单自由度系统的振动.ppt
- 格式:ppt
- 大小:1.11 MB
- 文档页数:47
第1章 单自由度系统的振动1.1概述机械振动是工程中常见的物理现象。
悬挂在弹簧上的物体在外界干扰下所作的往复运动就是最简单直观的机械振动。
广泛地说,各种机器设备及其零部件和基础,都可以看成是不同程度的弹性系统。
例如桥梁在车辆通过时引起的振动,汽轮机、发电机由于转子不平衡引起的振动等。
因此,机械振动就是在一定的条件下,振动体在其平衡位置附近所作的往复性的机械运动。
实际中的振动系统是很复杂的。
为了便于分析研究和运用数学工具进行计算,需要在满足工程要求的条件下,把实际的振动系统简化为力学模型。
例如图示1.1-1就是个最简单的单自由度质量(m )—弹簧(k )系统。
如果实际系统很复杂,要求的精度较高,简化的力学模型也就复杂。
振动系统中和参数的动态特性,可以用常系数线性微分方程来描述的,称为线性振动。
但工程实际中也有很多振动系统是不能线性化的,如果勉强线性化,就会使系统的性质改变,所得的系统只能按非线性振动系统处理。
机械振动分析方法很多。
对于简单的振动系统,可以直接求解其微分方程的通解。
由于计算机进行数值计算非常方便,所以振动仿真是一种最直接的方法。
由于振动模型中尤其是多自由度振动很方便用矩阵微分方程来描述,所以MATLAB 语言在振动仿真中体现出十分优越的特性。
本章先介绍机械振动的单自由度、多自由度振动的基础,然后介绍仿真计算的各种计算公式,最后通过MATLAB 语言来实现。
1.2单自由度系统的振动1.2.1 无阻尼自由振动如图1.1-1所示的单自由度振动系统可以用如下微分方程描述:0=+kx xm (1.2.1-1) 令mkn =2ω ,方程的通解为t b t a x n n ωωcos sin += (1.2.1-2)式(1.2.1-2)表示了图示(1.1-1)中质量m 的位置随时间而变化的函数关系,反映了振动的形式与特点,称为振动函数。
式(1.2.1-2)中,a 、b 为积分常数,它决定于振动的初始条件。