Solution of the above equation gives the amplitude and phase angle of the steady state response of the damped mass-spring system under harmonic excitation:
幅频特性与相频特性
ψ 的讨论
1、 = 0 的附近区域 (低频区或弹性控制区) ,β 1 =0,响
应与激励同相;对于不同的 值,曲线密集,阻尼影响不大。
2、 >>1的区域(高频区或惯性控制区), ψ π ,响应与 β 0, 激励反相;阻尼影响也不大。 3、 =1的附近区域(共振区), 急剧增大并在 =1略为偏左 处有峰值。通常将=1,即 = pn 称为共振频率。阻尼影响 显著且阻尼愈小,幅频响应曲线愈陡峭,峰值越大。 4、在相频特性曲线图上,无论阻尼大小, =1时,总有, = /2 ,这也是共振的重要现象。
-曲线族-幅频特性曲线 -曲线族-相频特性曲线
2.1.2 受迫振动的振幅B、相位差 ψ 的讨论
-曲线族-幅频特性曲线;-曲线族-相频特性曲线
在低频区和高频区,当 <<1时,由于阻尼影响不大 , 为了简化计算 ,可将有阻尼系统简化为无阻尼系统。
2.1.2 受迫振动的振幅B、相位差
z Zei ( t ) (Ze i )ei t
Substituting into Eq., we obtain
and
x ( Ze
i
Ze
i
m 2Y k m 2 i c
Y )e
i t
k i c i t ( ) Ye k m 2 i c