利用三角函数有界性求函数的值域
- 格式:pdf
- 大小:63.04 KB
- 文档页数:1
函数值域的求法求函数的值域是函数部分的重点,也是难点。
本文通过对函数值域的求法的归纳与总结,使学生对其求法有一个总的轮廓和了解,便于学生在解题过程中灵活应用(1) 观察法:由函数的定义域结合图象,或直观观察,准确地判断函数值域的方法。
例1. 求函数)1(,11≥++-=x x x y 的值域。
),2[+∞例2. 求函数1062++=x x y 的值域。
),1[+∞ (2) 最值法:对于闭区间上的连续函数,利用求函数的最大值和最小值来求函数的值域的方法。
例3. 求函数]2,2[,2-∈=x y x 的值域。
⎥⎦⎤⎢⎣⎡4,41 例4. 求函数6522++-=x x y 的值域。
]873,(-∞ (3)判别式法:通过对二次方程的实根的判别求值域的方法。
例5. 求函数22122+-+=x x x y 的值域。
),21[)1,(+∞-⋃--∞(4) 反函数法:利用求已知函数的反函数的定义域,从而得到原函数的值域的方法。
例6. 求函数⎪⎭⎫⎝⎛≠-+=32,2332x x x y 的值域。
⎪⎭⎫⎝⎛+∞⋃⎪⎭⎫ ⎝⎛∞-,3232,例7. 求函数⎪⎭⎫⎝⎛-≠≠++=c d x c d cx b ax y ,0,的值域。
⎪⎭⎫⎝⎛+∞⋃⎪⎭⎫ ⎝⎛∞-,,c a c a(5) 换元法:通过对函数恒等变形,将函数化为易求值域的函数形式,来求值域的方法。
例8. 求函数x x y 21--=的值域。
提示:设x t 21-=,则0,212≥--=t t t y 且,…… ]21,(-∞ (6) 复合函数法:对函数)(),(x g u u f y ==,先求)(x g u =的值域充当)(u f y =的定义域,从而求出)(u f y =的值域的方法。
例9. 求函数()352log 221++-=x x y 的值域。
),849[+∞ (7) 利用基本不等式求值域:例10. 求函数xx y 1+=的值域。
不同函数类型值域求解方法归纳题型一:二次函数的值域: 配方法(图象对称轴) 例1. 求6a )(2+-=x x x f 的值域解答:配方法:4a 64a 62a 6a )(2222-≥-+⎪⎭⎫ ⎝⎛-=+-=x x x x f 所以值域为⎥⎦⎤⎢⎣⎡∞+-,4a 62例2. 求6)(2+-=x x x f 在[]11,-上的值域解答:函数图像法:423216)(22+⎪⎭⎫ ⎝⎛-=+-=x x x x f画出函数的图像可知,6)(2+-=x x x f 在21=x 时取到最小值423,而在1-=x 时取到最大值8,可得值域为⎥⎦⎤⎢⎣⎡8423,。
例3. 求6a )(2+-=x x x f 在[]11,-上的值域解答:由函数的图像可知,函数的最值跟a 的取值有关,所以进行分类讨论: ① 当2a-≤时,对称轴在1-=x 的左侧,所以根据图像可知,a 7)1(max -==f f ,a 7)1(min +=-=f f , 此时值域为[]a 7a 7-+,.② 当0a2≤≤-时,对称轴在1-=x 与y 轴之间,所以根据图像可知,a 7)1(max -==f f ,4a 6)2a (2min-==f f ,此时值域为⎥⎦⎤⎢⎣⎡--a 74a 62,. ③ 当2a0≤≤时,对称轴在y 轴与1=x 之间,所以根据图像可知,a 7)1(max +=-=f f ,4a 6)2a (2min-==f f ,所以此时值域为⎥⎦⎤⎢⎣⎡+-a 74a 62,④ 当a 2≤时,对称轴在1=x 的右侧,所以根据图像可知,a 7)1(max +==f f ,a 7)1(min -=-=f f所以此时的值域为[]a 7a 7+-,题型二:指数、对数函数的值域: 采用换元法例4. 求()62log )(22+-=x x x f 的值域解答:复合形式用换元:令622+-=x x t,则由例1可知,[)+∞∈,5t根据单调性,可求出t 2log 的值域为[)+∞,5log 2例5. 求624)(1++=+x x x f 的值域解答:因为()224x x=,所以,采用换元法,令xt 2=,则()+∞∈,0t则原函数变为622++t t,可以根据二次函数值域的求法得到值域为()+∞,6题型三:分式函数的值域分式函数的值域方法:(1) 分离变量(常数)法;(2) 反函数法(中间变量有界法);(3) 数形结合(解析几何法:求斜率);(4) 判别式法(定义域无限制为R ); 例6. 求函数132)(++=x x x f 的值域 解法一:分离变量法。
求三角函数值域的常用方法有关三角函数的值域(最值)的问题是各级各类考试考察的热点之一,这类问题的解决涉及到化归、转换、类比等重要的数学思想,采取的数学方法包括易元变换、问题转换、等价化归等重常用方法。
掌握这类问题的解法,不仅能加强知识的纵横联系,巩固基础知识和基本技能,还能提高数学思维能力和运算能力。
一、利用三角函数的有界性求值域1、形如y=asinx+bcosx+c 型引入辅助角公式化为22b a +sin(x+φ)+c 再求值域. 例1、求函数f(x)=2sinx+cos(x+3π)的值域2、形如y=asin 2x+bsinxcosx+ccos 2x 型通过降幂转化为Asinx+Bcosx 再求值域.例2、(2011重庆高考)设a R ∈,2()cos (sin cos )cos ()2f x x a x x x π=-+-,满足()(0)3f f π-=,求函数11(),]424f x ππ在[上的最大值和最小值二、用换元法化为二次函数求值域1、形如y=sin 2x+bsinx+c 型令sinx=t 转化为二次函数再求值域.例3、(2011北京卷)已知函数2()2cos 2sin 4cos f x x x x =+-(1)求()3f π的值 (2)求()f x 的最大值和最小值2、形如y=asinx·cosx+b (sinx±cosx )+c ,换元令sinx±cosx=t 转化为二次函数在]2,2[-上的值域问题三、根据代数函数的单调性求值域形如y=sint+t b sin ,令sint=x ,根据函数y=x+xb 的单调性求值域. 例6、θ∈(0,π),则函数y=sin θ+θsin 2的值域为_________.形如y=d x c b x a ++cos cos 型,可用分离常数法转化为y=x+xb 再求值域. 例5、求函数y=1cos 21cos 2-+x x 的值域.。
2022-2023 高一数学上期末知识点总结和方法专练---函数的定义与表示一、 函数定义:函数是定义在两个非空数集A ,B 上的一种特殊对应关系,对于A 中每一个数x ,在B 中都有唯一的数与之对应(每一个x 对应唯一一个y )。
函数图像与x 轴的垂线至多有一个公共点;当非空集合A 中有m 个元素,B 中有n 个元素时,则A 中每个元素在B 中的相都可以有n 种不同情况,故由A 到B 的函数共有n m 个.【例1】:下列图形可以表示函数y =f (x )图象的是( )【例2】:下列对应为A 到B 的函数的是( )A .A R =,{|0}B x x =>,:||f x y x →= B .A Z =,*B N =,2:f x y x →=C .A Z =,B Z =,:f x y x →=D .[1A =-,1],{0}B =,:0f x y →=【例3】:已知集合P ={x|-4≤x≤4},Q ={y|-2≤y≤2},下列函数不表示从P 到Q 的函数的是( )A .2y =xB . y 2=12(x +4)C .y =14x 2-2 D .x 2=-8y【例4】:已知函数f (x )的定义域为,值域为,则满足条件的函数f (x )的个数为( )二、 同一函数的判断方法:表达式相同(与表示自变量和函数值的字母无关);②定义域一致 (两点必须同时具备). 定义域、值域与解析式三个中只有一个不同就不是同一函数. 【例1】:f (x )与g (x )表示同一函数的是( )A .f (x )=x 2-1与g (x )=x -1·x +1B .f (x )=x 与g (x )=x 3+xx 2+1C .y =x 与y =(x )2D .f (x )=x 2与g (x )=3x 3【例2】:(多选)f (x )与g (x )表示同一函数的有( ) A .32y x =-与2y x x =- B .()2y x =与y x =C .11y x x =+⋅-与()()11y x x =+- D .()221f x x x =--与()221g t t t =--E. ()3f x x =-与2()69g x x x =-+;F. ()1f x x =-与2()21g t t t =-+; 三、定义域求法:(1)分式函数中分母不等于零,0指数幂的底数不为0. (2)偶次根式函数被开方式大于或等于0. (3)一次函数、二次函数的定义域为R . (4)对数的真数要大于0, 底数大于0且不等于1.(5)y =a x (a >0且a ≠1),y =sin x ,y =cos x ,定义域均为R . (6)y =tan x 的定义域为{x |x ≠k π+π2,k ∈Z }. (7)实际问题满足实际意义。
第29课三角函数的最值问题KAQGANG JlL XI1. 会通过三角恒等变形、利用三角函数的有界性、结合三角函数的图象,求三角函数的最 值和值域.2.掌握求三角函数最值的常见方法,能运用三角函数最值解决一些实际问题1•阅读:必修 4第24〜33页、第103〜116页、第119〜122页. 2. 解悟:①正弦、余弦、正切函数的图象和性质是什么?②三角函数y = A si n( 3汁$ )(A>0,3 >0的最值及对应条件;③两角和与差的正弦、余弦、正切公式是什么?辅助角公式是否熟练?④二倍角公式是什么?由倍角公式得到的降幕扩角公式是什么?必修 4第123页练习第4题怎么解?3. 践习:在教材空白处,完成必修4第131页复习题第9、10、16题. I…T 基础诊断 &Y* ----------------------1. 函数f(x) = sinx , x € g,手丿的值域为'1 1 __.2.函数 f(x) = sinx — cos[x + f 的值域为 [-羽,护].nQ 313\13解析:因为 f (x) =sinx — cos(x+ 6)= sinx — Tcosx+ 2sinx= 2sinx —T cosx所以函数f(x) = sinx — cos(x +》的值域为[—.3, ,3].3. 若函数 f(x) = (1 + . 3tan x) cosx , 0< x<n 贝U f(x)的最大值为 2 .解析:f(x) = (1 + J 3ta nx)cosx = cosx + J 3si nx = 2si n^ + •因为 0 < x<n ,所以詐 x + 才<|^所以 sin x +€ 土,1,所以当sin[j + ^;= 1时,f(x)有最大值2.4. 函数 y = 2sin 2x — 3sin2x 的最大值是,10+ 1.2形如y = asin x + bcosx + c 的三角函数的最值例 1 已知函数 f(x) = 2cos2x + sin 2x — 4cosx. (1) 求f nn 的值;(2) 求f(x)的最大值和最小值.解析:(1) f [^;;= 2cos 2n+ sin^— 4cos n=— 1+ 3— 2 =—:2 2(2) f(x) = 2(2cos x — 1) + (1 — cos x) — 4cosx2=3cos x — 4cosx — 1课本KE SEN XI=.3sin(x — 6),范例导航考向?cf 2-\7 “=3 cosx — 3 — 3, x € R.因为 cosx € [ — 1, 1],所以当cosx =— 1时,f(x)取最大值6;2 7 当cosx =孑时,f(x)取最小值一3. 33已知s 4+汴貉A €6扌)(1) 求cosA 的值;5(2) 求函数 f(x) = cos2x + qs in As inx 的值域. 解析:⑴ 因为n <A<n,且Sin 》+才戶, 所以2<A +4<¥’cos$+护-密所以 cosA = cos [(A +n - n =cos+ U2 x _2 10 2 10 23 5.4(2)由(1)可得 sinA = 5,5 2f . 1 "f 3 所以 f(x) = cos2x + 2sinAsinx = 1 — 2sin x + 2sinx =— 2 sinx — + ?, x € R. 因为 sinx € [ — 1, 1],1 3所以当sinx =2时,f(x)取最大值§; 当sinx =— 1时,f(x)取最小值一3. 所以函数f(x)的值域为 一3, 3 1门考向?形如y = Asin( 3x+ © + k 的三角函数的最值例 2 已知函数 f(x) = 2cosxsin & + 寸一屆in 2x + sinxcosx + 1. (1) 求当函数f(x)取得最大值时,x 的取值集合; (2) 当 x € 0, 1n 时,求 f(x)的值域.解析:(1)因为 f(x) = 2cosxsin x + 3 — - 3sin 2x + sinxcosx + 1A +=2cosx(?sinx + ycosx) — 3sin 2x + sinx •osx + 1 =2si nxcosx + 3cos 2x — 3si n 2x + 1 =si n2x + 3cos2x + 1 1 3=2/n2x + 〒cos2x) + 1n n n由 2x + 3 = 2k n+ ^, k € Z ,可得 x = k n+ 石,k € Z ,所以函数f(x )取得最大值时,x 的集合为{x|x = k n+-, k € Z}.12(2)由 x € o ,,'得2x+n n n ,所以 ~23<sin(2x + n )< 1, 所以•.3+ 1 w f(x)w 3, 故f(x)的值域为[,3 + 1, 3].【注】 对于三角函数最值问题,通常将表达式化为形如 y = Af (3x+ © + B 的形式,确定变量x 取值的集合通常由等式3x+ ©= 2k n+ 0, k € Z 解出x已知函数f(x)= sin 2 wx — 6 + 2cos 2 1( w >0)的最小正周期为 n.(1)求w 的值;2 n所以f(x)的最小正周期T = — = n,解得w= 1.(2)由(1)得 f(x)= sin 2x + 6 . 因为0w x w$,所以6w 2x +6w 莘所以当2x + 6= 2,即x = 6时,f(x)取得最大值为1;=2sin 2x +1.⑵求f(x)在区间気上的最大值和最小值.解析:(1)因为 f(x)= sin 2wx — o + 2cos wx — 1,3 1=~2"si n2 wx+ 2cos2 wx= sin当2x + n= 4n,即x = 1n 时f(x)取得最小值为一 弩.【变式题】 已知函数 f(x)= sin x ++ cosx.(1)求f(x)的最大值,并写出当f(x)取得最大值时,x 的集合;,f a+ n = ,求 f(2a)的值.所以 f(2 a) = . 3sin 2a+ f1 3=.3?sin2 a+ —cos2 a=,3[2X 2sin acos a+ 手 x (2cos 2 a — 1)]厂1 4 3 V39 =3X [-x 2X x +亠x (2x — 1)] V L2 5 5 2 '25 刀=V 3x 险—也1=竺吐1Y辽5 50 丿 50.考向? 三角函数最值问题常见的其他函数形式2例3 (1)已知x € (0, n,求函数y = sinx +的最小值;sinx⑵ 已知 灰(0, n ,求函数y =1 豐nA 的最大值; ⑶ 求函数y = (sinx — 2)(cosx — 2)的最大值与最小值.a€ 0,扌:解析: (1) f(x)= sin x ++ cosx=^sinx + 3cosx = ,3 1=%;3si nx + 3 , 所以 f(x)max =【?3.此时,x +n= 2k n+n ,k € Z ,即 x = 2k n+n , k € 乙3 2 61sin x + ~fcosx故当f(x)取得最大值3时,x 的集合为{x|x = 2k n+n k € Z}.6⑵ 由 f a+ n = . 3sin( a+ n = ¥ ,得sinn_ 32 = 5,所以 cos a= 3, sin54 a= 一, a 52解析:⑴设sinx= t(O<t w 1),则原函数可化为y = t + -,在(0, 1]上为减函数,故当t= 1时,y min= 3.⑵ 因为茨(0, n,所以sin茨(0, 1], y = 一卫一w 丿=1当且仅当si n B= 亦e+ 3sin e 21等号成立,故y max=刁(3)原函数可化为y= sinxcosx—2(sinx+ cosx) + 4,令sinx+ cosx = t(|t|w 2), nt t2— 1贝U sinxcosx =—,2t —1 1 2 3所以y=—2t+ 4=2(t—2) +2因为对称轴为直线t = 2?[ —2, 2],且函数在区间[—2, 2]上是减函数,所以当t= 2,即x = 2k n+ n(k € Z)时, y min = 2 - 2.2;— 3 n 9 —当t=—2,即x= 2k n—~4(k€ Z)时,y max= 2 . 2.【注】(1)直接利用三角函数的有界性,并直接利用基本不等式去求解.a(2)首先是对分数函数的一般的处理方式,然后回到(1)的步骤去解决.y= sinx+亦型三角函数求最值,当sinx>0, a>1时,不能用均值不等式求最值,适宜用函数在区间内的单调性求解.(3)含有"正、余弦三姐妹",即含有sinx±sosx, sinxcosx的函数的最值问题,常用的方法是令sinx±cosx= t, |t|< 2,将sinxcosx转化为关于t的函数关系式,从而转化为二次函数的最值问题,在转化过程中尤其要注意新变量t的范围的确定.【变式题】(1)求函数y= 2—sinx的最小值;si nx+ 2n 1 1⑵ 若0<x<2,求函数y= (1+ cosx)(1 + 亦)的最小值・4 —2 —sinx 4 1解析:⑴y=—厂=s^zr1飞,1所以最小值为1⑵y=1+cosx1+si.sinx+ cosx+ 1=1 +sin xcosx令t= sinx+ cosx, t€ (1, .2],t2— 1贝U sinxcosx = 2 ,t + 1 t2+ 2t + 1 t+ 1 八2t2— 1 t2—1 t—1 t —T2由1<t W 2,得y》3 + 2 2, 所以函数的最小值为 3 + 2 2.自测反馈1.函数y= 2sin 3—x —cos 6 + x (x € R)的最小值是__—1解析:因为cos ¥+ x = sin n- x,所以y= 2sin n—x —cos 总+ x = 2sin 扌一x —sin n—x =—sin x —3 •因为x€ R,所以y min=—1.2.函数y= sin^在区间[0,b]上恰好取得2个最大值,则实数b的取值范围是_ -2, ^7\解析:因为函数y= singe的周期为年=6,函数y= sin^x在区间[0,3b]上恰好取得2个最大值,则实数b满足5T W b<94-,解得乎三b<27.故实数b的取值范围为3.函数y=也cosx的值域是[—1 , 1].2 + sinx解析:2y+ ysinx = 3cosx, ysinx—3cosx = —2y,得y2+ 3sin(x + —2y—2y<^ = -yz^3,则匕齐^|W 1,解得—1W y W 1.■15 27).2,2 丿()))=—2y, sin(x +4.函数f(x) = sinx+ cosx+ sinx •osx 的值域是—1,x + n 则t € [ —^2^2], t2= 1 + 2sinxcosx,则sinxcosxt? —1 t?—1 12 1 2 —厂,贝U f(x) = sinx + cosx + sinxcosx = t + 厂=?(t + 2t —1) = ^(t + 1) — 1.因为一.2 解析:令t = sinx+ cosx = ■2sin xW t W 2 所以f(x) € [ —1 , 2 + 1.反思搐遺1.求解三角函数的值域(最值)常见到以下几种类型:①形如y = asin x + bcos x + c的三角函数化为y = Asin(3汁$卅k的形式,再求值域(最值);②形如y = asin2x + bcos x + c的三角函数,可先设sin x= t,化为关于t的二次函数求值域(最值);③形如y = asin xcos x + b(sin x ±os x)+ c的三角函数,可先设t = sin x ±os x,化为关于t的二次函数求值域(最值).2•你还有哪些体悟,写下来:。
十一种类型的三角函数最值问题1.利用三角函数的有界性求最值利用正弦函数、余弦正数的有界性:∣sinx ∣≤1,∣cosx ∣≤1,可求形如y=Asin(ωx+φ),y=Acos(Asin(ωx+φ)(A ≠0, φ≠0)的函数最值.例:已知函数y=12 cos 2x+32 sinxcosx+1,x ∈R,当函数y 取得最大值时,求自变量x 的集合.2.反函数法 例:求函数1cos 21cos 2-+=x x y 的值域[分析] 此为dx c bx a y -+=cos cos 型的三角函数求最值问题,分子、分母的三角函数同名、同角,先用反解法,再用三角函数的有界性去解。
3.配方法—---转化为二次函数求最值例:求函数y=f(x)=cos 22x-3cos2x+1的最值.4.引入辅助角法y=asinx+bcosx 型处理方法:引入辅助角ϕ ,化为y=22b a +sin (x+ϕ),利用函数()1sin ≤+ϕx 即可求解。
Y=asin 2x+bsinxcosx+mcos 2x+n 型亦可以化为此类。
例:已知函数()R x x x x y ∈+⋅+=1cos sin 23cos 212当函数y 取得最大值时,求自变量x 的集合。
[分析] 此类问题为x c x x b x a y 22cos cos sin sin +⋅+=的三角函数求最值问题,它可通过降次化简整理为x b x a y cos sin +=型求解。
5. 利用数形结合 例: 求函数y xx=+s in c o s 2的最值。
解:6、换元法例:若0<x<2π,求函数y=(1+1sinx )(1+1cosx )的最小值.7. 利用函数在区间内的单调性8. 例: 已知()π,0∈x ,求函数xx y sin 2sin +=的最小值。
[分析] 此题为xax sin sin +型三角函数求最值问题,当sinx>0,a>1,不能用均值不等式求最值,适合用函数在区间内的单调性来求解。
高中数学学案:三角函数的最值问题1. 会通过三角恒等变形、利用三角函数的有界性、结合三角函数的图象,求三角函数的最值和值域.2. 掌握求三角函数最值的常见方法,能运用三角函数最值解决一些实际问题.1. 阅读:必修4第24~33页、第103~116页、第119~122页.2. 解悟:①正弦、余弦、正切函数的图象和性质是什么?②三角函数y =A sin (ωx +φ)(A>0,ω>0)的最值及对应条件;③两角和与差的正弦、余弦、正切公式是什么?辅助角公式是否熟练?④二倍角公式是什么?由倍角公式得到的降幂扩角公式是什么?必修4第123页练习第4题怎么解?3. 践习:在教材空白处,完成必修4第131页复习题第9、10、16题.基础诊断1. 函数f(x)=sin x,x ∈⎝ ⎛⎭⎪⎫π6,2π3的值域为⎝ ⎛⎦⎥⎤12,1__. 2. 函数f(x)=sin x -cos ⎝ ⎛⎭⎪⎫x +π6的值域为3]__. 解析:因为f(x)=sin x -cos (x +π6)=sin x -32cos x +12sin x =32sin x -32cos x =3sin (x -π6),所以函数f(x)=sin x -cos (x +π6)的值域为[-3,3].3. 若函数f(x)=(1+3tan x)cos x,0≤x<π2,则f(x)的最大值为__2__.解析:f(x)=(1+3tan x)cos x =cos x +3sin x =2sin ⎝ ⎛⎭⎪⎫x +π6.因为0≤x<π2,所以π6≤x +π6<2π3,所以sin ⎝ ⎛⎭⎪⎫x +π6∈⎣⎢⎡⎦⎥⎤12,1, 所以当sin ⎝ ⎛⎭⎪⎫x +π6=1时,f(x)有最大值2.4. 函数y =2sin 2x -3sin 2x范例导航考向❶ 形如y =a sin 2x +b cos x +c 的三角函数的最值例1 已知函数f(x)=2cos 2x +sin 2x -4cos x.(1) 求f ⎝ ⎛⎭⎪⎫π3的值; (2) 求f(x)的最大值和最小值.解析:(1) f ⎝ ⎛⎭⎪⎫π3=2cos 2π3+sin 2π3-4cos π3=-1+34-2=-94. (2) f(x)=2(2cos 2x -1)+(1-cos 2x)-4cos x=3cos 2x -4cos x -1=3⎝ ⎛⎭⎪⎫cos x -232-73,x ∈R. 因为cos x ∈[-1,1],所以当cos x =-1时,f (x )取最大值6;当cos x =23时,f (x )取最小值-73.已知sin ⎝ ⎛⎭⎪⎫A +π4=7210,A ∈⎝ ⎛⎭⎪⎫π4,π2. (1) 求cos A 的值;(2) 求函数f (x )=cos2x +52sin A sin x 的值域.解析:(1) 因为π4<A <π2,且sin ⎝ ⎛⎭⎪⎫A +π4=7210, 所以π2<A +π4<3π4,cos ⎝⎛⎭⎪⎫A +π4=-210, 所以cos A =cos[(A +π4)-π4]=cos ⎝ ⎛⎭⎪⎫A +π4cos π4+sin ⎝ ⎛⎭⎪⎫A +π4sin π4 =-210×22+7210×22=35.(2) 由(1)可得sin A =45,所以f (x )=cos2x +52sin A sin x =1-2sin 2x +2sin x =-2⎝ ⎛⎭⎪⎫sin x -122+32,x ∈R. 因为sin x ∈[-1,1],所以当sin x =12时,f (x )取最大值32;当sin x =-1时,f (x )取最小值-3.所以函数f (x )的值域为⎣⎢⎡⎦⎥⎤-3,32. 考向❷ 形如y =A sin(ωx +φ)+k 的三角函数的最值例2 已知函数f(x)=2cos x sin ⎝ ⎛⎭⎪⎫x +π3-3sin 2x +sin x cos x +1. (1) 求当函数f(x)取得最大值时,x 的取值集合;(2) 当x ∈⎣⎢⎡⎦⎥⎤0,π12时,求f(x)的值域. 解析:(1) 因为f(x)=2cos x sin ⎝ ⎛⎭⎪⎫x +π3-3sin 2x +sin x cos x +1 =2cos x ⎝ ⎛⎭⎪⎫sin x cos π3+cos x sin π3-3sin 2x +sin x cos x +1 =2cos x(12sin x +32cos x)-3sin 2x +sin x·cos x +1=2sin x cos x +3cos 2x -3sin 2x +1=sin 2x +3cos 2x +1=2(12sin 2x +32cos 2x)+1=2sin ⎝ ⎛⎭⎪⎫2x +π3+1. 由2x +π3=2k π+π2,k ∈Z,可得x =k π+π12,k ∈Z,所以函数f (x )取得最大值时,x 的集合为{x |x =k π+π12,k ∈Z}.(2) 由x ∈⎣⎢⎡⎦⎥⎤0,π12,得2x +π3∈⎣⎢⎡⎦⎥⎤π3,π2, 所以32≤sin(2x +π3)≤1,所以3+1≤f (x )≤3,故f (x )的值域为[3+1,3].【注】 对于三角函数最值问题,通常将表达式化为形如y =Af (ωx +φ)+B 的形式,确定变量x 取值的集合通常由等式ωx +φ=2k π+θ,k ∈Z 解出x .已知函数f (x )=sin ⎝ ⎛⎭⎪⎫2ωx -π6+2cos 2ωx -1(ω>0)的最小正周期为π. (1) 求ω的值;(2) 求f (x )在区间⎣⎢⎡⎦⎥⎤0,7π12上的最大值和最小值. 解析:(1) 因为f (x )=sin ⎝⎛⎭⎪⎫2ωx -π6+2cos 2ωx -1 =⎝ ⎛⎭⎪⎫sin2ωx cos π6-cos2ωx sin π6+cos2ωx =32sin2ωx +12cos2ωx =sin ⎝ ⎛⎭⎪⎫2ωx +π6, 所以f (x )的最小正周期T =2π2ω=π,解得ω=1.(2) 由(1)得f (x )=sin ⎝ ⎛⎭⎪⎫2x +π6. 因为0≤x ≤7π12,所以π6≤2x +π6≤4π3,所以当2x +π6=π2,即x =π6时,f (x )取得最大值为1;当2x +π6=4π3,即x =7π12时,f (x )取得最小值为-32.【变式题】已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x +π6+cos x . (1) 求f (x )的最大值,并写出当f (x )取得最大值时,x 的集合;(2) 若α∈⎝ ⎛⎭⎪⎫0,π2,f ⎝ ⎛⎭⎪⎫α+π6=335,求f (2a )的值. 解析:(1) f (x )=sin ⎝ ⎛⎭⎪⎫x +π6+cos x =32sin x +32cos x =3⎝ ⎛⎭⎪⎫12sin x +32cos x =3sin ⎝ ⎛⎭⎪⎫x +π3, 所以f (x )max = 3. 此时,x +π3=2k π+π2,k ∈Z,即x =2k π+π6,k ∈Z.故当f (x )取得最大值3时,x 的集合为{x |x =2k π+π6,k ∈Z}.(2) 由f ⎝ ⎛⎭⎪⎫α+π6=3sin(α+π2)=335, 得sin ⎝ ⎛⎭⎪⎫α+π2=35, 所以cos α=35,sin α=45,α∈⎝ ⎛⎭⎪⎫0,π2, 所以f (2α)=3sin ⎝ ⎛⎭⎪⎫2α+π3 =3⎝ ⎛⎭⎪⎫12sin2α+32cos2α =3[12×2sin αcos α+32×(2cos 2α-1)] =3×[12×2×45×35+32×(2×925-1)]=3×⎝ ⎛⎭⎪⎫1225-7350=243-2150. 考向❸ 三角函数最值问题常见的其他函数形式例3 (1) 已知x ∈(0,π),求函数y =sin x +2sin x 的最小值;(2) 已知θ∈(0,π),求函数y =3sin θ1+3sin 2θ的最大值; (3) 求函数y =(sin x -2)(cos x -2)的最大值与最小值.解析:(1) 设sin x =t(0<t ≤1),则原函数可化为y =t +2t ,在(0,1]上为减函数, 故当t =1时,y min =3.(2) 因为θ∈(0,π),所以sin θ∈(0,1],y =31sin θ+3sin θ≤323=12,当且仅当sin θ=33时等号成立,故y max =12.(3) 原函数可化为y =sin x cos x -2(sin x +cos x)+4,令sin x +cos x =t(|t|≤2),则sin x cos x =t 2-12,所以y =t 2-12-2t +4=12(t -2)2+32.因为对称轴为直线t =2∉[-2,2],且函数在区间[-2,2]上是减函数,所以当t =2,即x =2k π+π4(k ∈Z)时,y min =92-22;当t =-2,即x =2k π-3π4(k ∈Z)时,y max =92+2 2.【注】 (1) 直接利用三角函数的有界性,并直接利用基本不等式去求解.(2) 首先是对分数函数的一般的处理方式,然后回到(1)的步骤去解决.y =sin x +a sin x 型三角函数求最值,当sin x >0,a >1时,不能用均值不等式求最值,适宜用函数在区间内的单调性求解.(3) 含有“正、余弦三姐妹”,即含有sin x ±cos x ,sin x cos x 的函数的最值问题,常用的方法是令sin x ±cos x =t ,|t |≤2,将sin x cos x 转化为关于t 的函数关系式,从而转化为二次函数的最值问题,在转化过程中尤其要注意新变量t 的范围的确定.【变式题】(1) 求函数y =2-sin x sin x +2的最小值; (2) 若0<x <π2,求函数y =(1+1cos x )(1+1sin x )的最小值.解析:(1) y =4-2-sin x sin x +2=4sin x +2-1≥13, 所以最小值为13.(2) y =⎝ ⎛⎭⎪⎫1+1cos x ⎝ ⎛⎭⎪⎫1+1sin x =1+sin x +cos x +1sin x cos x ,令t =sin x +cos x ,t ∈(1,2],则sin x cos x =t 2-12,所以y =1+t +1t 2-12=t 2+2t +1t 2-1=t +1t -1=1+2t -1, 由1<t ≤2,得y ≥3+22,所以函数的最小值为3+2 2.自测反馈1. 函数y =2sin ⎝ ⎛⎭⎪⎫π3-x -cos ⎝ ⎛⎭⎪⎫π6+x (x ∈R)的最小值是__-1__.解析:因为cos ⎝ ⎛⎭⎪⎫π6+x =sin ⎝ ⎛⎭⎪⎫π3-x ,所以y =2sin ⎝ ⎛⎭⎪⎫π3-x -cos ⎝ ⎛⎭⎪⎫π6+x =2sin ⎝ ⎛⎭⎪⎫π3-x -sin ⎝ ⎛⎭⎪⎫π3-x =-sin ⎝ ⎛⎭⎪⎫x -π3.因为x ∈R,所以y min =-1. 2. 函数y =sin π3x 在区间[0,b]上恰好取得2个最大值,则实数b 的取值范围是__⎣⎢⎡⎭⎪⎫152,272__. 解析:因为函数y =sin π3x 的周期为2ππ3=6,函数y =sin π3x 在区间[0,b]上恰好取得2个最大值,则实数b 满足5T 4≤b<9T 4,解得152≤b<272.故实数b 的取值范围为⎣⎢⎡⎭⎪⎫152,272. 3. 函数y =3cos x 2+sin x的值域是__[-1,1]__. 解析:2y +y sin x =3cos x,y sin x -3cos x =-2y,得y 2+3sin (x +φ)=-2y,sin (x +φ)=-2y y 2+3,则|-2y y 2+3|≤1,解得-1≤y ≤1. 4. 函数f(x)=sin x +cos x +sin x·cos x 的值域是⎦2. 解析:令t =sin x +cos x =2sin ⎝ ⎛⎭⎪⎫x +π4,则t ∈[-2,2],t 2=1+2sin x cos x,则sin x cos x =t 2-12,则f(x)=sin x +cos x +sin x cos x =t +t 2-12=12(t 2+2t -1)=12(t +1)2-1.因为-2≤t ≤2,所以f(x)∈[-1,2+12].1. 求解三角函数的值域(最值)常见到以下几种类型:①形如y =a sin x +b cos x +c 的三角函数化为y =A sin (ωx +φ)+k 的形式,再求值域(最值); ②形如y =a sin 2x +b cos x +c 的三角函数,可先设sin x =t,化为关于t 的二次函数求值域(最值);③形如y =a sin x cos x +b(sin x±cos x)+c 的三角函数,可先设t =sin x±cos x,化为关于t 的二次函数求值域(最值).2. 你还有哪些体悟,写下来:。
三角函数求值域专题求三角函数值域及最值的常用方法:(1)一次函数型:或利用为:y asinx bcosx a2b2sin(x ),利用函数的有界性或单调性求解;化为一个角的同名三角函数形式,(1):y 2sin(3x —) 5,y sin xcosx12(2)y 4sin x 3cosx(3) _____________________________________ .函数在区间上的最小值为_1.(4 )函数且的值域是—(,1] [1,)(2)二次函数型:化为一个角的同名三角函数形式的一元二次式,利用配方法、换元及图像法求解;二倍角公式的应用:女口. ( 1) y sin x cos2x3(2)函数的最大值等于3.4(3) _____________________________ .当时,函数的最小值为_4 •(4).已知k v—4,则函数y = cos2x + k(cos x-1)的最小值是 1 •(5).若,则的最大值与最小值之和为2— _ •(3) 借助直线的斜率的关系用数形结合求解;a sin x b型如f(x) 型。
此类型最值问题可考虑如下几种解法:ccos x d①转化为asinx bcosx c再利用辅助角公式求其最值;②利用万能公式求解;③采用数形结合法(转化为斜率问题)求最值。
例1 :求函数y sinx的值域。
cosx 2结合图形可知,此函数的值域是[』3,』3]。
33例2.求函数的最小值.解法一:原式可化为,得,即, 故,解得或(舍),所以的最小值为. 解法二:表示的是点与连线的斜率,其中点 B 在左半圆上,由图像知,当 AB 与半圆相切时,最小, 此时,所以的最小值为.(4) 换元法•识,易求得过Q 的两切线得斜率分别为 解法2:将函数ycosx sinx_变形为 2y cosx sin x2y ,二 sin( x )2y 1 y 2|sin(x )| 理 1V 1 y2(2y)y2,解得:彳,故值域是3]解法 3:利用万能公式求解: 由万能公式sin x -1 2t cosx 口;,代入1 t 2sinx得到cosx 22t2厂沪则有3yt2t0知:当t0,则y满足条件;当0,由24 12y 0 ,乜,故所求函数的值域是3解法4:利用重要不等式求解:由万能公式sinx -12t T , cosx.代入t 2sinx得到cosx 20,2t1 3t 20时,则y 0,满足条件;当t 0时,2 1" t 3t——,如果t >3t)2 ([)(3t)2 ~1 (:3t)2 2、于,此时即有如果t2、( ;)( 3t)彳,此时有0 y 于。