七年级数学水位的变化2
- 格式:ppt
- 大小:244.50 KB
- 文档页数:14
七年级数学水位的转变易错点测试试卷简介:全卷共4道题,,全数是关于水位转变的问题。
总分值100分。
本卷题目难度为中等,要紧用到有理数的加减混合运算,知识点比较容易,可是结合实际问题以后就要在此基础上明白得题意,进而解题。
学习建议:同窗们已经学完了有理数的加减混合运算,因此解决这种问题的能力是具有的。
但在解决水位转变方面的问题时,同窗们必然要依照题意,具体明白得其在此题中的含义,进而判定出正确的做题方式。
题目虽简单,但却包括了水位的转变这种类型题的本质特点。
一、单项选择题(共4道,每道25分)1.小明从家里动身向东行驶2千米,记作+2千米,再向西行驶3千米,记作-3千米,实际结果是( )A.向东行驶5千米B.向西行驶1千米C.向西行驶5千米D.原地未动2.为锻炼躯体,小明从第16层楼动身作上、下楼运动,他把自己上、下楼的层数记录了下来:+2,一5,+3,一2,+4,一3.(注:负号表示比前一次下楼,正号表示比前一次上楼,那么最后一次记录时他在( )层层层层3.室内温度是32℃,小明打开空调后,温度下降了6℃,记作-6℃,当关上空调后1小时,空气温度又上升了2℃,记作+2℃,那么现在室内温度是()℃℃℃℃4.某中学七年级一班学生的平均身高是160cm,该班6名学生的身高的情形(单位:cm)如下:分析上述表格显示的情形,那么在小莉、小阳、小月、小高中,身高最高的是( ).A.小莉B.小阳C.小月D.小高众享课程主页东区总校:郑州市文化路与黄河路交叉口中孚大厦7楼B室:西区总校:郑州市陇海路与桐柏路交叉口凯旋门大厦B座405室:。
水位的变化教学目标知识与技能:1、能综合使用有理数及其加、减法的相关知识灵活地解决简单的实际问题.2、经历使用图表描述事物的变化过程,会用折线统计图表示数据变化趋势.3、培养学生的观察、对比、分析生活问题的水平过程与方法:经历将一些实际问题抽象成有理数的加减运算的过程,体会数学与现实生活的联系.情感与态度:让学生经历和体验用所学的知识解决实际生活中问题的乐趣,感受到有理数运算的实用性,增强学生学好数学的信心.教材分析重点:能综合使用有理数及其加、减法的相关知识灵活地解决简单的实际问题.难点:同上.教具:电脑、投影仪教学过程第一环节课前准备活动内容:对学生有理数的加减运算的掌握情况实行检测,,并让学生收集一些与上课相关的资料(新闻与水文资料).第二环节:情境引入活动内容:幻灯片展示情境上图是流花河的水文资料(单位:米)第三环节:合作学习活动内容:1.如果把流花河的警戒水位记为0点,那么其他数据能够分别记为什么?并且说明自己的思路.请大家继续观察并独立思考,各自在交流组内发表自己的意见.2.下表是小明记录的今年雨季流花河一周内的水位变化情况(上周末的水位达到警戒水位).注:正号表示水位比前一天上升,负号表示水位比前一天下降.(1)本周哪一天流花河的水位最高?哪一天水位最低?它们位于警戒水位之上还是之下?与警戒水位的距离分别是多少?(2)与上周末相比,本周末流花河水位是上升了还是下降了?(3)请完成下面的本周水位记录表:注:正号表示水位比前一天上升,负号表示水位比前一天下降.(1)本周哪一天流花河的水位最高?哪一天水位最低?它们位于警戒水位之上还是之下?与警戒水位的距离分别是多少?(2)与上周末相比,本周末流花河水位是上升了还是下降了?(3)请完成下面的本周水位记录表:星期一二三四五六日水位记录(米)33.6(4)以警戒水位为0点,用折线统计图表示本周的水位情况.第四环节:练习提升第五环节:课堂小结通过这节课的学习,同学们有何收获?学到了什么?1.学会了用数学去解决生活中的变化现象,对于几次连续的变化情况能够用有理数的加减法去解决.2.感受到折线统计图能够形象的反映事物的变化情况.3.很多实际问题能够转化为有理数的加减混合运算来解决.第六环节:布置作业练习册水位的变化课后反思:。
最新整理初一数学教案水位的变化2.7水位的变化学习目标----------知识与技能经历将一些实际问题抽象成为有理数的加减混合运算的过程,体会数学与现实生活的密切联系.--------------过程与方法能综合运用有理数及其加法,减法的有关知识解决简单的实际问题.--------------情感态度与价值观在独立思考的基础上,积极参与对数学问题的讨论,敢于发表自己的观点,并尊重与理解他人的见解,能从交流中获益.学习过程----------前置准备计算⑴8﹢(-3)+(-5)⑵0.95+(-1.8)+(-0.2)-2.65⑶7.25-2(13)-27.75+(-7(23)⑷3.5-(-(12)+(52)-0.25自主学习看书思考p72-----73如何表示水位的高低变化.1水位的高低与“+”“-”的关系是什么?2感受如何把实际问题转化成数学问题水位变化转化为加减混合运算3认识折线统计图的构造及意义------合作交流-----学生发表见解①在水位表示中正数.负数的意义是什么?②求周末的水位的方法是什么?③说说折线统计图的特征,你如何画折线统计图?---------归纳总结师生共进1把实际问题转化为数学问题-----体验数学转化的思想和方法.2.符号的处理方法.----------例题解析小明的爸爸买了一种股票,每股8元.下表纪录了在一周内股票的涨跌情况. 则该股票本周中最高价格为____元星期一二三四五涨跌0.20.35-0.15-0.40.5----------课下训练1.-(13)-(-3(12))+(-2(14))-(+5(16))2.-|-(12)+|-(13)|-|-0|-(-(14))-(-19)3.若摩托车厂T本周计划能生产450辆摩托车.由于工人实行轮休,每次上班人数不一定相等.实行每日生产量与计划量相比情况如下表(增加的辆数为正,减少的辆数为负)星期一二三四五六七增减数-5+7-3+4+10-9-25①根据纪录可知,本周三生产了___辆.本周总生产量与计划辆数对比增减数为___辆.产量最多的一天比产量最少的一天多生产了___辆.②用折线统计图表示本周七天的生产情况。
1
数学:2.7《水位的变化》同步练习(一)(北师大版七年级上)
一、滚动复习
1.一条数轴上,所有大于-3,但不大于2的所有整数的和是 ;
2.填空:(-5)-( )=0; (+31)-( )=-38; ( )-(-21)=40.
3.某地五天中,每天的最高气温与最低气温记录如下,哪天温差最大?哪天温差最小?
二、填空题: 1.324)21
3(43
2-+-= ; 2.(-4.25)-(-2.78)+51
1412-= ;
3.-
4.7-(-113
6)-5.3+118
4= ; 4.(-315)-(+3.375)+512--(-83
3)= .
5.一个加数是0.01,和是-27.9,另一个加数是 ;
6.从-1中减去43
,87,125
---的和,列式为 ,所得差是 .
三、计算:
1、7+(-2)-3.4;
2、-21.6+3-7.4+)52(-;
3、31+()45
-+0.25;
4、7—(—21
)+1.5; 5、49-(-20.6)-53; 6、(-56
)-7-(-3.2)+(-1).
四、一个病人每天下午测量一次血压,下表是星期一到星期五收缩压的记录,该病人上星期日的收缩压为160单位.
(1)计算星期五该病人的收缩压;
(2)请用折线图表示该病人这五天的收缩压情况.
拓展题:如图,把16个球排列着,并编上从1到16的号码,从第一个球顺时针前进3个就到第4个球,像这样,从第一个球顺时针前进328个,从那里再逆时针前进485个,然后又沿着顺时针前进136个,这时到第几个球的位置?
2。
介父从州今凶分市天水学校数学:<水位的变化>同步练习(五)〔北师大七年级上〕一、填空题1.计算〔1〕-31+41-65+73=_____ 〔2〕31-65+32-61=_____ 2.-2+3-4=+______-______-______=+________-(_________)=+_____-_____=_____3.:a =11,b =-12,c =-5计算:〔1〕a +b +c =_____〔2〕a -b +c =_____〔3〕a -(b +c )=_____〔4〕b -(a -c )=_____4.将(-3)+(-2)-(+7)-(-6)去括号后可变形为_____.5.-21与32的相反数的绝对值之和是______. 6.a 、b 互为相反数,c 是绝对值最小的数,d 是负整数中最大的数,那么a +b +c -d =_____.7.假设|2x -3|+|3y +2|=0,那么x -y =_____.8.某次考试初一年级数学平均分为73分,其中最高分高出平均分25分,最低分比平均分低24分,请问最高分比最低分高_____分.9.某地上午气温为5℃,中午气温上升7℃,晚上又下降了16℃,那么晚上的气温为______.10.〔1〕当a >0时,a ,21a ,32a ,-2a ,3a ,由小到大的排列顺序为_____.〔2〕当b <0时,a +2b ,a +b ,a -b ,a -2b ,a ,由小到大的顺序为_____.二、选择题11.如果|c |=-c ,那么c -21一定是〔 〕 A.正数B.负数C.0D.可能为正数也可能为负数12.与a +b -c 的值相等的是〔 〕A.a -(-b )-(-c )B.a -(-b )-(+c )C.a +(-b )-cD.a +(c -b ) 13.如果一个整数加4为正,加2为负,那么这个数与-2的和为〔 〕A.-4B.-5C.5D.414.下面等式错误的选项是〔 〕 A.21-31-51=21-(31+51)B.-5+2+4=4-(5+2)C.(+3)-(-2)+(-1)=3+2-1D.2-3-4=-(-2)-(+3)+(-4) 三、解答题15.计算-341-(-265)+352 16.a =2,b =-3,c =-1,计算|a -b |+|b -c -a |+|3b -4c |.17.“学雷锋活动月〞活动中,对某小组做好事情况进行统计如下表〔1〕完成上表.〔2〕谁做的好事最多,谁最少?〔3〕最多的比最少的多多少?答案一、1.〔1〕-8441 〔2〕0 2. 3 2 4 3 2 4 3 6 -33.〔1〕-6 〔2〕18 〔3〕28 〔4〕-284.-3-2-7+65.61 6. 1 7.613 9 9.-4℃ 10.〔1〕-2a 、 21a 、32a 、a 、3a 〔2〕a +2b ,a +b ,a ,a -b ,a -2b 二、11.B 12.B 13.B 14.B三、15.60179 14 17.〔1〕小娟15 小青11 小红+1 〔2〕小明最多、小青最少〔3〕7件。
七年级数学水位的变化
第九课时水位的变化
教学目标
知识与能力要求:
经历将一些实际问题抽象成为有理数的加减法混合运算的过程,体会数学与现实生活的联系。
教学思考:
经历运用图描述现实世界的变化的过程。
解决问题
能综合运用有理数及其加法、减法的有关知识,解决简单的实际问题。
情感态度与价值观
在獐思考的基础上,积极参与对数学问题的讨论,敢于发表自己观点,并尊重与理解他人的见解;能从交流中获益。
重点和难点
运用有理数及其加法、减法的有关知识,解决简单的实际问题。
根据实际问题,建立数学模型,体会数学与现实生活的联系。
创设情境,导入新课
同学们,你们是否记得1998 年的那场特大洪水吗?在报道这场特大险情时,我们经常听到一些和水利有关的词,你们还有印象吗?如果有,说说看。
(最高水位、警戒水位、平均水平、最低水位和洪峰等等)
探究新知,学习新课
1、为了更好地研究水位的变化与有理数加减混合运算的关系,我们首。
2.7 水位的变化学习目标:1.能综合运用有理数及其加法、减法的有关知识,解决简单的实际问题。
2.会画折线统计图,并能根据折线统计图反映的信息解决实际问题。
学习重点:运用有理数的加、减运算解决生活中的实际问题。
学习难点:理解题意,正确列出算式。
一、预读:知识点一:有理数的加减混合运算 1.计算:5-(-83)+83的结果是( )A.5 B.543 C.415 D.4412.计算:-4.27+3.8-0.73+1.2=_____________ 841+673-341+574-376=_____________3.计算:0.25+(-321)+0.75+(+1343)-(-873)知识点二:水位的变化某水库管理人员为了掌握该水库的蓄水情况,需要观测水库的水位变化,下表计算这一周内水位总的变化是上升了,还是下降了?上升或下降了多少米?练一练:一个小孩放的风筝升到30m ,过一段时间又升高了8米,以后又下降12m ,现在风筝的高度是多少?二、思悟:1.某天泰昌股票开盘价为18元,上午十一时跌了1.5元,下午收盘时上涨了0.3元,则泰昌股票这天的收盘价是______________2.经过学习你还有哪些疑惑_________________________________________ 三、探究: 1.-21的绝对值与-221的相反数的差是多少?2.已知| a+2 |+| b-3 |=0,求2b a 的值。
3.在“十一”黄金周期间,来我市旅游的人数剧增,其中某一风景区每天旅游的人数如下表(正数表示比前一天多的人数,负数表示比前一天少的人数,单位:万人)学法与教法(2)哪一天游客人数最多,该天的具体人数。
4.如图为某周上海市的股指变化折线统计图。
(1)若上周五股指收于1900点(周六、 周日不开市),那么本周股指最高_________。
(2)用正数表示比前一天涨,负数表示比前四、检测:1.飞机飞行的高度是2500米,上升了-100米,又下降了256米,此时,飞 机的飞行高度是______________。
2024-2025学年人教版七年级上册第一次月考数学模拟试卷(范围:第一章~第二章)一、单选题1. 水位上升2米记为2+米,那么水位下降3米记为( )A. 3−米B. 2−米C. 3+米D. 2+米 2. 我国高速公路发展迅速,据报道,到目前为止,全国高速公路总里程约为11800千米,用科学记数法表示为( )A. 51.1810×B. 311.810×C. 211810×D. 41.1810× 3. 如图,数轴上点P 表示的有理数可能是( )A. 1.6−B. 1.4−C. 0.6−D. 0.4− 4. 下列各数中,最小数是( )A. 0B. 153C. ()32−D. 23−5. 在计算11()()23++−时,按照有理数加法法则,需转化成( ) A. 11()23+−B. 1)3+C. 11()23−− D. 1123 −+6. 下列各组数中,互为相反数是( )A. 2与12B. ()21−与1C. 21−与()21−D. 2与|2|− 7. 小明和同学们共买了4种标注质量为450g 的食品各一袋,他们对这4种食品的实际质量进行了检测,用正数表示超过标注质量的克数,用负数表示不足标注质量的克数,检测结果如下表: 食品种类 第一种 第二种 第三种 第四种检测结果 +10 -20 +15 -15则这四种食品中质量最标准的是( )A. 第一种B. 第二种C. 第三种D. 第四种 8. 有理数a ,b 在数轴上的位置如图,那么下列选项正确的是( )的的A. ||||a b −<−B. 0ab >C. 22a b >D. 0a b +>9. 定义一种新运算:*a b ab b =−.例如:1*21220=×−=.则()()4*2*3 −− 的值为( )A. 3−B. 9C. 15D. 2710. 设a 是绝对值最小的数,b 是最小的正整数,c 是最大的负整数,则a 、b 、c 三数之和为( )A. 1−B. 0C. 1D. 2二、填空题 11. 23−的相反数是__________,23−的绝对值是________. 12. 1363−÷×=______. 13. 比较大小:25−______1−(填“>”或“<”). 14. 近似数1.35是由数a 四舍五入得到的,那么数a 的取值范围是________.15. 已知|x |=2,|y |=6,若x +y <0,则x ﹣y =_____.16. 如图,这是一种数值转换机的运算程序,若输入的数为5,则第2021次输出的数是_____.17. 若a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为4,则22022()a b cd m +−+=__.18. 已知数轴上的点A ,B 表示的数分别为2−,4,P 为数轴上任意一点,表示的数为x ,若点P 到点A ,B 的距离之和为7,则x 的值为 _____.三、解答题19. 已知有理数:-0.5,0,2,122−,( 3.5)−−,2−. (1)把以上各数在下列数轴上用点表示出来:(2)把这些数按照从小到大的顺序排列,并用“<”号连接.20. 计算:(1)()()3996−−−+−;(2)()2023223145−+÷−−−×; (3)115486812 −+×; (4)()()32482233−−−÷×−.21. 阅读下面的解题过程,再解答问题.因为a ÷b 与b ÷a 互为倒数.所以在计算123724348 −÷−+的值时可采用下列方法: 解:因237134824 −+÷−=()23724348 −+×−=()()()237-24--24+-24348××× =-16+18-21=-19, 所以,原式=119− .根据上述方法,计算:151176061512 −÷−−. 22. 某足球守门员练习折返跑,从初始位置出发,向前跑记作正数,向后跑记作负数,他练习记录如下(单位:m):+5,-3,+10,-8,-6,+13,-10(1)守门员最后否回到了初始位置?(2)守门员离开初始位置达到10m 以上(包括10m)的次数是多少?23. 观察下列三行数:2,-4, 8,-16, 32,-64,… ①0,-6, 6,-18, 30,-66,… ②-1, 2,-4, 8,-16, 32,… ③(1)第①行的第n 个数是_______(直接写出答案,n 为正整数)(2)第②、③行的数与第①行相对应的数分别有什么关系?(3)取每行的第8个数,计算这三个数的和.24. 在庆祝新中国72周年华诞的重要时刻,电影《长津湖》上映可谓恰逢其时、意义重大.电影《长津为的是湖》讲述了中国人民志愿军第9兵团某部穿插七连参加长津湖战役的过程,展现了人民军队炽烈的爱国情怀、对党和人民的无比忠诚,生动诠释了伟大的抗美援朝精神.昆明市9月30日该电影的售票量为1.3万张,10月1日到10月7日售票的变化如下表(正数表示售票量比前一天多,负数表示售票量比前一天少):日期1日2日3日4日5日6日7日售票量的变化单位(万张)+0.6 +0.1 −0.3 −0.2 0.4 −0.2 +0.1(1)这7天中,售票量最多的是10月日,售票量最少的是10月日;(2)若平均每张票价为60元,这7天昆明市《长津湖》的票房共多少万元?2024-2025学年人教版七年级上册第一次月考数学模拟试卷(范围:第一章~第二章)一、单选题1. 水位上升2米记2+米,那么水位下降3米记为( )A. 3−米B. 2−米C. 3+米D. 2+米 【答案】A【解析】【分析】本题考查正负数的意义,根据规定方向为正相反方向为负直接求解即可得到答案;【详解】解:∵上升2米记为2+米,∴下降3米记为3−米,故选:A .2. 我国高速公路发展迅速,据报道,到目前为止,全国高速公路总里程约为11800千米,用科学记数法表示为( )A. 51.1810×B. 311.810×C. 211810×D. 41.1810× 【答案】D【解析】【分析】本题考查了科学记数法,根据科学记数法:10n a ×(110a ≤<,n 为正整数),先确定a 的值,再根据小数点移动的数位确定n 的值即可解答,根据科学记数法确定a 和n 的值是解题的关键.【详解】解:411800 1.1810=×,故选:D .3. 如图,数轴上点P 表示的有理数可能是( )A. 1.6−B. 1.4−C. 0.6−D. 0.4−【答案】A【解析】【分析】根据点A 在数轴上的位置,先确定A 的大致范围,再确定符合条件的数.【详解】解:因为点A 在−2与1−之间,且靠近−2,所以点A 表示的数可能是 1.6−.故选:A .为【点睛】本题考查了数轴上的点表示有理数.题目比较简单.原点左边的点表示负数,原点右边的点表示正数.4. 下列各数中,最小的数是( )A. 0B. 153C. ()32−D. 23−【答案】D【解析】【分析】本题考查了有理数的乘方、有理数的比较大小,先计算出()32−、23−,再根据有理数的大小比较法则:正数大于0,负数小于0,正数大于负数,两个负数进行比较,绝对值大的反而小,进行比较即可得出答案,熟练掌握有理数的大小比较法则是解此题的关键.【详解】解:()328−=−,239−=−, 88−= ,99−=,98>,()32305321∴−<<−<,故选:D .5. 在计算11()()23++−时,按照有理数加法法则,需转化成( )A. 11()23+−B. 1)3+C. 11()23−−D. 1123 −+ 【答案】A【解析】【分析】根据有理数的加法法则计算即可求解. 【详解】解:1123 ++− =1123 +− , 故选:A .【点睛】本题考查了有理数的加法,关键是熟练掌握异号两数相加的计算法则.6. 下列各组数中,互为相反数的是( )A. 2与12B. ()21−与1C. 21−与()21−D. 2与|2|− 【答案】C【解析】【分析】本题主要考查相反数以及绝对值,根据相反数以及绝对值的定义解决此题,熟练掌握相反数以及绝对值的定义是解决本题的关键.【详解】解:A 、2与12互为倒数,故此选项不符合题意;B 、()211−= ,()21∴−与1相等,故此选项不符合题意; C 、211−=− ,()211−=,∴21−与()21−互为相反数,故此选项符合题意; D 、|2|2−=,2∴与|2|−相等,故此选项不符合题意; 故选:C .7. 小明和同学们共买了4种标注质量为450g 的食品各一袋,他们对这4种食品的实际质量进行了检测,用正数表示超过标注质量的克数,用负数表示不足标注质量的克数,检测结果如下表: 食品种类 第一种 第二种 第三种 第四种检测结果 +10 -20 +15 -15则这四种食品中质量最标准的是( )A. 第一种B. 第二种C. 第三种D. 第四种 【答案】A【解析】【分析】求出各种高于或低于标准质量的绝对值,根据绝对值的大小做出判断.【详解】解:∵|+10|<|-15|=|+15|<|20|,∴第1种最接近标准质量.故选:A .【点睛】本题主要考查正数、负数的意义,理解绝对值的意义是正确判断的前提.8. 有理数a ,b 在数轴上的位置如图,那么下列选项正确的是( )A. ||||a b −<−B. 0ab >C. 22a b >D. 0a b +>【答案】A【解析】【分析】根据原点左边的数为负数,原点右边的数为正数.从图中可以看出01a <<,1b <−,||||b a >,再选择即可.【详解】解:由数轴可得:01a <<,1b <−,||||b a >,∴||||a b <−,故A 符合题意;0ab <,故B 不符合题意;22a b <,故C 不符合题意;0a b +<,故D 不符合题意;故选:A .【点睛】本题考查了数轴,绝对值和有理数的运算,数轴上右边表示的数总大于左边表示的数. 9. 定义一种新运算:*a b ab b =−.例如:1*21220=×−=.则()()4*2*3 −− 的值为( )A. 3−B. 9C. 15D. 27【答案】C【解析】【分析】先求出()2*3−值,再计算()()4*2*3 −− 即可.【详解】解:∵*a b ab b =−,∴()2*3−=()()233×−−−=63−+=3−,∴()()4*2*3 −−=()()4*3−−=()()()433−×−−−=123+=15.故选:C .【点睛】本题考查了新定义下的有理数运算,熟练掌握运算法则是解题的关键.10. 设a 是绝对值最小的数,b 是最小的正整数,c 是最大的负整数,则a 、b 、c 三数之和为()A. 1−B. 0C. 1D. 2【答案】B的【分析】绝对值最小的数是0,最小的正整数是1,最大的负整数是1−,依此可得a b c 、、,再相加可得三数之和.【详解】解:由题意可知:011a b c ===−,,,∴()0110a b c ++=++−=.故选:B .【点睛】本题主要考查了有理数的加法,此题的关键是知道绝对值最小的数是0,最小的正整数是1,最大的负整数是1−.二、填空题 11. 23−的相反数是__________,23−的绝对值是________. 【答案】 ①. 23−②. 23 【解析】【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数,根据负数的绝对值是它的相反数,可得一个负数的绝对值. 【详解】解:2233−=,23的相反数是23−,23−的绝对值是23. 故答案为(1)23−;(2)23. 【点睛】本题考查了相反数、绝对值的定义.a 的相反数是a −,一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0. 12. 1363−÷×=______. 【答案】16− 【解析】【分析】根据有理数的乘除法运算即可. 【详解】解:原式111=236−×=−, 故答案为:16−. 【点睛】本题主要考查有理数的乘除运算,按照乘除为同级运算从左至右求解.13. 比较大小:25−______1−(填“>”或“<”).【解析】【分析】本题考查了有理数的大小比较;根据两个负数比较大小,绝对值大的反而小可得答案. 【详解】解:∵215−<−, ∴215−>−, 故答案为:>.14. 近似数1.35是由数a 四舍五入得到的,那么数a 的取值范围是________.【答案】1.345≤a <1.355【解析】【分析】根据近似数1.35精确到百分位,是从千分位上的数字四舍五入得到的,若干分位上的数字大于或等于5,则百分位上的数字为4;若千分位上的数字小于5,则百分位上的数字为5,即可得出答案.【详解】解:∵近似数1.35是由数a 四舍五入得到的,∴数a 的取值范围是1.345≤a <1.355;故答案为:1.345≤a <1.355.【点睛】本题考查了近似数,用到的知识点是近似数,一个数最后一位所在的数位就是这个数的精确度. 15. 已知|x |=2,|y |=6,若x +y <0,则x ﹣y =_____.【答案】8或4##4或8【解析】【分析】先根据绝对值的含义求解,x y 的值,再根据0,x y +< 分两种情况讨论即可.【详解】解:∵|x |=2,|y |=6,∴x =±2,y =±6,∵x +y <0,∴当x =2,y =﹣6时,x ﹣y =2+6=8;当x =﹣2,y =﹣6时,x ﹣y =﹣2+6=4;故答案为:8或4.【点睛】本题考查的是绝对值的含义,有理数加法的符号的确定,代数式的值,根据绝对值的含义求解,x y 的值,再分类是解本题的关键.16. 如图,这是一种数值转换机的运算程序,若输入的数为5,则第2021次输出的数是_____.【答案】4【解析】【分析】由程序图可得第一次输出的数为8,第二次输出的数为4,第三次输出的数为2,第四次输出的数为1,第五次输出的数为4,由此可得规律,进而问题可求解.【详解】解:由程序图可得第一次输出的数为5+3=8,第二次输出的数为1842×=,第三次输出的数为1422×=,第四次输出的数为1212×=,第五次输出的数为1+3=4,第六次输出的数为1422×=,……;由此可得规律为从第二次开始每三次一循环, ∴()202113673.......1−÷=, ∴第2021次输出的数是4;故答案为4.【点睛】本题主要考查有理数的运算及数字规律问题,解题的关键是根据程序图得到数字的一般规律即可.17. 若a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为4,则22022()a b cd m +−+=__. 【答案】15【解析】【分析】根据题意得到0a b +=,1cd =,216m =,代入代数式计算即可.【详解】解:a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为4,0a b ∴+=,1cd =,216m =,22022()a b cd m ∴+−+20220116=×−+0116=−+15=,故答案为:15.【点睛】此题考查了代数式的求值,熟练掌握相反数、倒数、绝对值等知识是解题的关键.18. 已知数轴上的点A ,B 表示的数分别为2−,4,P 为数轴上任意一点,表示的数为x ,若点P 到点A ,B 的距离之和为7,则x 的值为 _____.【答案】 2.5−或4.5【解析】【分析】根据数轴上两点间的距离公式列出方程,求出方程的解即可得到x 的值.【详解】解:根据题意得:|x +2|+|x -4|=7,当x <-2时,化简得:-x -2-x +4=7,解得:x =-2.5;当-2≤x <4时,化简得:x +2-x +4=7,无解;当x ≥4时,化简得:x +2+x -4=7,解得:x =4.5,综上,x 的值为-2.5或4.5.故答案为:-2.5或4.5.【点睛】此题考查了数轴,弄清数轴上两点间的距离公式是解本题的关键.三、解答题19. 已知有理数:-0.5,0,2,122−,( 3.5)−−,2−. (1(2)把这些数按照从小到大的顺序排列,并用“<”号连接.【答案】(1)见解析 (2)()1220.502 3.52−<−<−<<<−− 【解析】【分析】(1)利用数轴上表示有理数的方法表示即可.(2)根据数轴上有理数的特点即可求解.【小问1详解】解:0.5−,0,2,122−,( 3.5)−−,2−在数轴上表示为:【小问2详解】由(1)数轴可得:()1220.502 3.52−<−<−<<<−−. 【点睛】本题考查了用数轴表示有理数及利用数轴比较有理数的大小,熟练掌握数轴上有理数的特点:左边的数比右边小是解题的关键.20. 计算:(1)()()3996−−−+−;(2)()2023223145−+÷−−−×; (3)115486812 −+×; (4)()()32482233−−−÷×−.【答案】(1)3−(2)27−(3)22(4)11【解析】【分析】(1)根据有理数加减运算法则计算即可求解;(2)根据有理数的运算法则计算即可求解;(3)利用有理数的乘法分配律进行计算即可求解;(4)根据有理数的运算法则计算即可求解;本题考查了有理数的混合运算,掌握有理数的运算法则和运算律是解题的关键.【小问1详解】解:原式3996=−+− 36=-,3=−;【小问2详解】解:原式()43145=−+÷−−×()4320=−+−−,720=−−,27=−;的【小问3详解】 解:原式1154848486812=×−×+× 8620=−+,220=+,22=;【小问4详解】解:原式()168398=−−−×× ()1639=−−−×,()1627=−−−,1627=−+,11=.21. 阅读下面的解题过程,再解答问题.因为a ÷b 与b ÷a 互为倒数.所以在计算123724348 −÷−+的值时可采用下列方法: 解:因为237134824 −+÷−=()23724348 −+×−=()()()237-24--24+-24348××× =-16+18-21=-19, 所以,原式=119− . 根据上述方法,计算:13511760461512 −÷+−−. 【答案】116−【解析】 【分析】仿照阅读材料中的方法求出所求即可.【详解】解:111()()41535761260+−−÷− 11()(60)415357126=+−−×− 45504435=−−++16=−, 则13511711660461512 −÷+−−=−. 【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22. 某足球守门员练习折返跑,从初始位置出发,向前跑记作正数,向后跑记作负数,他的练习记录如下(单位:m):+5,-3,+10,-8,-6,+13,-10(1)守门员最后是否回到了初始位置?(2)守门员离开初始位置达到10m 以上(包括10m)的次数是多少?【答案】(1)守门员最后没有回到初始位置;(2)2次【解析】【分析】(1)根据题意可把记录的数据进行相加,然后问题可求解;(2)根据题意分别得出每次离初始位置的距离,进而问题可求解.【详解】解:(1)由题意得:(+5)+(-3)+(+10)+(-8)+(-6)+(+13)+(-10)=1(m).答:守门员最后没有回到初始位置.(2)第一次离开初始位置的距离为5m ,第二次离开初始位置的距离为5-3=2m ,第三次离开初始位置的距离为2+10=12m ,第四次离开初始位置的距离为12-8=4m ,第五次离开初始位置的距离为4-6=-2m ,第六次离开初始位置的距离为-2+13=11m ,第七次离开初始位置的距离为11-10=1m ,∴守门员离开初始位置达到10m 以上(包括10m)的次数是2次.【点睛】本题主要考查有理数加减混合运算的应用,熟练掌握有理数的加减运算是解题的关键. 23. 观察下列三行数:2,-4, 8,-16, 32,-64,… ①0,-6, 6,-18, 30,-66,… ②-1, 2,-4, 8,-16, 32,… ③(1)第①行的第n 个数是_______(直接写出答案,n 为正整数)(2)第②、③行的数与第①行相对应的数分别有什么关系?(3)取每行的第8个数,计算这三个数的和.【答案】(1)2n −−()(2)第②行的数是第①行相对应的数减2;第③行的数是第①行相对应的数乘以0.5−()(3)每行的第8个数的和是386−【解析】【分析】(1)第①行的每个数是2−的乘方的相反数,其幂指数为数的个数n ;(2)将第①行各项的数减2即得第②行的数,第③行数等于第①行数相应的数乘以0.5−(),即可求解;(3)分别找出每行第8个数,进而计算这三个数的和即可.【小问1详解】解:首先2,4,8,16 很显然后者是前者2倍.由各数符号是交替出现,故考虑到数值的变化可以用(2)n −−表示.【小问2详解】第②行数等于第①行数相应的数减去2,第③行数等于第①行数相应的数乘以0.5−(); 【小问3详解】解:每行的第8个数的和是()()()()88822220.5 −−+−−−+−−×−()2562582560.5=−−−×−386=−.【点睛】本题主要考查了探索数字变化规律,找规律时,善于发现数字之间的共同点,或者是隐藏关系,培养学生的数感是解题的关键.24. 在庆祝新中国72周年华诞的重要时刻,电影《长津湖》上映可谓恰逢其时、意义重大.电影《长津湖》讲述了中国人民志愿军第9兵团某部穿插七连参加长津湖战役的过程,展现了人民军队炽烈的爱国情怀、对党和人民的无比忠诚,生动诠释了伟大的抗美援朝精神.昆明市9月30日该电影的售票量为1.3万的张,10月1日到10月7日售票的变化如下表(正数表示售票量比前一天多,负数表示售票量比前一天少):日期1日2日3日4日5日6日7日售票量的变化单位(万张)+0.6 +0.1 −03 −0.2 0.4 −0.2 +0.1(1)这7天中,售票量最多的是10月日,售票量最少的是10月日;(2)若平均每张票价为60元,这7天昆明市《长津湖》的票房共多少万元?【答案】(1)2;4 (2)750万元【解析】【分析】(1)把表格中的数据相加,即可得出结论;(2)根据表格得出1日到7日每天的人数,相加后再乘以60即可得到结果.【小问1详解】10月1日的售票量为:1.3+0.6=1.9(万张);10月2日的售票量为:1.9+0.1=2(万张);10月3日的售票量为:2-0.3=1.7(万张);10月4日的售票量为:1.7-0.2=1.5(万张);10月5日的售票量为:(万张);10月6日的售票量为:1.9-0.2=1.7(万张);10月7日的售票量为:1.7+0.1=1.8(万张);所以售票量最多的是10月2日,售票量最少的是10月4日;故答案为:2;4;【小问2详解】由题意得,7天的售票量(单位:万张)分别为:1.9,2.0,1.7,1.5,1.9,1.7,1.8则7日票房:60(1.9+2.0+1.7+1.5+1.9+1.7+1.8)10000=7500000××(元)答:这7天昆明《长津湖》票房共750万元【点睛】本题考查了正数和负数以及有理数的混合运算,掌握正数和负数表示相反意义的量是解答本题的关键..。
典型例题例1 小明业余时间进行飞镖训练,上周日训练的平均成绩是8.5环,而这一周训练的平均成绩变化如下表:正号表示比前一天提高,负号表示比前一天下降(1)问本周哪一天的平均成绩最高,它是多少环?(2)问本周哪一天的平均成绩最低,它是多少环?(3)本周日的成绩和上周日的成绩比是提高了,还是下降了,其变动的环数是多少?分析这题的关键问题是求出本周每天训练的平均环数,而要求出一天的平均环数只需知道前一天的平均环数,而上周日的平均环数已知。
解本周训练每天的平均环数如下:周一:8.5+1=9.5;周二:9.5+0.2=9.9;周三:9.7+(-0.5)=9.2;周四:9.2+0.3=9.5;周五:9.5+0.2=9.7;周六:9.7+(-0.7)=9;周日:9+(-0.1)=8.9。
由此可知本周二和本周五训练的平均成绩最高,是9.7环,本周日训练的平均成绩最低,是8.9环,本周日的平均成绩和上周日的平均成绩比是提高了,提高了(8.9-8.5=0.4)0.4环。
说明:本题中正数和负数的标准是以前一天的平均环数为标准,而不是都以上周日的平均环数为标准;注意在计算类似于这样的题时首先要把正、负的标准弄清楚。
例2 下表是一个水文站在雨季在某条河一周内水位变化情况的记录.其中,水位上升用正数表示,水位下降用负数表示.注:①表中记录的数据为每天12时的水位与前一天12时水位的变化量.②上周日12时的水位高度为2米.(1)请你通过计算说明本周末水位是上升了还是下降了.(2)用折线图表示本周每天的水位,并根据折线图说明水位在本周内的升降趋势.分析计算这七天水位变化量的和,看结果是正、还是负,若是正,说明周末水位上升了;若是负;说明水位下降了.解(1)∴本周末水位下降了.(2)如图所示.说明:本例是有理数的加法和统计图知识交汇综合题.。