),则它的标准方程是什么?提示:由焦点在x 轴正半轴上,设抛物线的标准方程为y 2=2px (p >0),其焦点坐标为⎝ ⎭⎪⎫p 2,0,则p 2=2,故p =4.所以抛物线的标准方程是y 2=8x .[课前反思] (1)抛物线的定义是:;(2)抛物线的焦点和准线的定义是:;(3)抛物线的标准方程是什么?其对应的抛物线的开口方向有什么特点?焦点坐标和准线方程又是什么?.[思考1] 抛物线的标准方程有哪几种类型?名师指津:y 2=2px (p >0);y 2=-2px (p >0);x 2=2py (p >0);x 2=-2py (p >0).[思考2] 抛物线方程中p 的几何意义是什么?名师指津:p 的几何意义是:焦点到准线的距离.[思考3] 如何根据抛物线标准方程求焦点坐标和准线方程?名师指津:先确定抛物线的对称轴和开口方向,然后求p ,利用焦点坐标及准线的定义求解. 讲一讲 1.求下列抛物线的焦点坐标和准线方程: (1)y 2=-14x ;(2)5x 2-2y =0; (3)y 2=ax (a >0). [尝试解答] (1)因为p =7,所以焦点坐标是⎝ ⎛⎭⎪⎫-72,0,准线方程是x =72. (2)抛物线方程化为标准形式为x 2=25y ,因为p =15,所以焦点坐标是⎝ ⎛⎭⎪⎫0,110,准线方程是y =-110. (3)由a >0知p =a 2,所以焦点坐标是⎝ ⎛⎭⎪⎫a 4,0,准线方程是x =-a 4. 根据抛物线方程求其焦点坐标和准线方程时,首先要看抛物线方程是否为标准形式,如果不是,要先化为标准形式;然后判断抛物线的对称轴和开口方向,再利用p 的几何意义,求出焦点坐标和准线方程.练一练1.求抛物线y =ax 2(a ≠0)的焦点坐标和准线方程.解:把抛物线方程y =ax 2化成标准方程x 2=1ay .当a >0时,焦点坐标是⎝⎛⎭⎪⎫0,14a ,准线方程是y =-14a ; 当a <0时,焦点坐标是⎝⎛⎭⎪⎫0,14a ,准线方程是y =-14a . 综上知,所求抛物线的焦点坐标为⎝ ⎛⎭⎪⎫0,14a ,准线方程为y =-14a. [思考1] 抛物线标准方程有什么特点?名师指津:等号一边是某个变量的完全平方,等号的另一边是另一个变量的一次项.[思考2] 如何求抛物线的标准方程?名师指津:(1)确定抛物线的对称轴和开口方向;(2)求p 的值. 讲一讲2.求适合下列条件的抛物线的标准方程:(1)过点M (-6,6);(2)焦点F 在直线l :3x -2y -6=0上.[尝试解答] (1)∵点M (-6,6)在第二象限,∴过M 的抛物线开口向左或开口向上.若抛物线开口向左,焦点在x 轴上,设其方程为y 2=-2px (p >0),将点M (-6,6)代入,可得36=-2p ×(-6),∴p =3.∴抛物线的方程为y 2=-6x .若抛物线开口向上,焦点在y轴上,设其方程为x2=2py(p>0),将点M(-6,6)代入可得,36=2p×6,∴p=3,∴抛物线的方程为x2=6y.综上所述,抛物线的标准方程为y2=-6x或x2=6y.(2)①∵直线l与x轴的交点为(2,0),∴抛物线的焦点是F(2,0),∴p2=2,∴p=4,∴抛物线的标准方程是y2=8x.②∵直线l与y轴的交点为(0,-3),即抛物线的焦点是F(0,-3),∴p2=3,∴p=6,∴抛物线的标准方程是x2=-12y.综上所述,所求抛物线的标准方程是y2=8x或x2=-12y.求抛物线标准方程的两种方法(1)当焦点位置确定时,可利用待定系数法,设出抛物线的标准方程,由已知条件建立关于参数p的方程,求出p的值,进而写出抛物线的标准方程.(2)当焦点位置不确定时,可设抛物线的方程为y2=mx或x2=ny,利用已知条件求出m,n的值.练一练2.根据下列条件写出抛物线的标准方程:(1)准线方程为y =-1;(2)焦点在x 轴的正半轴上,焦点到准线的距离是3.解:(1)由准线方程为y =-1知抛物线焦点在y 轴正半轴上,且p 2=1,则p =2.故抛物线的标准方程为x 2=4y . (2)设焦点在x 轴的正半轴上的抛物线的标准方程为y 2=2px (p >0),则焦点坐标为⎝ ⎛⎭⎪⎫p 2,0,准线为x =-p2, 则焦点到准线的距离是⎪⎪⎪⎪⎪⎪-p 2-p 2=p =3, 因此所求的抛物线的标准方程是y 2=6x .讲一讲3.已知抛物线y 2=2x 的焦点是F ,点P 是抛物线上的动点,又有点A (3,2),求|PA |+|PF |的最小值,并求出取最小值时的P 点坐标.[尝试解答] 如图,作PN ⊥l 于N (l 为准线),作AB ⊥l 于B , 则|PA |+|PF |=|PA |+|PN |≥|AB |,当且仅当P 为AB 与抛物线的交点时,取等号.∴()|PA |+|PF |min =|AB |=3+12=72. 此时y P =2,代入抛物线得x P =2,∴P 点坐标为(2,2).(1)抛物线的定义中指明了抛物线上的点到焦点的距离与到准线的距离相等,故二者可相互转化,这也是利用抛物线定义解题的实质.(2)解决与抛物线焦点、准线距离有关的最值、定值问题时,首先要注意应用抛物线的定义进行转化,其次是注意平面几何知识的应用,例如两点之间线段最短;三角形中三边间的不等关系;点与直线上点的连线中,垂线段最短等.练一练3.已知点P 是抛物线y 2=2x 上的一个动点,求点P 到点(0,2)的距离与P 到该抛物线准线的距离之和的最小值.解:由抛物线的定义可知,抛物线上的点到准线的距离等于到焦点的距离.由图可知, 当点P ,A (0,2),和抛物线的焦点F ⎝ ⎛⎭⎪⎫12,0三点共线时距离之和最小.所以最小距离d =⎝⎛⎭⎪⎫0-122+(2-0)2=172. 讲一讲 4.一辆卡车高3 m ,宽1.6 m ,欲通过截面为抛物线型的隧道,已知拱口宽AB 恰好是拱高的4倍,若拱口宽为a m ,求能使卡车通过的a 的最小整数值.[尝试解答] 以拱顶为原点,拱高所在直线为y 轴,建立直角坐标系,如图所示,设抛物线方程为x 2=-2py (p >0),则点B 的坐标为⎝ ⎛⎭⎪⎫a 2,-a 4, 由点B 在抛物线上,得⎝ ⎛⎭⎪⎫a 22=-2p ⎝ ⎛⎭⎪⎫-a 4, 所以p =a 2, 所以抛物线方程为x 2=-ay .将点(0.8,y )代入抛物线方程,得y =-0.64a. 欲使卡车通过隧道,应有a4-|y |=a 4-0.64a>3. 解得a >12.21,或a <-0.21(舍去).∵a 取整数,∴a 的最小值为13.在建立抛物线的方程时,以抛物线的顶点为坐标原点,对称轴为一条坐标轴建立坐标系,这样可使得方程不含常数项,形式更为简单,便于计算.练一练4.喷灌的喷头装在直立管柱OA 的顶点A 处,喷出水流的最高点B 高5 m ,且与OA 所在的直线相距4 m ,水流落在以O 为圆心,半径为9 m 的圆上,则管柱OA 的长是多少?解:如图所示,建立直角坐标系,设水流所形成的抛物线的方程为x 2=-2py (p >0),因为点C (5,-5)在抛物线上,所以25=-2p ·(-5),因此2p =5,所以抛物线的方程为x 2=-5y ,点A (-4,y 0)在抛物线上,所以16=-5y 0,即y 0=-165, 所以OA 的长为5-165=1.8(m). 所以管柱OA 的长为1.8 m.—————————————[课堂归纳·感悟提升]———————————————1.本节课的重点是抛物线标准方程的求法和焦点坐标、准线的求法.难点是抛物线定义的应用和抛物线方程的实际应用.2.本节课要重点掌握的规律方法(1)由抛物线方程求焦点坐标和准线方程,如讲1;(2)求抛物线的标准方程,如讲2;(3)利用抛物线的定义解决最值问题,如讲3.3.由抛物线方程求焦点坐标和准线方程时,如果不是标准方程应先转化为标准方程,这是本节课的易错点.课时达标训练(十一)[即时达标对点练]题组1 由抛物线方程求焦点坐标和准线方程1.对抛物线y =4x 2,下列描述正确的是( )A .开口向上,焦点为(0,1)B .开口向上,焦点为⎝⎛⎭⎪⎫0,116C .开口向右,焦点为(1,0)D .开口向右,焦点为⎝⎛⎭⎪⎫0,116解析:选B 由y =4x 2,得x 2=14y ,故抛物线开口向上,且焦点坐标为⎝⎛⎭⎪⎫0,116.2.抛物线y =-x 28的准线方程是( )A .x =132B .y =2C .x =14D .y =4解析:选B 由y =-x 28,得x 2=-8y ,故抛物线开口向下,其准线方程为y =2.3.抛物线y 2=ax (a ≠0)的焦点到其准线的距离是( ) A.|a |4 B.|a |2 C .|a | D .-a 2解析:选B ∵2p =|a |,∴p =|a |2.∴焦点到准线的距离是|a |2.题组2 求抛物线的标准方程4.焦点是F (0,5)的抛物线的标准方程是( ) A .y 2=20x B .x 2=20yC.y2=120x D.x2=120y解析:选B 由5=p2得p=10,且焦点在y轴正半轴上,故方程形式为x2=2py,所以x2=20y.5.顶点在原点,且过点(-4,4)的抛物线的标准方程是( ) A.y2=-4x B.x2=4yC.y2=-4x或x2=4y D.y2=4x或x2=-4y解析:选C 设抛物线方程为y2=-2p1x或x2=2p2y,把(-4,4)代入得16=8p1或16=8p2,即p1=2或p2=2.故抛物线的标准方程为y2=-4x或x2=4y.题组3 抛物线定义的应用6.设圆C与圆x2+(y-3)2=1外切,与直线y=0相切,则C 的圆心轨迹为( )A.抛物线 B.双曲线C.椭圆 D.圆解析:选A 由题意知,圆C的圆心到点(0,3)的距离比到直线y=0的距离大1,即圆C的圆心到点(0,3)的距离与到直线y =-1的距离相等,根据抛物线的定义可知,所求轨迹是一条抛物线.7.若抛物线y2=8x上一点P到其焦点F的距离为9,则点P 的坐标为( )A.(7,±14) B.(14,±14)C .(7,±214)D .(-7,±214)解析:选C 由y 2=8x ,得抛物线的准线方程为x =-2,因P 点到焦点的距离为9,故P 点的横坐标为7.由y 2=8×7,得y =±214,即P (7,±214).8.若点P 是抛物线y 2=2x 上的一个动点,求点P 到直线3x -4y +72=0的距离与P 到该抛物线的准线的距离之和的最小值.解:如图.|PA |+|PQ |=|PA |+|PF |≥|AF |min .AF 的最小值为F 到直线3x -4y +72=0的距离.d =⎪⎪⎪⎪⎪⎪3×12+7232+42=1.题组4 抛物线方程的实际应用9.某抛物线拱桥跨度是20米,拱桥高度是4米,在建桥时,每4米需用一根支柱支撑,求其中最长支柱的长.解:如图,建立直角坐标系,设抛物线方程为x 2=-2py (p >0). 依题意知,点P (10,-4)在抛物线上, 所以100=-2p ×(-4), 2p =25.即抛物线方程为x 2=-25y . 因为每4米需用一根支柱支撑,所以支柱横坐标分别为-6,-2,2,6.由图知,AB是最长的支柱之一,设点B的坐标为(2,y B),代入x2=-25y,得y B=-425.所以|AB|=4-425=3.84(米),即最长支柱的长为3.84米.10.如图所示,一隧道内设双行线公路,其截面由长方形的三条边和抛物线的一段构成,为保证安全,要求行驶车辆顶部(设为平顶)与隧道顶部在竖直方向上高度之差至少有0.5米.(1)以抛物线的顶点为原点O,其对称轴所在的直线为y轴,建立平面直角坐标系(如图),求该抛物线的方程;(2)若行车道总宽度AB为7米,请计算通过隧道的车辆限制高度为多少米(精确到0.1米)?解:如图所示,(1)依题意,设该抛物线的方程为x2=-2py(p>0),因为点C(5,-5)在抛物线上,所以该抛物线的方程为x2=-5y.(2)设车辆高h,则|DB|=h+0.5,故D(3.5,h-6.5),代入方程x2=-5y,解得h=4.05,所以车辆通过隧道的限制高度为4.0米.[能力提升综合练]1.已知抛物线y 2=2px (p >0)的准线与圆(x -3)2+y 2=16相切,则p 的值为( )A.12B .1C .2D .4解析:选C ∵抛物线y 2=2px 的准线x =-p2与圆(x -3)2+y2=16相切,∴-p2=-1,即p =2.2.抛物线y =12x 2上的点到焦点的距离的最小值为( ) A .3 B .6 C.148 D.124解析:选C 将方程化为标准形式是x 2=112y ,因为2p =112,所以p =124.故到焦点的距离最小值为148.3.动点到点(3,0)的距离比它到直线 x =-2的距离大1,则动点的轨迹是( )A .椭圆B .双曲线C .双曲线的一支D .抛物线解析:选D 已知条件可等价于“动点到点(3,0)的距离等于它到直线x =-3的距离”,由抛物线的定义可判断,动点的轨迹为抛物线,故选D.4.已知F 是抛物线y 2=x 的焦点,A ,B 是该抛物线上的两点,|AF |+|BF |=3,则线段AB 的中点到y 轴的距离为( )A.34B .1 C.54 D.74解析:选C ∵|AF |+|BF |=x A +x B +12=3,∴x A +x B =52.∴线段AB 的中点到y 轴的距离为x A +x B 2=54. 5.已知抛物线y 2=2px (p >0)上一点M (1,m )到其焦点的距离为5,双曲线x 2-y 2a=1的左顶点为A ,若双曲线的一条渐近线与直线AM 垂直,则实数a =________.解析:根据抛物线的定义得1+p2=5,解得p =8.不妨取M (1,4),则AM 的斜率为2,由已知得-a ×2=-1,故a =14.答案:146.设抛物线y 2=8x 的焦点为F ,准线为l ,P 为抛物线上一点,PA ⊥l ,A 为垂足,如果直线AF 的斜率为-3,那么|PF |=________.解析:如图所示,直线AF 的方程为y =-3(x -2),与准线方程x =-2联立得A (-2,43).设P (x 0,43),代入抛物线y 2=8x ,得8x 0=48,∴x 0=6, ∴|PF |=x 0+2=8. 答案:87.已知抛物线的顶点在原点,焦点在y 轴上,抛物线上一点M (m ,-3)到焦点的距离为5,求m 的值、抛物线方程和准线方程.解:法一:如图所示,设抛物线的方程为x 2=-2py (p >0),则焦点F ⎝⎛⎭⎪⎫0,-p 2,准线l :y =p2,作MN ⊥l ,垂足为N ,则|MN |=|MF |=5,而|MN |=3+p2=5,即p =4.所以抛物线方程为x 2=-8y ,准线方程为y =2. 由m 2=-8×(-3)=24,得m =±2 6.法二:设所求抛物线方程为x 2=-2py (p >0),则焦点为F ⎝⎛⎭⎪⎫0,-p 2.∵M (m ,-3)在抛物线上,且|MF |=5,故⎩⎪⎨⎪⎧ m 2=6p ,m2+⎝⎛⎭⎪⎫-3+p 22=5,解得⎩⎪⎨⎪⎧p =4,m =±26.∴抛物线方程为x 2=-8y ,m =±26,准线方程为y =2.8.已知圆C的方程x2+y2-10x=0,求与y轴相切且与圆C 外切的动圆圆心P的轨迹方程.解:设P点坐标为(x,y),动圆的半径为R,∵动圆P与y轴相切,∴R=|x|.∵动圆与定圆C:(x-5)2+y2=25外切,∴|PC|=R+5.即|PC|=|x|+5.当点P在y轴右侧时,即x>0,则|PC|=x+5,故点P的轨迹是以(5,0)为焦点的抛物线,则圆心P的轨迹方程为y2=20x(x>0);当点P在y轴左侧时,即x<0,则|PC|=-x+5,此时点P的轨迹是x轴的负半轴,即方程y=0(x<0).故点P的轨迹方程为y2=20x(x>0)或y=0(x<0).第2课时抛物线的简单几何性质[核心必知]1.预习教材,问题导入根据以下提纲,预习教材P60~P63的内容,回答下列问题.类比椭圆、双曲线的几何性质,结合图象,说出抛物线y2=2px(p>0)的下列性质:(1)抛物线y2=2px(p>0)的范围是什么?提示:x≥0,y∈R .(2)抛物线y2=2px(p>0)的对称轴是什么?是否存在对称中心?提示:对称轴为x轴,不存在对称中心.(3)抛物线的顶点坐标有几个?顶点坐标是什么?提示:只有一个顶点坐标(0,0).(4)抛物线的离心率是多少?提示:e=1.2.归纳总结,核心必记抛物线的几何性质类型y2=2px(p>0)y2=-2px(p>0)x2=2py(p>0)x2=-2py(p>0)图象性质焦点F⎝⎛⎭⎪⎫p2,0F⎝⎛⎭⎪⎫-p2,0F⎝⎛⎭⎪⎫0,p2F⎝⎛⎭⎪⎫0,-p2准线x=-p2x=p2y=-p2y=p2范围x≥0,y∈R x≤0,y∈R x∈R,y≥0x∈R,y≤0 对称轴x轴y轴顶点O(0,0)离心率e=1开口方向向右向左向上向下在同一坐标系下画出抛物线y 2=x ,y 2=2x 和y 2=3x 的图象,试分析影响抛物线开口大小的量是什么?提示:影响抛物线开口大小的量是参数p ,p 值越大,抛物线的开口越大,反之,开口越小.[课前反思](1)抛物线的范围是: ;(2)抛物线具有怎样的对称性?其对称轴是什么?;(3)抛物线的顶点坐标和离心率分别是: .讲一讲1.抛物线的顶点在原点,对称轴重合于椭圆9x 2+4y 2=36短轴所在的直线,抛物线焦点到顶点的距离为3,求抛物线的标准方程及抛物线的准线方程.[尝试解答] 椭圆的方程可化为x 24+y 29=1,其短轴在x 轴上,∴抛物线的对称轴为x 轴,∴设抛物线的方程为y 2=2px 或y 2=-2px (p >0).∵抛物线的焦点到顶点的距离为3,即p 2=3, ∴p =6.∴抛物线的标准方程为y 2=12x 或y 2=-12x ,其准线方程分别为x =-3和x =3.(1)注意抛物线各元素间的关系:抛物线的焦点始终在对称轴上,抛物线的顶点就是抛物线与对称轴的交点,抛物线的准线始终与对称轴垂直,抛物线的准线与对称轴的交点和焦点关于抛物线的顶点对称.(2)解决抛物线问题要始终把定义的应用贯彻其中,通过定义的运用,实现两个距离之间的转化,简化解题过程.练一练1.已知双曲线方程是x 28-y 29=1,求以双曲线的右顶点为焦点的抛物线的标准方程及抛物线的准线方程.解:因为双曲线x 28-y 29=1的右顶点坐标为(22,0),所以p 2=22,且抛物线的焦点在x 轴正半轴上,所以,所求抛物线方程为y 2=82x ,其准线方程为x =-2 2.[思考] 抛物线上一点与焦点F 的连线的线段叫做焦半径,过焦点的直线与抛物线相交所得的弦叫做焦点弦,若P (x 0,y 0)是抛物线上任意一点,焦点弦的端点为A (x 1,y 1),B (x 2,y 2),根据上述定义,你能完成以下表格吗?名师指津:x 0+p 2__p 2-x 0__y 0+p 2__p2-y 0__x 1+x 2+p __p -x 1-x 2__y 1+y 2+p __p -y 1-y 2.讲一讲2.已知抛物线y 2=6x ,过点P (4,1)引一条弦P 1P 2使它恰好被点P 平分,求这条弦所在的直线方程及|P 1P 2|.[尝试解答] 设直线上任意一点坐标为(x ,y ),弦两端点P 1(x 1,y 1),P 2(x 2,y 2).∵P 1,P 2在抛物线上,∴y 21=6x 1,y 22=6x 2.两式相减,得(y 1+y 2)(y 1-y 2)=6(x 1-x 2). ∵y 1+y 2=2,∴k =y 1-y 2x 1-x 2=6y 1+y 2=3, ∴直线的方程为y -1=3(x -4),即3x -y -11=0.由⎩⎪⎨⎪⎧y 2=6x ,y =3x -11得y 2-2y -22=0,∴y 1+y 2=2,y 1·y 2=-22.∴|P 1P 2|= 1+19·22-4×(-22)=22303. (1)解决抛物线的焦点弦问题时,要注意抛物线定义在其中的应用,通过定义将焦点弦长度转化为端点的坐标问题,从而可借助根与系数的关系进行求解.(2)设直线方程时要特别注意斜率不存在的直线应单独讨论. 练一练2.已知直线l 经过抛物线y 2=6x 的焦点F ,且与抛物线相交于A 、B 两点.(1)若直线l 的倾斜角为60°,求|AB |的值;(2)若|AB |=9,求线段AB 的中点M 到准线的距离.解:(1)因为直线l 的倾斜角为60°,所以其斜率k =tan 60°= 3.又F ⎝ ⎛⎭⎪⎫32,0. 所以直线l 的方程为y =3⎝ ⎛⎭⎪⎫x -32. 联立⎩⎪⎨⎪⎧y 2=6x ,y =3⎝⎛⎭⎪⎫x -32,消去y ,得x 2-5x +94=0. 若设A (x 1,y 1),B (x 2,y 2).则x 1+x 2=5,而|AB |=|AF |+|BF |=⎝⎛⎭⎪⎫x 1+p 2+⎝ ⎛⎭⎪⎫x 2+p 2=x 1+x 2+p . ∴|AB |=5+3=8.(2)设A (x 1,y 1),B (x 2,y 2),由抛物线定义知,|AB |=|AF |+|BF |=x 1+p 2+x 2+p 2=x 1+x 2+p =x 1+x 2+3=9,所以x 1+x 2=6,于是线段AB 的中点M 的横坐标是3,又准线方程是x =-32,所以M 到准线的距离等于3+32=92. [思考1] 若直线与抛物线有且只有一个公共点,则直线与抛物线相切吗?名师指津:直线与抛物线相切时,只有一个公共点,但是只有一个公共点时,直线与抛物线可能相切也可能平行于抛物线的对称轴或与对称轴重合.[思考2] 如何判断点P (x 0,y 0)与抛物线y 2=2px (p >0)的位置关系?名师指津:(1)P (x 0,y 0)在抛物线y 2=2px (p >0)内部⇔y 20<2px 0;(2)P (x 0,y 0)在抛物线y 2=2px (p >0)上 ⇔y 20=2px 0;(3)P (x 0,y 0)在抛物线y 2=2px (p >0)外部⇔y 20>2px 0.讲一讲3.设直线l :y =kx +1,抛物线C :y 2=4x ,当k 为何值时,l 与C 相切、相交、相离.[尝试解答]联立方程组⎩⎪⎨⎪⎧y =kx +1,y 2=4x ,消去y ,整理得k 2x 2+(2k -4)x +1=0.若k ≠0,方程k 2x 2+(2k -4)x +1=0为一元二次方程. ∴Δ=(2k -4)2-4k 2=16(1-k ).(1)当Δ=0,即k =1时,l 与C 相切,(2)当Δ>0,即k <1时,l 与C 相交,(3)当Δ<0,即k >1时,l 与C 相离.若k =0,直线l 方程为y =1,显然与抛物线C 交于⎝ ⎛⎭⎪⎫14,1. 综上所述,当k =1时,l 与C 相切;当k <1时,l 与C 相交;当k >1时,l 与C 相离. 研究直线和抛物线的位置关系时,由于消元后所得的方程中含参数,因此要注意分二次项系数为0和不为0两种情况讨论.练一练3.已知△AOB 的一个顶点为抛物线y 2=2x 的顶点,点A ,B 都在抛物线上,且∠AOB =90°,证明:直线AB 必过一定点.证明:设OA 所在直线的方程为y =kx ,则直线OB 的方程为y =-1k x , 由题意知k ≠0.由⎩⎪⎨⎪⎧y =kx ,y 2=2x ,解得⎩⎪⎨⎪⎧x =0,y =0或⎩⎪⎨⎪⎧x =2k 2,y =2k ,即点A 的坐标为⎝ ⎛⎭⎪⎫2k2,2k , 同样由⎩⎪⎨⎪⎧y =-1k x ,y 2=2x ,解得点B 的坐标为(2k 2,-2k ).故AB 所在直线的方程为y +2k =2k+2k 2k 2-2k 2(x -2k 2),化简并整理,得⎝ ⎛⎭⎪⎫1k -k y =x -2. 不论实数k 取任何不等于0的实数,当x =2时,恒有y =0.故直线过定点P (2,0).———————————————[课堂归纳·感悟提升]————————————————1.本节课的重点是抛物线的几何性质和焦点弦问题,难点是直线与抛物线的位置关系.2.在研究直线与抛物线的位置关系时,直线与抛物线只有一个公共点,包括相交和相切两种情况,这是本节课的一个易错点.3.本节课要重点掌握的规律方法(1)抛物线的焦点弦问题,见讲2;(2)直线与抛物线的位置关系,见讲3.4.直线与抛物线的相交弦问题共有两类,一类是过焦点的弦,一类是不过焦点的弦.解决弦的问题,大多涉及抛物线的弦长、弦的中点、弦的斜率.常用的办法是将直线与抛物线联立,转化为关于x 或y 的一元二次方程,然后利用根与系数的关系,这样避免求交点.尤其是弦的中点问题,还应注意“点差法”的运用.课时达标训练(十二)[即时达标对点练]题组1 抛物线的几何性质1.设抛物线的焦点到顶点的距离为3,则抛物线上的点到准线的距离的取值范围是( )A .(6,+∞)B .[6,+∞)C .(3,+∞)D .[3,+∞)解析:选D ∵抛物线的焦点到顶点的距离为3, ∴p 2=3,即p =6. 又抛物线上的点到准线的距离的最小值为p 2, ∴抛物线上的点到准线的距离的取值范围为[3,+∞).2.已知抛物线的对称轴为x 轴,顶点在原点,焦点在直线2x -4y +11=0上,则此抛物线的方程是( )A .y 2=-11xB .y 2=11xC .y 2=-22xD .y 2=22x解析:选C 在方程2x -4y +11=0中,令y =0得x =-112, ∴抛物线的焦点为F ⎝ ⎛⎭⎪⎫-112,0,即p 2=112,∴p =11, ∴抛物线的方程是y 2=-22x ,故选C.题组2 抛物线的焦点弦问题3.过抛物线y 2=8x 的焦点作倾斜角为45°的直线,则被抛物线截得的弦长为( )A .8B .16C .32D .64解析:选B 由抛物线y 2=8x 的焦点为(2,0),得直线的方程为y =x -2,代入y 2=8x 得(x -2)2=8x , 即x 2-12x +4=0.∴x 1+x 2=12,弦长=x 1+x 2+p =12+4=16.4.过抛物线y 2=2px (p >0)的焦点作一直线交抛物线于A (x 1,y 1)、B (x 2,y 2)两点,则k OA ·k OB 的值为( )A .4B .-4C .p 2D .-p 2解析:选B k OA ·k OB ==y 1x 1·y 2x 2=y 1y 2x 1x 2, 根据焦点弦的性质x 1x 2=p 24,y 1y 2=-p 2, 故k OA ·k OB =-p 2p24=-4. 5.过抛物线y 2=4x 的焦点作直线交抛物线于A (x 1,y 1),B (x 2,y 2)两点,若x 1+x 2=6,则|AB |=________.解析:|AB |=x 1+x 2+p =6+2=8.答案:86.线段AB 是抛物线y 2=x 的一条焦点弦,且|AB |=4,则线段AB 的中点C 到直线x +12=0的距离为________. 解析:设A (x 1,y 1),B (x 2,y 2),由于|AB |=x 1+x 2+p =4,∴x 1+x 2=4-12=72, ∴中点C (x 0,y 0)到直线x +12=0的距离为x 0+12=x 1+x 22+12=74+12=94. 答案:94题组3 直线与抛物线的位置关系7.已知直线y =kx -k 及抛物线y 2=2px (p >0),则( )A .直线与抛物线有一个公共点B .直线与抛物线有两个公共点C .直线与抛物线有一个或两个公共点D .直线与抛物线可能没有公共点解析:选C ∵直线y =kx -k =k (x -1),∴直线过点(1,0).又点(1,0)在抛物线y 2=2px 的内部.∴当k =0时,直线与抛物线有一个公共点;当k ≠0时,直线与抛物线有两个公共点.8.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( )A.⎣⎢⎡⎦⎥⎤-12,12 B .[-2,2] C .[-1,1] D .[-4,4]解析:选C 准线x =-2,Q (-2,0),设l :y =k (x +2),由⎩⎪⎨⎪⎧y =k (x +2),y 2=8x ,得k 2x 2+4(k 2-2)x +4k 2=0.当k =0时,即交点为(0,0),当k ≠0时,Δ≥0,-1≤k <0或0<k ≤1.综上,k 的取值范围是[-1,1].9.在抛物线y 2=2x 上求一点P .使P 到直线x -y +3=0的距离最短,并求出距离的最小值.解:法一:设P (x 0,y 0)是y 2=2x 上任一点,则点P 到直线l的距离d =|x 0-y 0+3|2=⎪⎪⎪⎪⎪⎪y 202-y 0+32 =||(y 0-1)2+522,当y 0=1时,d min =524, ∴P ⎝ ⎛⎭⎪⎫12,1. 法二:设与抛物线相切且与直线x -y +3=0平行的直线方程为x -y +m =0,由⎩⎪⎨⎪⎧x -y +m =0,y 2=2x ,得y 2-2y +2m =0, ∵Δ=(-2)2-4×2m =0,∴m =12.∴平行直线的方程为x -y +12=0,此时点到直线的最短距离转化为两平行线之间的距离,则d min =⎪⎪⎪⎪⎪⎪3-122=524,此时点P 的坐标为⎝ ⎛⎭⎪⎫12,1.10.如图所示,过抛物线y 2=2px (p >0)的焦点F 的直线l 交抛物线于点A 、B ,交其准线于点C ,若|BC |=2|BF |,且|AF |=3,求此抛物线的方程.解:过A 、B 分别作准线的垂线AA ′、BD ,垂足分别为A ′、D ,则|BF |=|BD |,又2|BF |=|BC |,∴在Rt △BCD 中,∠BCD =30°. 又|AF |=3,∴|AA ′|=3,|AC |=6,|FC |=3. ∴F 到准线距离p =12|FC |=32.∴y 2=3x .[能力提升综合练]1.设AB 为过抛物线y 2=2px (p >0)的焦点的弦,则|AB |的最小值为( )A.p2B .pC .2pD .无法确定解析:选C 当AB 垂直于对称轴时,|AB |取最小值,此时AB 即为抛物线的通径,长度等于2p .2.已知抛物线y 2=2px (p >0),过其焦点且斜率为1的直线交抛物线于A ,B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为( )A .x =1B .x =-1C .x =2D .x =-2 解析:选B抛物线的焦点为F ⎝ ⎛⎭⎪⎫p 2,0,所以过焦点且斜率为1的直线方程为y =x -p 2,即x =y +p2,代入y 2=2px 得y 2=2py +p 2,即y 2-2py -p 2=0,由根与系数的关系得y 1+y 22=p =2(y 1,y 2分别为点A ,B 的纵坐标),所以抛物线方程为y 2=4x ,准线方程为x =-1.3.过抛物线y 2=2px (p >0)的焦点F 的直线与抛物线交于A 、B 两点,若A 、B 在准线上的射影为A 1、B 1,则∠A 1FB 1等于( )A .45°B .90°C .60°D .120解析:选B 如图,由抛物线定义知|AA 1|=|AF |,|BB 1|=|BF |,所以∠AA 1F =∠AFA 1.又∠AA 1F =∠A 1FO , 所以∠AFA 1=∠A 1FO , 同理∠BFB 1=∠B 1FO . 于是∠AFA 1+∠BFB 1=∠A 1FO +∠B 1FO =∠A 1FB 1, 故∠A 1FB 1=90°.4.已知抛物线C :y 2=4x 的焦点为F ,直线y =2x -4与C 交于A ,B 两点,则cos ∠AFB =( )A.45B.35 C .-35 D .-45解析:选D由⎩⎪⎨⎪⎧y 2=4x ,y =2x -4得x 2-5x +4=0, ∴x =1或x =4.5.已知直线y =k (x +2)(k >0)与抛物线C :y 2=8x 相交于A ,B 两点,F 为C 的焦点.若|FA |=2|FB |,则k =________.解析:设A (x 1,y 1),B (x 2,y 2),易知x 1>0,x 2>0,y 1>0,y 2>0,由⎩⎪⎨⎪⎧y =k (x +2),y 2=8x ,得k 2x 2+(4k 2-8)x +4k 2=0,∴x 1x 2=4, ①∵|FA |=x 1+p2=x 1+2,|FB |=x 2+p2=x 2+2,且|FA |=2|FB |,∴x 1=2x 2+2. ② 由①②得x 2=1,∴B (1,22),代入y =k (x +2),得k =223.答案:2236.抛物线x 2=2py (p >0)的焦点为F ,其准线与双曲线x 23-y 23=1相交于A ,B 两点,若△ABF 为等边三角形,则p =________.解析:抛物线的焦点坐标F ⎝⎛⎭⎪⎫0,p 2,准线方程为y =-p 2.代入x 23-y 23=1得|x |=3+p 24.要使△ABF 为等边三角形,则tan π6=|x |p =3+p 24p=33,解得p 2=36,p =6.答案:67.已知AB 是抛物线y 2=2px (p >0)的焦点弦,且A (x 1,y 1),B (x 2,y 2),点F 是抛物线的焦点.(1)证明:y 1y 2=-p 2,x 1x 2=p 24;(2)求1|AF |+1|BF |的值.解:(1)证明:过焦点F ⎝ ⎛⎭⎪⎫p 2,0的直线AB的方程为y =k ⎝⎛⎭⎪⎫x -p 2或x =p2.当直线AB 的方程为y =k ⎝⎛⎭⎪⎫x -p 2时,由⎩⎪⎨⎪⎧y =k ⎝ ⎛⎭⎪⎫x -p 2,y 2=2px ,消去x ,得ky 2-2py -kp 2=0. ∵AB 与抛物线有两个交点, ∴k ≠0.由韦达定理得y 1y 2=-p 2. 又y 21=2px 1,y 22=2px 2,∴x 1x 2=y 212p ·y 222p =(y 1y 2)24p 2=p 24. 当直线AB 的方程为x =p 2时,x 1x 2=p 24,y 1=p ,y 2=-p ,∴y 1y 2=-p 2.(2)设直线AB :y =k ⎝⎛⎭⎪⎫x -p 2或x =p2.当直线AB 的方程为y =k ⎝⎛⎭⎪⎫x -p 2时,由⎩⎪⎨⎪⎧y 2=2px ,y =k ⎝⎛⎭⎪⎫x -p 2,消去y ,得k 2x 2-p (k 2+2)x +k 2p 24=0.∵AB 与抛物线有两个交点, ∴k ≠0.∴x 1+x 2=p (k 2+2)k 2,x 1x 2=p 24.又|AF |=x 1+p 2,|BF |=x 2+p2, ∴|AF |+|BF |=x 1+x 2+p .|AF |·|BF |=⎝⎛⎭⎪⎫x 1+p 2⎝ ⎛⎭⎪⎫x 2+p 2=x 1x 2+p 2(x 1+x 2)+p 24=p 2(x 1+x 2)+p 22=p 2(x 1+x 2+p )=p2()|AF |+|BF |,即|AF |+|BF |=2p·|AF |·|BF |,∴1|AF |+1|BF |=2p. 当直线AB 的方程为x =p2时,x 1=x 2=p2,y 1=p ,y 2=-p ,∴|AF |=|BF |=p ,∴1|AF |+1|BF |=2p.8.如图,已知两条抛物线E 1:y 2=2p 1x (p 1>0)和E 2:y 2=2p 2x (p 2>0),过原点O 的两条直线l 1和l 2,l 1与E 1,E 2分别交于A 1,A 2两点,l 2与E 1,E 2分别交于B 1,B 2两点.(1)证明:A 1B 1∥A 2B 2;(2)过原点O 作直线l (异于l 1,l 2)与E 1,E 2分别交于C 1,C 2两点.记△A 1B 1C 1与△A 2B 2C 2的面积分别为S 1与S 2,求S 1S 2的值.解:(1)证明:设直线l 1,l 2的方程分别为y =k 1x ,y =k 2x (k 1,k 2≠0),则由⎩⎪⎨⎪⎧y =k 1x ,y 2=2p 1x ,⇒A 1⎝ ⎛⎭⎪⎫2p 1k 21,2p 1k 1,由⎩⎪⎨⎪⎧y =k 1x ,y 2=2p 2x ,⇒A 2⎝ ⎛⎭⎪⎫2p 2k 21,2p 2k 1,同理可得B 1⎝ ⎛⎭⎪⎫2p 1k 22,2p 1k 2,B 2⎝ ⎛⎭⎪⎫2p 2k 22,2p 2k 2,所以=⎝ ⎛⎭⎪⎫2p 1k 22-2p 1k 21,2p 1k 2-2p 1k 1=2p 1⎝ ⎛⎭⎪⎫1k 22-1k 21,1k 2-1k 1=⎝ ⎛⎭⎪⎫2p 2k 22-2p 2k 21,2p 2k 2-2p 2k 1=2p 2⎝ ⎛⎭⎪⎫1k 22-1k 21,1k 2-1k 1,所以A 1B 1∥A 2B 2.(2)由(1)知A 1B 1∥A 2B 2,同理可得B 1C 1∥B 2C 2,A 1C 1∥A 2C 2, 所以△A 1B 1C 1∽△A 2B 2C 2,故S 1S 2=p 21p 22. 对于圆锥曲线的有关问题,要有运用圆锥曲线定义解题的意识,“回归定义”是一种重要的解题策略,如:(1)涉及椭圆、双曲线上的点与两个焦点构成的三角形问题时,常用定义结合解三角形的知识来解决.(2)在求有关抛物线的最值问题时,常利用定义把到焦点的距离与到准线的距离进行转化,结合几何图形,利用几何意义去解决.总之,圆锥曲线的定义在解题中有重要作用,要注意灵活运用.[典例1] (1)在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点F 1,F 2在x 轴上,离心率为22.过F 1的直线l 交C 于A ,B两点,且△ABF 2的周长为16,那么C 的方程为________.(2)若F 1,F 2是双曲线x 216-y 29=1的左、右焦点,点M 在双曲线上,且满足|MF 1|=5|MF 2|,则△MF 1F 2的面积等于________.解析:(1)设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),因为AB 过F 1且A ,B 在椭圆上,如图,则△ABF 2的周长为|AB |+|AF 2|+|BF 2|=|AF 1|+|AF 2|+|BF 1|+|BF 2|=4a =16,∴a =4.又离心率e =c a =22,∴c =22,∴b 2=a 2-c 2=8, ∴椭圆C 的方程为x 216+y 28=1.(2)由已知,得a 2=16,b 2=9,c 2=25, 所以a =4,c =5.由于点M 在双曲线上,且|MF 1|=5|MF 2|,则M 在右支上,根据双曲线定义有|MF 1|-|MF 2|=2a =8, 又|MF 1|=5|MF 2|,所以|MF 1|=10,|MF 2|=2, 而|F 1F 2|=2c =10,则△MF 1F 2为等腰三角形,取MF 2中点为N , 则F 1N ⊥MF 2,且|F 1N |=102-12=311, 从而S △MF 1F 2=12×2×311=311.答案:(1)x 216+y 28=1 (2)311[对点训练]1.抛物线y 2=2px (p >0)上有A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)三点,F 是它的焦点,若|AF |,|BF |,|CF |成等差数列,则( )A .x 1,x 2,x 3成等差数列B .y 1,y 2,y 3成等差数列C .x 1,x 3,x 2成等差数列D .y 1,y 3,y 2成等差数列 解析:选A 如图,过A 、B 、C 分别作准线的垂线,垂足分别为A ′,B ′,C ′,由抛物线定义得,|AF |=|AA ′|,|BF |=|BB ′|,|CF |=|CC ′|. ∵2|BF |=|AF |+|CF |, ∴2|BB ′|=|AA ′|+|CC ′|.又∵|AA ′|=x 1+p 2,|BB ′|=x 2+p 2,|CC ′|=x 3+p2,。
2.3.1 抛物线及其标准方程学习目标 1.掌握抛物线的定义及焦点、准线的概念.2.掌握抛物线的标准方程的求法.3.明确抛物线标准方程中p的几何意义,能解决简单的求抛物线标准方程问题.知识点一抛物线的定义平面内到一个定点F和一条定直线l(F∉l)的距离相等的点的轨迹叫做抛物线.点F叫做抛物线的焦点,直线l叫做抛物线的准线.知识点二抛物线的标准方程1.在平面内,点P到点F和到直线l的距离相等的点的轨迹一定是抛物线.( ×) 2.抛物线其实就是双曲线的一支.( ×)3.抛物线的标准方程只需焦点到准线的距离p就可以确定.( ×)题型一求抛物线的标准方程例1 分别求符合下列条件的抛物线的标准方程.(1)经过点(-3,-1);(2)焦点为直线3x-4y-12=0与坐标轴的交点.考点抛物线的标准方程题点 求抛物线的方程解 (1)因为点(-3,-1)在第三象限, 所以设所求抛物线的标准方程为y 2=-2px (p >0)或x 2=-2py (p >0).若抛物线的标准方程为y 2=-2px (p >0), 则由(-1)2=-2p ×(-3),解得p =16;若抛物线的标准方程为x 2=-2py (p >0), 则由(-3)2=-2p ×(-1),解得p =92.故所求抛物线的标准方程为y 2=-13x 或x 2=-9y .(2)对于直线方程3x -4y -12=0, 令x =0,得y =-3;令y =0,得x =4, 所以抛物线的焦点为(0,-3)或(4,0). 当焦点为(0,-3)时,p2=3,所以p =6,此时抛物线的标准方程为x 2=-12y ; 当焦点为(4,0)时,p2=4,所以p =8,此时抛物线的标准方程为y 2=16x .故所求抛物线的标准方程为x 2=-12y 或y 2=16x . 反思感悟 求抛物线的标准方程的方法注意 当抛物线的焦点位置不确定时,应分类讨论,也可以设y 2=ax 或x 2=ay (a ≠0)的形式,以简化讨论过程.跟踪训练1 根据下列条件分别求出抛物线的标准方程: (1)准线方程为y =23;(2)焦点在y 轴上,焦点到准线的距离为5. 考点 抛物线的标准方程 题点 求抛物线的方程解 (1)易知抛物线的准线交y 轴于正半轴,且p 2=23,则p =43,故所求抛物线的标准方程为x 2=-83y .(2)已知抛物线的焦点在y 轴上,可设方程为x 2=2my (m ≠0),由焦点到准线的距离为5,知|m |=5,m =±5,所以满足条件的抛物线有两条,它们的标准方程分别为x 2=10y 和x 2=-10y .题型二 抛物线定义的应用命题角度1 利用抛物线定义求轨迹(方程)例2 若位于y 轴右侧的动点M 到F ⎝ ⎛⎭⎪⎫12,0的距离比它到y 轴的距离大12.求点M 的轨迹方程.考点 题点解 由于位于y 轴右侧的动点M 到F ⎝ ⎛⎭⎪⎫12,0的距离比它到y 轴的距离大12,所以动点M 到F ⎝⎛⎭⎪⎫12,0的距离与它到直线l :x =-12的距离相等.由抛物线的定义知动点M 的轨迹是以F 为焦点,l 为准线的抛物线(不包含原点),其方程应为y 2=2px (p >0)的形式,而p 2=12,所以p=1,2p =2,故点M 的轨迹方程为y 2=2x (x ≠0). 反思感悟 解决轨迹为抛物线问题的方法抛物线的轨迹问题,既可以用轨迹法直接求解,也可以先将条件转化,再利用抛物线的定义求解.后者的关键是找到满足动点到定点的距离等于到定直线的距离且定点不在定直线上的条件,有时需要依据已知条件进行转化才能得到满足抛物线定义的条件.跟踪训练2 已知动圆M 经过点A (3,0),且与直线l :x =-3相切,求动圆圆心M 的轨迹方程.考点 抛物线的定义 题点 抛物线定义的直接应用解 设动点M (x ,y ),⊙M 与直线l :x =-3的切点为N , 则|MA |=|MN |,即动点M 到定点A 和定直线l :x =-3的距离相等,∴点M 的轨迹是抛物线,且以A (3,0)为焦点,以直线l :x =-3为准线, ∴p2=3,∴p =6,故动圆圆心M 的轨迹方程是y 2=12x .命题角度2 利用抛物线定义求最值或点的坐标例3 如图,已知抛物线y 2=2x 的焦点是F ,点P (x 0,y 0)是抛物线上一点.(1)若|PF |=54x 0,求x 0;(2)已知点A (3,2),求|PA |+|PF |的最小值,并求此时P 点坐标. 考点 求抛物线的最值问题 题点 根据抛物线定义转换求最值解 (1)由题意知抛物线的准线为x =-12,根据抛物线的定义可得,x 0+12=|PF |=54x 0,解得x 0=2.(2)如图,作PQ ⊥l 于Q ,由定义知,抛物线上点P 到焦点F 的距离等于点P 到准线l 的距离d ,由图可知,求|PA |+|PF |的最小值的问题可转化为求|PA |+d 的最小值的问题.将x =3代入抛物线方程y 2=2x ,得y =± 6.∵6>2,∴A 在抛物线内部.由图可知,当PA ⊥l 时,|PA |+d 最小,最小值为72.即|PA |+|PF |的最小值为72,此时P 点纵坐标为2,代入y 2=2x ,得x 0=2. ∴点P 坐标为(2,2). 引申探究若将本例中的点A (3,2)改为点(0,2),求点P 到点(0,2)的距离与P 到该抛物线准线的距离之和的最小值.解 由抛物线的定义可知,抛物线上的点到准线的距离等于到焦点的距离.由图可知,P 点,(0,2)点和抛物线的焦点F ⎝ ⎛⎭⎪⎫12,0三点共线时距离之和最小,所以最小距离d =⎝ ⎛⎭⎪⎫0-122+-2=172. 反思感悟 抛物线的定义在解题中的作用,就是灵活地对抛物线上的点到焦点的距离与到准线的距离进行转化,另外要注意平面几何知识的应用,如两点之间线段最短,三角形中三边间的不等关系,点与直线上点的连线垂线段最短等.跟踪训练3 抛物线y 2=-2px (p >0)上有一点M 的横坐标为-9,它到焦点的距离为10,求此抛物线方程和M 点的坐标. 考点 抛物线的定义 题点 抛物线定义的直接应用解 设焦点为F ⎝ ⎛⎭⎪⎫-p2,0,M 点到准线的距离为d ,则d =|MF |=10, 即9+p2=10,∴p =2,∴抛物线方程为y 2=-4x .将M (-9,y )代入抛物线的方程,得y =±6. ∴M 点坐标为(-9,6)或(-9,-6).抛物线的实际应用问题典例 河上有一抛物线形拱桥,当水面距拱桥顶5m 时,水面宽为8m ,一小船宽4m ,高2m ,载货后船露出水面上的部分高0.75m ,问:水面上涨到与抛物线形拱桥拱顶相距多少m 时,小船开始不能通航? 考点 抛物线的标准方程 题点 抛物线方程的应用解 如图,以拱桥的拱顶为原点,以过拱顶且平行于水面的直线为x 轴,建立平面直角坐标系.设抛物线方程为x 2=-2py (p >0), 由题意可知,点B (4,-5)在抛物线上, 故p =85,得x 2=-165y .当船面两侧和抛物线接触时,船开始不能通航, 设此时船面宽为AA ′,则A (2,y A ), 由22=-165y A ,得y A =-54.又知船面露出水面上的部分高为0.75m , 所以h =|y A |+0.75=2(m).所以水面上涨到与抛物线形拱桥拱顶相距2m 时,小船开始不能通航.[素养评析] 首先确定与实际问题相匹配的数学模型.此问题中拱桥是抛物线型,故利用抛物线的有关知识解决此问题,操作步骤为: (1)建系:建立适当的坐标系. (2)假设:设出合适的抛物线标准方程. (3)计算:通过计算求出抛物线的标准方程. (4)求解:求出需要求出的量.(5)还原:还原到实际问题中,从而解决实际问题.1.抛物线y =14x 2的准线方程是( )A .y =-1B .y =-2C .x =-1D .x =-2答案 A解析 由y =14x 2,得x 2=4y ,则抛物线的焦点在y 轴正半轴上,且2p =4,即p =2,因此准线方程为y =-p2=-1.2.已知抛物线的顶点在原点,对称轴为x 轴,焦点在双曲线x 24-y 22=1上,则抛物线方程为( ) A .y 2=8x B .y 2=4x C .y 2=2x D .y 2=±8x答案 D解析 由题意知抛物线的焦点为双曲线x 24-y 22=1的顶点,即为(-2,0)或(2,0),所以抛物线的方程为y 2=8x 或y 2=-8x .3.已知抛物线C :y 2=x 的焦点为F ,A (x 0,y 0)是C 上一点,|AF |=54x 0,则x 0等于( )A .4B .2C .1D .8 答案 C解析 如图,F ⎝ ⎛⎭⎪⎫14,0,过A 作AA ′⊥准线l , ∴|AF |=|AA ′|, ∴54x 0=x 0+p 2=x 0+14, ∴x 0=1.4.若点P 到点F (4,0)的距离比它到直线x +5=0的距离少1,则动点P 的轨迹方程是________. 考点 抛物线的定义题点 由抛物线定义确定轨迹及轨迹方程 答案 y 2=16x解析 ∵点P 到点F (4,0)的距离比它到直线x +5=0的距离少1, ∴点P 到直线x =-4的距离和它到点(4,0)的距离相等.根据抛物线的定义可得点P 的轨迹是以点(4,0)为焦点,以直线x =-4为准线的抛物线,设抛物线的标准方程为y 2=2px (p >0), ∴p2=4,∴动点P 的轨迹方程为y 2=16x . 5.设P 是抛物线y 2=4x 上的一个动点,求点P 到点A (-1,1)的距离与点P 到直线x =-1的距离之和的最小值.解 如图,易知抛物线的焦点为F (1,0),准线是x =-1,由抛物线的定义知点P 到直线x =-1的距离等于点P 到F 的距离. 于是,问题转化为在抛物线上求一点P ,使点P 到点A (-1,1)的距离与点P 到F (1,0)的距离之和最小, 显然,连接AF 与抛物线相交的点即为满足题意的点, 此时最小值为[1--2+-2= 5.1.焦点在x 轴上的抛物线,其标准方程可以统设为y 2=mx (m ≠0),此时焦点为F ⎝ ⎛⎭⎪⎫m4,0,准线方程为x =-m4;焦点在y 轴上的抛物线,其标准方程可以统设为x 2=my (m ≠0),此时焦点为F ⎝ ⎛⎭⎪⎫0,m 4,准线方程为y =-m4.2.设M 是抛物线上一点,焦点为F ,则线段MF 叫做抛物线的焦半径.若M (x 0,y 0)在抛物线y 2=2px (p >0)上,则根据抛物线的定义,抛物线上的点到焦点的距离和到准线的距离可以相互转化,所以焦半径|MF |=x 0+p2. 3.对于抛物线上的点,利用定义可以把其到焦点的距离转化为到准线的距离,也可以把其到准线的距离转化为到焦点的距离,因此可以解决有关距离的最值问题.一、选择题1.抛物线y 2=-8x 的焦点坐标是( ) A .(2,0) B .(-2,0) C .(4,0) D .(-4,0)答案 B解析 ∵y 2=-8x ,∴p =4,∴焦点坐标为(-2,0).2.已知抛物线y 2=2px (p >0)的准线经过点(-1,1),则该抛物线焦点坐标为( ) A .(-1,0) B .(1,0) C .(0,-1) D .(0,1) 答案 B解析 抛物线y 2=2px (p >0)的准线方程为x =-p 2.由题设知-p2=-1,即p =2,故焦点坐标为()1,0.故选B.3.已知抛物线y 2=2px (p >0)的准线与圆(x -3)2+y 2=16相切,则p 的值为( ) A.12B .1C .2D .4 答案 C解析 抛物线y 2=2px 的准线方程为x =-p2,它与圆相切,所以必有3-⎝ ⎛⎭⎪⎫-p 2=4,p =2.4.设抛物线y 2=8x 上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是( ) A .4B .6C .8D .12 答案 B解析 由抛物线的定义可知,点P 到抛物线焦点的距离是4+2=6. 5.过点F (0,3),且和直线y +3=0相切的动圆圆心的轨迹方程为( ) A .y 2=12x B .y 2=-12x C .x 2=12y D .x 2=-12y答案 C解析 由题意,知动圆圆心到点F (0,3)的距离等于到定直线y =-3的距离,故动圆圆心的轨迹是以F 为焦点,直线y =-3为准线的抛物线,轨迹方程为x 2=12y .6.已知点A (-2,3)在抛物线C :y 2=2px 的准线上,记C 的焦点为F ,则直线AF 的斜率为( ) A .-43B .-1C .-34D .-12答案 C解析 因为抛物线C :y 2=2px 的准线方程为x =-p 2,且点A (-2,3)在准线上,故-p 2=-2,解得p =4.所以抛物线方程为y 2=8x ,焦点F 的坐标为(2,0),这时直线AF 的斜率k AF =3-0-2-2=-34.7.O 为坐标原点,F 为抛物线C :y 2=42x 的焦点,P 为C 上一点,若|PF |=42,则△POF 的面积为( ) A .2 B .2 2 C .2 3 D .4答案 C解析 抛物线C 的准线方程为x =-2,焦点F (2,0),由|PF |=42及抛物线的定义知,P 点的横坐标x P =32,从而纵坐标y P =±2 6.∴S △POF =12|OF |·|y P |=12×2×26=2 3.二、填空题8.若抛物线y =ax 2的准线方程是y =2,则a =________. 答案 -18解析 y =ax 2可化为x 2=1ay .∵准线方程为y =2,∴a <0且-14a =2,∴a =-18.9.若椭圆x 23+4y 2p2=1(p >0)的左焦点在抛物线y 2=2px 的准线上,则p 为________.答案6解析 由题意知,左焦点为⎝ ⎛⎭⎪⎫-p 2,0,则c =p2.∵a 2=3,b 2=p 24,∴3=p 24+p 24,得p = 6.10.抛物线y =4x 2上的一点M 到焦点的距离为1,则点M 的纵坐标是__________. 答案1516解析 抛物线方程化为x 2=14y ,准线为y =-116.由于点M 到焦点的距离为1,所以点M 到准线的距离也为1,所以点M 的纵坐标等于1-116=1516.11.已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1和直线l 2的距离之和的最小值是________. 考点 求抛物线的最值问题 题点 根据抛物线定义转换求最值 答案 2解析 如图所示,动点P 到l 2:x =-1的距离可转化为到点F 的距离,由图可知,距离和的最小值,即F 到直线l 1的距离d =|4+6|-2+42=2.三、解答题12.已知抛物线的方程如下,求其焦点坐标和准线方程.(1)y 2=-6x ;(2)3x 2+5y =0;(3)y 2=a 2x (a ≠0).考点 抛物线的几何性质题点 与准线、焦点有关的简单几何性质解 (1)由方程y 2=-6x ,知抛物线开口向左, 2p =6,p =3,p 2=32, 所以焦点坐标为⎝ ⎛⎭⎪⎫-32,0,准线方程为x =32. (2)将3x 2+5y =0变形为x 2=-53y , 知抛物线开口向下,2p =53,p =56,p 2=512, 所以焦点坐标为⎝⎛⎭⎪⎫0,-512,准线方程为y =512. (3)由方程y 2=a 2x (a ≠0)知抛物线开口向右,2p =a 2,p =a 22,p 2=a 24, 所以焦点坐标为⎝ ⎛⎭⎪⎫a 24,0,准线方程为x =-a 24. 13.已知抛物线的顶点在原点,它的准线过x 2a 2-y 2b 2=1的一个焦点,且与x 轴垂直.又抛物线与此双曲线交于点⎝ ⎛⎭⎪⎫32,6,求抛物线和双曲线的方程. 考点 抛物线的几何性质题点 抛物线与其他曲线结合的有关问题解 因为交点在第一象限,抛物线的顶点在原点,其准线垂直于x 轴,所以可设抛物线方程为y 2=2px (p >0).将点⎝ ⎛⎭⎪⎫32,6代入方程,得p =2,所以抛物线方程为y 2=4x .准线方程为x =-1.由此知双曲线方程中c =1,焦点为(-1,0),(1,0),点⎝ ⎛⎭⎪⎫32,6到两焦点距离之差2a =1,所以双曲线的标准方程为x 214-y 234=1.14.(2018·潍坊联考)已知P 为抛物线y 2=4x 上一个动点,Q 为圆x 2+(y -4)2=1上一个动点,那么点P 到点Q 的距离与点P 到抛物线的准线的距离之和的最小值是________. 考点题点答案 17-1解析 抛物线y 2=4x 的焦点为F (1,0),圆x 2+(y -4)2=1的圆心为C (0,4),半径r =1,根据抛物线的定义可知点P 到准线的距离等于点P 到焦点F 的距离,进而推断出当P ,Q ,F 三点共线时,点P 到点Q 的距离与点P 到抛物线的焦点的距离之和最小,为|FC |-r =17-1.15.已知曲线C 上的任意一点到定点F (1,0)的距离与到定直线x =-1的距离相等.(1)求曲线C 的方程;(2)若曲线C 上有两个定点A ,B 分别在其对称轴的上、下两侧,且|FA |=2,|FB |=5,求原点O 到直线AB 的距离.解 (1)因为曲线C 上任意一点到点F (1,0)的距离与到直线x =-1的距离相等, 所以曲线C 的轨迹是以F (1,0)为焦点的抛物线,且p 2=1,所以曲线C 的方程为y 2=4x . (2)由抛物线的定义结合|FA |=2可得,A 到准线 x =-1的距离为2,即A 的横坐标为1,代入抛物线方程可得y =2,即A (1,2),同理可得B (4,-4),故直线AB 的斜率k =2--1-4=-2, 故AB 的方程为y -2=-2(x -1),即2x +y -4=0,由点到直线的距离公式,得原点O 到直线AB 的距离为|-4|22+12=455.。
《双曲线及其标准方程》教学设计一、教材内容解析(一)课标要求:《双曲线及其标准方程》是人教A版普通高中课程选修2-1第二章的第三节内容课程标准对本节内容的要求是:了解双曲线的定义、几何图形和标准方程通过圆锥曲线与方程的学习,进一步体会数形结合的思想(二)教材地位双曲线与科研、生产以及人类生活有着密切的关系,因此,研究它的几何特征及其性质有着极其现实的意义。
学生初步认识圆锥曲线是从椭圆开始的,双曲线的学习是对其研究内容的进一步巩固、深化和提高如果双曲线研究的透彻、清楚,那么抛物线的学习就会顺理成章所以说本节课的作用就是纵向承接椭圆定义和标准方程的研究,横向为双曲线的简单性质以及进一步学习抛物线,解决更复杂的解析几何综合问题奠定良好的基础二、学习目标依据教材的地位与作用,以及新课改对教学目标的要求,确定本节课的教学目标为:1、理解双曲线的定义并能推导标准方程;2、通过定义及标准方程的挖掘与探究,使学生进一步体验类比、数形结合等思想方法的运用,提高学生的观察与探究能力;3、通过教师指导下的学生交流探索活动,让学生体会数学的理性和严谨,培养学生实事求是和锲而不舍的钻研精神,形成学习数学知识的积极态度三、重点难点教学重点:理解和掌握双曲线的定义及其标准方程突出重点的手段:通过信息技术手段揭示出双曲线上的点所满足的条件,归纳得出双曲线的定义;对于双曲线的方程,可类比椭圆方程的推导得出方程并加以比较,加深认识教学难点:双曲线定义的得出和标准方程的建立突破难点的策略:始终以“类比”作为主线,利用计算机模拟作图,引导学生动手实验、观察、交流、归纳定义;回顾坐标法求椭圆方程的步骤,亲自体验建立双曲线标准方程的过程四、学情分析从知识方面来说,学生从必修“平面解析几何初步”到选修“圆锥曲线”,已经学习直线、圆和椭圆,较为系统地研究了他们的性质,对解析几何的基本思想方法有了一定的认识,基本掌握了求曲线方程的一般方法,能对含有两个根式的方程进行化简,并对数形结合、类比推理的思想方法有一定的体会从能力方面来说,作为高二年级的学生,其学习能力与理性思维都达到了一定的水平具备一定的计算、推理、知识迁移、归纳概括和分析问题、解决问题的能力等能力,并对数形结合、类比等思想方法有了一定的感悟五、教学策略本节课采用了“实验操作”、“启发探究”、“类比教学”的教学方式,重点突出以下两点:1、以类比思维作为教学的主线2、以自主探究作为学生的学习方式六、教学过程(一)问题探究、概念学习(高中数学人教A 版选修2-1第49页习题第7题及第62页习题第5题)问题:圆1F 的半径为定长r ,2F 是圆内一个定点,P 是圆上任意一点,线段2F P 垂直平分线l 和半径2F P 相交于点M ,当点P 在圆上运动时,点M 的轨迹是什么?为什么?提出问题:如果定点2F 在圆外时,M 的轨迹又是怎样?探究结果:2F 在圆外时,通过计算机模拟M 的轨迹,发现得了两条新的曲线,当M 在新曲线的左支时,满足()211MF MF MP MF r -=-=常数,当M 在新曲线右支上时,满足()211MF MF MP MF r -=-=-常数引导同学们将两个等量关系变成21MF MF -=常数,此时我们把满足该定义的点的轨迹称之为双曲线,类比椭圆,212MF MF a -=,定点1F 、2F 为焦点,12F F 的距离称之为焦距,记为2c 进一步通过图象判断12||r F F <,即022a c <<趁热打铁,探究当22a c =时,点M 的轨迹是怎样的?当22a c >时,是否存在点的轨迹?当20a =时,动点的轨迹是什么?如果是212MF MF a -=(不含绝对值)时,点M 的轨迹是怎样的?【设计意图】通过教材上椭圆的习题,复习椭圆的定义,通过问题引导,激发学生的求知欲,也教会学生主动发现问题、探究问题的方法在此基础上引入双曲线定义,增加学生对知识的熟悉感向学生展示双曲线形成过程,让学生更深刻的理解这双曲线的定义及注意事项练习 已知两定点()15,0F -,()25,0F ,且动点P 满足128PF PF -=,请判断P 的轨迹变式1 128PF PF -=变式2 1210PF PF -=【设计意图】 学双曲线的定义之后,马上让学生应用,能加深学生的记忆和理解,通过两个变式,提醒学生要注意绝对值以及2a 与2c 的关系(二) 合作交流,导出方程1、类比:类比椭圆标准方程的建立过程(用屏幕显示图形),让学生思考最合适的建系位置(力求使其方程形式最简单)2、合作:师生合作共同推导双曲线的标准方程(学生推导,然后教师归纳)按下列六步骤进行:建系、设点、列式、代入、化简、检验从而得出了焦点在x 轴上的双曲线的标准方程双曲线标准方程:焦点在x 轴上22221(0,0)x ya b a b-=>>3、探究:在建立椭圆的标准方程时,选取不同的坐标系我们得到了不同形式的标准方程那么双曲线的标准方程还有哪些形式?焦点在y 轴上 ()222210,0y x a b a b-=>> 其中:222c a b =+【设计意图】这一过程在教师指导下由学生自主完成,使学生成了学习的主人,由被动的接受变成主动的获取通过双曲线标准方程的建立过程,训练学生的运算能力、推理论证能力、探究能力、分析问题、解决问题的能力,培养学生严谨的学习态度(三) 对比分析,记忆知识 双曲线的标准方程对比焦点在x 轴上焦点在y 轴上22221x y a b -= 22221y x a b-= 222b c a =- 焦点看正负椭圆和双曲线的方程对比椭圆双曲线图像方程22221x y a b += 22221y x a b += 22221x y a b -= 22221y x a b -= 连接符号 号连接- 号连接焦点位置看分母的大小看系数的正负,,a b c 关系 222a b c =+,a 最大222c b a =+,c 最大【设计意图】通过双曲线焦点在不同轴的标准方程的对比,找出两种情况下双曲线的相同点和不同点通过椭圆和双曲线标准方程的对比,明确椭圆和双曲线的同与不同便于学生能更好的通过类比方法掌握所学知识(三)练习反馈,巩固提高例题:已知两定点()15,0F -,()25,0F ,且动点P 满足128PF PF -=,求动点P 的轨迹方程变式:已知双曲线两焦点12,F F 在坐标轴上且12||10F F =,双曲线上一点P 满足12||||8PF PF -= ,求双曲线的标准方程【设计意图】此题意在写方程利用刚才所学知识判断曲线的轨迹,在焦点明确的情况下直接写出方程即可,当焦点不确定时应分两种情况讨论练习2:说出下列双曲线方程所表示的焦点位置及,,a b c 的值(1)22149x y -= (2)22194x y -=(3)224936x y -= (4)224x y -=-【设计意图】此题意在识方程让学生了解双曲线方程的多种形式,能从中找出焦点位置、焦点坐标、及,,a b c拓展:方程22113x y m m+=+-表示双曲线(圆,椭圆),求实数m 的取值范围【设计意图】强调双曲线方程系数的范围,并用2个变式将双曲线,椭圆,圆的方程联系起来,让学生对这三者标准方程的区别有更深刻的认识 四 小结与回顾 诗歌结尾:解析研究双曲线,类比椭圆灵光显定义方程差相连,焦点位置正负辨勾股关系C最大,绝对对应图两边双曲应用处处有,努力学习开新篇【设计意图】用郎朗上口的诗句,总结本堂课的主要知识要点,思想方法及核心素养,引领学生体会数学与文学之美八、课后记_________________________________________________________________________________ _________________________________________________________________________________ _________________________________________________________________________________ _________________________________________________________________________________ _________________________________________________________________________________ _________________________________________________________________________________。
2.3.2抛物线的几何性质(一)学习目标1.了解抛物线的范围、对称性、顶点、焦点、准线等几何性质.2.会利用抛物线的性质解决一些简单的抛物线问题.知识点一抛物线的几何性质思考1类比椭圆、双曲线的几何性质,你认为可以讨论抛物线的哪些几何性质?思考2类比椭圆、双曲线的几何性质,结合图象,你能说出抛物线y2=2px(p>0)的范围、对称性、顶点坐标吗?思考3参数p对抛物线开口大小有何影响?梳理标准方程y2=2px(p>0)y2=-2px(p>0)x2=2py(p>0)x2=-2py(p>0)图形性质范围x≥0,y∈R x≤0,y∈R x∈R,y≥0x∈R,y≤0对称轴x轴y轴顶点离心率e=________知识点二焦点弦设过抛物线焦点的弦的端点为A(x1,y1),B(x2,y2),则:y2=2px(p>0)|AB|=x1+x2+py2=-2px(p>0)|AB|=p-(x1+x2)x2=2py(p>0)|AB|=y1+y2+px2=-2py(p>0)|AB|=p-(y1+y2)类型一由抛物线的几何性质求标准方程例1已知抛物线的焦点F在x轴上,直线l过F且垂直于x轴,l与抛物线交于A,B两点,O为坐标原点,若△OAB的面积等于4,求此抛物线的标准方程.引申探究等腰直角三角形AOB内接于抛物线y2=2px(p>0),O为抛物线的顶点,OA⊥OB,则△AOB的面积是()A.8p2B.4p2C.2p2D.p2反思与感悟把握三个要点确定抛物线的几何性质(1)开口:由抛物线标准方程看图象开口,关键是看准二次项是x还是y,一次项的系数是正还是负.(2)关系:顶点位于焦点与准线中间,准线垂直于对称轴.(3)定值:焦点到准线的距离为p;过焦点垂直于对称轴的弦(又称为通径)长为2p;离心率恒等于1.跟踪训练1已知抛物线关于x轴对称,它的顶点在坐标原点,其上一点P到准线及对称轴距离分别为10和6,求抛物线的方程.类型二抛物线的焦点弦问题例2已知直线l经过抛物线y2=6x的焦点F,且与抛物线相交于A、B两点.(1)若直线l的倾斜角为60°,求|AB|的值;(2)若|AB|=9,求线段AB的中点M到准线的距离.引申探究本例中,若A,B在其准线上的射影分别为A1,B1,求∠A1FB1.反思与感悟(1)抛物线的焦半径设过抛物线y2=2px(p>0)的焦点的弦的端点为A(x1,y1),B(x2,y2),则|AB|=x1+x2+p.然后利用弦所在直线方程与抛物线方程联立,消元,由根与系数的关系求出x1+x2即可.跟踪训练2直线l过抛物线y2=4x的焦点,与抛物线交于A,B两点,若|AB|=8,则直线l的方程为________________.类型三抛物线的实际应用例3某河上有一座抛物线形的拱桥,当水面距拱顶5 m时,水面宽8 m,一木船宽4 m,高2 m,载货的木船露在水面上的部分高为0.75 m,货物的宽与木船相同,当水面上涨到与拱顶相距多少时,木船开始不能通航?反思与感悟在建立抛物线的标准方程时,常以抛物线的顶点为坐标原点,对称轴为一条坐标轴建立坐标系,这样可使得标准方程不仅具有对称性,而且曲线过原点,方程不含常数项,形式更为简单,便于应用.跟踪训练3如图,有一座抛物线型拱桥,桥下面在正常水位AB 时宽20米,水位上升3米就达到警戒线CD ,这时水面宽度为10米.若洪水到来时,水位以每小时0.2米的速度从警戒线开始上升,则再持续多少小时才能到拱桥顶?(平面直角坐标系是以桥顶点为点O 的)1.以x 轴为对称轴的抛物线的通径(过焦点且与x 轴垂直的弦)长为8,若抛物线的顶点在坐标原点,则其方程为() A .y 2=8xB .y 2=-8xC .y 2=8x 或y 2=-8xD .x 2=8y 或x 2=-8y2.若抛物线y 2=x 上一点P 到准线的距离等于它到顶点的距离,则点P 的坐标为() A .(14,±24)B .(18,±24)C .(14,24)D .(18,24)3.已知过抛物线y 2=8x 的焦点作直线l ,交抛物线于A ,B 两点,若线段AB 中点的横坐标为3,则AB 的值为________.4.对于顶点在原点的抛物线,给出下列条件: ①焦点在y 轴上; ②焦点在x 轴上;③抛物线上横坐标为1的点到焦点的距离等于6; ④抛物线的通径的长为5;⑤由原点向过焦点的某条直线作垂线,垂足坐标为(2,1).符合抛物线方程为y2=10x的条件是________.(要求填写合适条件的序号)5.求适合下列条件的抛物线的标准方程:(1)顶点在原点,对称轴为坐标轴,顶点到准线的距离为4;(2)顶点是双曲线16x2-9y2=144的中心,准线过双曲线的左顶点,且垂直于坐标轴.1.讨论抛物线的几何性质,一定要利用抛物线的标准方程;利用几何性质,也可以根据待定系数法求抛物线的方程.2.解决抛物线的焦点弦问题时,要注意抛物线定义在其中的应用,通过定义将焦点弦长度转化为端点的坐标问题,从而可借助根与系数的关系进行求解.3.设直线方程时要特别注意斜率不存在的直线应单独讨论.答案精析问题导学 知识点一思考1范围、对称性、顶点、离心率.思考2范围x ≥0,关于x 轴对称,顶点坐标(0,0).思考3参数p (p >0)对抛物线开口大小有影响,因为过抛物线的焦点F 且垂直于对称轴的弦的长度是2p ,所以p 越大,开口越大. 梳理(0,0)1 题型探究例1解由题意,设抛物线方程为y 2=2mx (m ≠0), 焦点F (m 2,0).直线l :x =m2,所以A ,B 两点坐标为(m 2,m ),(m2,-m ),所以|AB |=2|m |. 因为△OAB 的面积为4, 所以12·|m2|·2|m |=4,所以m =±2 2.所以抛物线的标准方程为y 2=±42x . 引申探究B[因为抛物线的对称轴为x 轴,内接△AOB 为等腰直角三角形,所以由抛物线的对称性知,直线AB 与抛物线的对称轴垂直,从而直线OA 与x 轴的夹角为45°.由方程组⎩⎪⎨⎪⎧y =x ,y 2=2px ,得⎩⎪⎨⎪⎧x =0,y =0或⎩⎪⎨⎪⎧x =2p ,y =2p ,所以易得A ,B 两点的坐标分别为(2p,2p )和(2p ,-2p ). 所以|AB |=4p ,所以S △AOB =12×4p ×2p =4p 2.]跟踪训练1解设抛物线的方程为y 2=2ax (a ≠0),点P (x 0,y 0).因为点P 到对称轴距离为6,所以y 0=±6.因为点P 到准线距离为10, 所以|x 0+a2|=10.①因为点P 在抛物线上,所以36=2ax 0, ②由①②,得⎩⎪⎨⎪⎧a =2,x 0=9或⎩⎪⎨⎪⎧a =18,x 0=1或⎩⎪⎨⎪⎧a =-18,x 0=-1或⎩⎪⎨⎪⎧a =-2,x 0=-9.所以所求抛物线的方程为y 2=±4x 或y 2=±36x . 例2解(1)因为直线l 的倾斜角为60°, 所以其斜率k =tan 60°= 3.又F ⎝ ⎛⎭⎪⎫32,0,所以直线l 的方程为y =3⎝ ⎛⎭⎪⎫x -32. 联立⎩⎪⎨⎪⎧y 2=6x ,y =3⎝ ⎛⎭⎪⎫x -32,消去y 得x 2-5x +94=0.设A (x 1,y 1),B (x 2,y 2). 则x 1+x 2=5. 而|AB |=|AF |+|BF | =x 1+p 2+x 2+p2=x 1+x 2+p ,所以|AB |=5+3=8.(2)设A (x 1,y 1),B (x 2,y 2),由抛物线定义知|AB |=|AF |+|BF |=x 1+p 2+x 2+p2=x 1+x 2+p=x 1+x 2+3,所以x 1+x 2=6,所以线段AB 的中点M 的横坐标是3. 又准线方程是x =-32,所以M 到准线的距离等于3+32=92.引申探究解由抛物线定义|AA 1|=|AF |,得 ∠AA 1F =∠AFA 1, 又AA 1∥x 轴, ∴∠OFA 1=∠AA 1F , ∴∠OFA 1=∠AFA 1, 同理得∠OFB 1=∠BFB 1, ∴∠A 1FO + ∠B 1FO =90°, 即∠A 1FB 1=90°.跟踪训练2x +y -1=0或x -y -1=0例3解以桥的拱顶为坐标原点,拱高所在的直线为y 轴建立直角坐标系.(如图) 设抛物线的方程是x 2=-2py (p >0), 由题意知A (4,-5)在抛物线上, 故16=-2p ×(-5)⇒p =85,则抛物线的方程是x 2=-165y (-4≤x ≤4),设水面上涨,木船货物上表面两侧与抛物线形拱桥接触于B ,B ′时,木船开始不能通航.设B (2,y ′), ∴=-165y ′⇒y ′=-54.∴54+0.75=2. 故当水面上涨到与抛物线形的拱顶相距2 m 时,木船开始不能通航.跟踪训练3解设所求抛物线的解析式为y =ax 2. 设D (5,b ),则B (10,b -3), 把D 、B 的坐标分别代入y =ax 2得⎩⎪⎨⎪⎧25a =b ,100a =b -3,解得⎩⎪⎨⎪⎧a =-125,b =-1,∴y =-125x 2.∵b =-1,∴拱桥顶O 到CD 的距离为1,10.2=5.即再持续5小时水位到达拱桥顶. 当堂训练1.C 2.B3.104.②⑤5.解(1)由抛物线标准方程对应的图形易知:顶点到准线的距离为p 2,故p2=4,p =8.因此,所求抛物线的标准方程为y 2=±16x 或x 2=±16y .(2)双曲线方程16x 2-9y 2=144化为标准形式为x 29-y 216=1,中心为原点,左顶点为(-3,0),故抛物线顶点在原点,准线为x =-3.由题意可设抛物线的标准方程为y 2=2px (p >0),可得p2=3,故p =6.因此,所求抛物线的标准方程为y 2=12x .。
抛物线及其标准方程教学设计白强【教材分析】:《抛物线及其标准方程》是普通高中课程标准实验教科书数学选修2-1(人教版B版)第二章第四节第一课时的内容,是学习抛物线这种圆锥曲线的起始课,是在学习了椭圆与双曲线之后的又一重要内容,根据抛物线定义推出的标准方程,也为下一节用代数方法研究抛物线的几何性质和几何性质的应用提供了必要的工具和基础.因此,它是圆锥曲线这章的重要的组成部分.【学情分析】:抛物线是圆锥曲线中的一种,也是日常生活中常见的一种曲线,可以说学生对抛物线的几何图形已经有了直观的认识。
在本节课之前,学生已经学习过椭圆和双曲线,经历了根据椭圆和双曲线的几何特征,建立适当的直角坐标系,求椭圆和双曲线标准方程的过程。
对圆锥曲线的研究过程和研究方法有了一定的了解和认识,这对于圆锥曲线的后续学习有借鉴、迁移的作用。
【教学理念】《数学课程标准》明确指出“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践,自主探索和合作交流是学生学习数学的重要方式。
”同时根据学校的“334”教学模式让学生自主学习,合作探究,亲历探究发现和成果展示过程,以达到对知识的深层理解。
亲历探究发现过程,不仅仅是一种获取知识的教学手段,而本身就是数学的重要目的。
小组成果展示过程也对学习效果进行了反馈,不仅有利于老师把握课堂的学习效果,也能够让学生之间相互学习、合作交流和评价。
除了教师对学生进行评价外,更要重视学生对自己学习活动的反思和自我评价,重视学生之间的相互评价,以培养学生的反思能力,以及根据反思的结果自觉进行自我调控的能力。
【教学目标】:(一)知识与技能(1)掌握抛物线的定义、几何图形;(2)会推导抛物线的标准方程;(3)能够利用给定条件求抛物线的标准方程。
(二)过程与方法通过“观察”、“思考”、“探究”等一系列数学活动,培养学生观察、类比、分析、概括的能力以及逻辑思维的能力,使学生学会数学思考与推理,学会反思与感悟,形成良好的数学观。
高中数学第二章圆锥曲线与方程2.4.1 抛物线的标准方程课堂导学案新人教B版选修2-1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第二章圆锥曲线与方程 2.4.1 抛物线的标准方程课堂导学案新人教B版选修2-1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第二章圆锥曲线与方程 2.4.1 抛物线的标准方程课堂导学案新人教B版选修2-1的全部内容。
2。
4。
1 抛物线的标准方程课堂导学三点剖析一、求抛物线的方程【例1】 分别求适合下列条件的抛物线方程。
(1)顶点在原点,以坐标轴为对称轴,且过点A(2,3);(2)顶点在原点,以坐标轴为对称轴,焦点到准线的距离为25。
(3)顶点在原点,以坐标轴为对称轴,焦点在直线x +3y+15=0上。
解:(1)由题意,方程可设为y 2=mx 或x 2=ny,将点A (2,3)的坐标代入,得32=m\52或22=n \53,∴m=29或n =34.∴所求的抛物线方程为y 2=29x 或x 2=34y.(2)由焦点到准线的距离为25,可知p=25,∴所求抛物线方程为y 2=5x 或y 2=—5x 或x2=5y 或x2=—5y 。
(3)令x=0得y=—5;令y=0得x =—15.∴抛物线的焦点为(0,—5)或(—15,0).∴所求抛物线的标准方程为y2=60x 或x 2=-20y 。
温馨提示(1)抛物线的标准方程有四种形式,主要看其焦点位置或开口方向.(2)抛物线的标准方程中只有一个参数p,即焦点到准线的距离,常称为焦参数。
二、求动点的轨迹方程【例2】 平面上动点P 到定点F(1,0)的距离比P 到y 轴的距离大1,求动点P 的轨迹方程。
最新中小学教案、试题、试卷
2.3.1 抛物线及其标准方程
预习导航
1.抛物线的定义
思考1定义中为什么加上条件“l 不经过F ”?
提示:若点F 在直线l 上,满足条件的动点P 的轨迹是过点F 且垂直于l 的直线,而不是抛物线. 思考2抛物线的图形是双曲线的一支吗?
提示:不是.当抛物线上的点趋向于无穷远时,图象的切线接近于和x 轴平行;而双曲线上的点趋向于无穷远时,图象的切线接近于与渐近线平行.抛物线没有渐近线;从方程上看,抛物线的方程与双曲线的方程有很大差别.
2.抛物线的标准方程
方程y 2
=2px (p >0)叫做抛物线的标准方程.它所表示的抛物线的焦点在x 轴的正半轴上,坐标是⎝ ⎛⎭
⎪⎫p 2,0;它的准线方程是x =-p
2,其中p 是焦点到准线的距离,叫做抛物线的焦参数. 思考3二次函数y =ax 2+bx +c (a ≠0)的图象是抛物线,那么抛物线对应的方程一定是二次函数吗?
提示:抛物线对应的方程不一定是二次函数.如y 2=4x 是抛物线,但不是函数,更不是二次函数.
思考4抛物线的标准方程中,p 的几何意义是什么?
提示:p 的几何意义是焦点到准线的距离,因此p >0,p 越大,抛物线开口越开阔,反之越扁
最新中小学教案、试题、试卷狭.。
2.3.1 抛物线及其标准方程学习目标 1.掌握抛物线的定义及焦点、准线的概念.2.掌握抛物线的标准方程及其推导过程.3.明确抛物线标准方程中p的几何意义,能解决简单的求抛物线标准方程问题.知识点一抛物线的定义思考1 如图,在黑板上画一条直线EF,然后取一个三角板,将一条拉链AB固定在三角板的一条直角边上,并将拉链下边一半的一端固定在C点,将三角板的另一条直角边贴在直线EF 上,在拉链D处放置一支粉笔,上下拖动三角板,粉笔会画出一条曲线.这是一条什么曲线,由画图过程你能给出此曲线的定义吗?思考2 抛物线的定义中,l能经过点F吗?为什么?梳理从定义可以看出,抛物线不是双曲线的一支,双曲线有渐近线,而抛物线没有.对抛物线定义的理解应注意定点不在定直线上,否则,动点的轨迹是一条________.知识点二抛物线的标准方程思考1 抛物线方程中p有何意义?抛物线的开口方向由什么决定?思考2 抛物线标准方程的特点?思考3 已知抛物线的标准方程,怎样确定抛物线的焦点位置和开口方向?梳理抛物线的标准方程有四种类型类型一抛物线标准方程及求解命题角度1 由抛物线方程求焦点坐标或准线方程例1 已知抛物线的方程如下,求其焦点坐标和准线方程.(1)y2=-6x;(2)3x2+5y=0;(3)y=4x2;(4)y2=a2x(a≠0).反思与感悟如果已知抛物线的标准方程,求它的焦点坐标、准线方程时,首先要判断抛物线的对称轴和开口方向.一次项的变量若为x (或y ),则x 轴(或y 轴)是抛物线的对称轴,一次项系数的符号决定开口方向.跟踪训练1 (1)抛物线y 2=4x 的焦点到双曲线x 2-y 23=1的渐近线的距离是( )A.12B.32C .1D. 3(2)若抛物线y 2=2px 的焦点坐标为(1,0),则p =_____________________________________, 准线方程为____________.命题角度2 求解抛物线标准方程例2 分别求满足下列条件的抛物线的标准方程: (1)焦点为(-2,0); (2)准线为y =-1; (3)过点A (2,3); (4)焦点到准线的距离为52.反思与感悟 求抛物线方程,通常用待定系数法,若能确定抛物线的焦点位置,则可设出抛物线的标准方程,求出p 值即可.若抛物线的焦点位置不确定,则要分情况讨论.焦点在x 轴上的抛物线方程可设为y 2=ax (a ≠0),焦点在y 轴上的抛物线方程可设为x 2=ay (a ≠0). 跟踪训练2 分别求满足下列条件的抛物线的标准方程. (1) 过点(3,-4);(2) 焦点在直线x +3y +15=0上.类型二 抛物线定义的应用例3 已知点A (3,2),点M 到F ⎝ ⎛⎭⎪⎫12,0的距离比它到y 轴的距离大12. (1)求点M 的轨迹方程;(2)是否存在M ,使|MA |+|MF |取得最小值?若存在,求此时点M 的坐标;若不存在,请说明理由.反思与感悟 (1)抛物线定义具有判定和性质的双重作用.本题利用抛物线的定义求出点的轨迹方程,又利用抛物线的定义,“化曲折为平直”,将两点间的距离的和转化为点到直线的距离求得最小值,这是平面几何性质的典型运用.(2)通过利用抛物线的定义,将抛物线上的点到焦点的距离和到准线的距离进行转化,从而简化问题的求解过程.在解决抛物线问题时,一定要善于利用其定义解题.跟踪训练3 已知点P 是抛物线y 2=2x 上的一个动点,则点P 到点(0,2)的距离与点P 到该抛物线准线的距离之和的最小值是( ) A.172 B .3 C. 5 D.921.抛物线y =14x 2的准线方程是( )A .y =-1B .y =-2C .x =-1D .x =-22.已知抛物线的顶点在原点,对称轴为x 轴,焦点在双曲线x 24-y 22=1上,则抛物线方程为( ) A .y 2=8x B .y 2=4x C .y 2=2xD .y 2=±8x3.已知抛物线C :y 2=x 的焦点为F ,A (x 0,y 0)是C 上一点,|AF |=54x 0,则x 0等于( )A .4B .2C .1D .84.已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1和直线l 2的距离之和的最小值是( ) A .2 B .3 C.115 D.37165.若抛物线y 2=-2px (p >0)上有一点M ,其横坐标为-9,它到焦点的距离为10,求抛物线方程和M 点的坐标.1.焦点在x 轴上的抛物线,其标准方程可以统设为y 2=mx (m ≠0),此时焦点为F (m4,0),准线方程为x =-m4;焦点在y 轴上的抛物线,其标准方程可以统设为x 2=my (m ≠0),此时焦点为F (0,m 4),准线方程为y =-m4.2.设M 是抛物线上一点,焦点为F ,则线段MF 叫做抛物线的焦半径.若M (x 0,y 0)在抛物线y 2=2px (p >0)上,则根据抛物线的定义,抛物线上的点到焦点的距离和到准线的距离可以相互转化,所以焦半径|MF |=x 0+p2.3.对于抛物线上的点,利用定义可以把其到焦点的距离转化为到准线的距离,也可以把其到准线的距离转化为到焦点的距离,因此可以解决有关距离的最值问题.答案精析问题导学 知识点一思考1 平面内到一个定点F 和一条定直线l (F ∉l )的距离相等的点的轨迹叫做抛物线,定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线.思考2 不能,若l 经过点F ,满足条件的点的轨迹不是抛物线,而是过点F 且垂直于l 的一条直线. 梳理 直线 知识点二思考1 p 是抛物线的焦点到准线的距离,抛物线的方程中一次项决定开口方向. 思考2 (1)原点在抛物线上;(2)对称轴为坐标轴;(3)p 为大于0的常数,其几何意义表示焦点到准线的距离;(4)准线与对称轴垂直,垂足与焦点关于原点对称;(5)焦点、准线到原点的距离都等于p2.思考3 一次项变量为x (或y ),则焦点在x 轴(或y 轴)上;若系数为正,则焦点在正半轴上;系数为负,则焦点在负半轴上.焦点确定,开口方向也随之确定. 题型探究例1 解 (1)由方程y 2=-6x ,知抛物线开口向左,2p =6,p =3,p 2=32,所以焦点坐标为(-32,0),准线方程为x =32.(2)将3x 2+5y =0变形为x 2=-53y ,知抛物线开口向下, 2p =53,p =56,p 2=512,所以焦点坐标为(0,-512),准线方程为y =512.(3)将y =4x 2化为x 2=14y ,知抛物线开口向上, 2p =14,p =18,p 2=116,所以焦点坐标为(0,116),准线方程为y =-116.(4)由方程y 2=a 2x (a ≠0)知抛物线开口向右, 2p =a 2,p =a 22,p 2=a 24,所以焦点坐标为(a 24,0),准线方程为x =-a 24.跟踪训练1 (1)B (2)2 x =-1例2 解 (1)由于焦点在x 轴的负半轴上,且p2=2,∴p =4,∴抛物线标准方程为y 2=-8x . (2)∵焦点在y 轴正半轴上,且p2=1,∴p =2,∴抛物线标准方程为x 2=4y .(3)由题意,抛物线方程可设为y 2=mx (m ≠0)或x 2=ny (n ≠0), 将点A (2,3)的坐标代入,得32=m ·2,22=n ·3, ∴m =92,n =43.∴所求抛物线方程为y 2=92x 或x 2=43y .(4)由焦点到准线的距离为52,可知p =52.∴所求抛物线方程为y 2=5x 或y 2=-5x 或x 2=5y 或x 2=-5y .跟踪训练2 解 (1)方法一 ∵点(3,-4)在第四象限,∴设抛物线的标准方程为y 2=2px (p >0)或x 2=-2p 1y (p 1>0).把点(3,-4)的坐标分别代入y 2=2px 和x 2=-2p 1y ,得(-4)2=2p ·3,32=-2p 1·(-4), 即2p =163,2p 1=94.∴所求抛物线的标准方程为y 2=163x 或x 2=-94y .方法二 设抛物线的方程为y 2=ax (a ≠0)或x 2=by (b ≠0). 把点(3,-4)分别代入,可得a =163,b =-94.∴所求抛物线的标准方程为y 2=163x 或x 2=-94y .(2)令x =0得y =-5; 令y =0得x =-15.∴抛物线的焦点为(0,-5)或(-15,0).∴所求抛物线的标准方程为x 2=-20y 或y 2=-60x .例3 解 (1)由于动点M 到F ⎝ ⎛⎭⎪⎫12,0的距离比它到y 轴的距离大12,所以动点M 到F ⎝ ⎛⎭⎪⎫12,0的距离与它到直线l :x =-12的距离相等,由抛物线的定义知动点M 的轨迹是以F 为焦点,l为准线的抛物线,其方程应为y 2=2px (p >0)的形式,而p 2=12,∴p =1,2p =2,故轨迹方程为y 2=2x .(2)如图,由于点M 在抛物线上,所以|MF |等于点M 到其准线l 的距离|MN |,于是|MA |+|MF |=|MA |+|MN |,所以当A 、M 、N 三点共线时,|MA |+|MN |取最小值,亦即|MA |+|MF |取最小值,这时M 的纵坐标为2,可设M (x 0,2),代入抛物线方程得x 0=2, 即M (2,2).跟踪训练3 A [如图,由抛物线的定义知,点P 到准线x =-12的距离等于点P 到焦点F 的距离.因此点P 到点(0,2)的距离与点P 到准线的距离之和可转化为点P 到点(0,2)的距离与点P 到点F 的距离之和,其最小值为点M (0,2)到点F ⎝ ⎛⎭⎪⎫12,0的距离,则距离之和的最小值为 4+14=172.]当堂训练 1.A 2.D3.C [如图,F (14,0),过A 作AA ′⊥准线l , ∴|AF |=|AA ′|, ∴54x 0=x 0+p 2=x 0+14, ∴x 0=1.]4.A [如图所示,动点P 到l 2:x =-1的距离可转化为到点F 的距离,由图可知,距离和的最小值,即F 到直线l 1的距离d =|4+6|42+-2=2.]5.解 由抛物线定义,设焦点为F ⎝ ⎛⎭⎪⎫-p2,0.则该抛物线准线方程为x =p2,由题意设点M 到准线的距离为|MN |,则|MN |=|MF |=10, 即p2-(-9)=10,∴p =2. 故抛物线方程为y 2=-4x .将M (-9,y 0)代入抛物线方程,得y 0=±6. ∴M 点的坐标为(-9,6)或(-9,-6).。