第三章流体静力学(流体的平衡)
- 格式:pdf
- 大小:519.77 KB
- 文档页数:3
第三章流体静力学•静止(平衡)状态:流体相对于惯性参考坐标系(地球)没有运动。
•静止或相对静止状态下的流体呈现粘性吗?dvxdy作用在流体上的表面力只有负的法向应力(静压强)。
dFnpnn pn即dA第一节流体静压强及其特性•特性一:流体静压强的方向沿作用面的内法线方向。
pdFnnn dApnn——受力表面的外法线方向。
• 特性二:静止流体中任一点流体静压强的大小与其作px py pz pn 用面在空间的方位无关,即x方向平衡方程:1px y z pn BCD cospn,x21fx x y z06BCD cospn,x BAD简化条件x,y,z0注意:1、静止流体中不同点的压强一般是不等的,p=f(x,y,z)。
2、实际流体运动时,由于粘性会产生切应力,这时同一点上各向应力不再相等。
3、理想流体运动时,没有切应力,所以呈静压强分布特性,p x py pz p第二节流体平衡方程式一、平衡方程式p x p-x2y z表面力x向受力p+p x y zx2质量力fx x y z• 物理意义:在静止的流体中,当微小六面体以a点为极限时,作用在该点单位质量流体上的质量力与静压强的合力相平衡。
• 适用性:对不可压缩和可压缩流体的静止及相对静止状态都适用。
二、压强差公式等压面p p p p=f x,y,z dp dx dy+dz x y z1p1p1pfx0,fy0,fz0x y z• 压强差公式 dp(fxdx fydy fzdz)或• 等压面微分方程 dp f dsf ds01、等压面:流体中压强相等的各点所组成的面。
2、只有重力作用下的等压面应满足的条件:(1)静止;(2)连通;(3)连通的介质为同一均质流体;(4)质量力仅有重力;(5)同一水平面。
3、性质:平衡流体等压面上任一点的质量力恒正交于等压面。
三、平衡条件(*)d p fxdx fydy fzdz右侧必是某函数-x,y,z的全微分因此, fx,fy,fz x y z 或f grad (设a是向量场,若存在纯函数u,使a=gradu,则称u为a的势函数。
流体静力学3 流体静力学流体静力学是研究流体相对某一参考系统为静流力学是研究流相对某考统止状态下的力学特征。
阿基米德欧拉浮力定律流体质点平衡状态方程目标确定流体内部压力场的静力学方程式目标:确定流体内部压力场的静力学方程式。
作用在流体上的两种力:质量力、表面力质量力)——作用及分布于指定质量的整个质力(体积力)作分布指质的个体积,而无需物理上的直接接触;表面力——作用于流体表面或内部界面,是通过与表力作用于流体表或内部界是通过与表面或内部界面的直接接触而实现,其力分布于接触面。
触面质量力:d zd x d y表面力:“静止”流体Æ无切向力表面力仅为压力泰勒展开:表面力:中心点O的压力为p压强梯度压力梯度是单位体积上由压强所产生的表面力的负值。
可以看出:在计算表面净剩压力时,压强本身的大小不很重要,重要的是压强随着距离的变本身的大小不很重要重要的是压强随着距离的变化率,也就是压强梯度。
体积力+表面力流,顿第示对于流体质点,牛顿第二定律表示为对于流体质点流体静止,加速度等于0欧拉平衡方程某位置处单位体积的压力+该位置处单位体积的重力=0如果重力矢量与z 轴取一致的话轴取一致的话,力矢与轴取致的,则,g x =0,g y =0,g z =-g静力学基本方程:d p g ργ=−≡−适用范围:适用范围:11.d z静止流体;2.质量力只有重力存在;3.z 轴是垂直地面的方向()(1) 不可压缩流体ρ=ρ= constant压力分布满足:d p=0Æd z=0在等压面上00在重力场中,水平面为等压面。
在重力场中,压强只与垂直坐标有关。
压力和高度的基本关联式常常用于解决压力计问题,分析多管压力计时,要考虑以下原则:①连通管中同一种液体在同一高度的任何两点,压连通管中同种液体在同高度的任何两点压力相同;②随着液柱的下降,压力增大。
()()(2) 可压缩流体上册P22-24)液压力密度的关联式积模或弹性模液体压力和密度的关联式用体积模量(或弹性模量)来表示气体的密度一般取决于压力和温度ρf()真实大气密度:=f 地理位置、季节、时辰……)国际标准大气状态主要按照北半球中纬度地区各季节中大气的平均值而定出:各季节中大气的平均值而定出①空气被看作是完全气体;②大气的相对湿度为零;③以海平面作为高度计算的起点;④在高度11000米以下,气温随高度呈直线变化,每升高1米,气温下降0.0065度;米气温下降00065⑤在约11000~24000米范围内,气温保持不变,此时的温度为216.7K。